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Abstract 

Background High-grade serious ovarian carcinoma (HGSOC) is a subtype of ovarian cancer with a different prog-
nosis attributable to genetic heterogeneity. The prognosis of patients with advanced HGSOC requires prediction 
by genetic markers. This study systematically analyzed gene expression profile data to establish a genetic marker 
for predicting HGSOC prognosis.

Methods The RNA-seq data set and information on clinical follow-up of HGSOC were retrieved from Gene Expression 
Omnibus (GEO) database, and the data were standardized by DESeq2 as a training set. On the other hand, HGSOC 
RNA sequence data and information on clinical follow-up were retrieved from The Cancer Genome Atlas (TCGA) 
as a test set. Additionally, ovarian cancer microarray data set was obtained from GEO as the external validation set. 
Prognostic genes were screened from the training set, and characteristic selection was performed using the least 
absolute shrinkage and selection operator (LASSO) with 80% re-sampling for 5000 times. Genes with a frequency 
of more than 2000 were selected as robust biomarkers. Finally, a gene-related prognostic model was validated 
in both the test and GEO validation sets.

Results A total of 148 genes were found to be significantly correlated with HGSOC prognosis. The expression profile 
of these genes could stratify HGSOC prognosis and they were enriched to multiple tumor-related regulatory path-
ways such as tyrosine metabolism and AMPK signaling pathway. AKR1B10 and ANGPT4 were obtained after 5000-time 
re-sampling by LASSO regression. AKR1B10 was associated with the metastasis and progression of several tumors. In 
this study, Cox regression analysis was performed to create a 2-gene signature as an independent prognostic factor 
for HGSOC, which has the ability to stratify risk samples in all three data sets (p < 0.05). The Gene Set Enrichment Analy-
sis (GSEA) discovered abnormally active REGULATION_OF_AUTOPHAGY and OLFACTORY_TRANSDUCTION pathways 
in the high-risk group samples.

Conclusion This study resulted in the creation of a 2-gene molecular prognostic classifier that distinguished clini-
cal features and was a promising novel prognostic tool for assessing the prognosis of HGSOC. RiskScore was a novel 
prognostic model which might be effective in guiding accurate prognosis of HGSOC.
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Introduction
In the Western world, epithelial ovarian cancer (EOC) 
is one of the major contributors to gynecological mor-
talities [1]. EOC, a heterogeneous tissue consisting of 
several tumor subtypes, shows different genetic risks, 
pathophysiology, clinical behaviors, responses to treat-
ment, and prognosis. High-grade serous ovarian cancer 
(HGSOC) constitutes 60% -70% of all EOC [2], and the 
majority of the EOC deaths are caused by HGSOC [3]. 
Currently, BRCA1/BRCA2 gene mutation, family history, 
non-fertility, use of oral contraceptives, fallopian tube 
ligation, pregnancy, and lactation are seen as risk factors 
for ovarian cancer [4]. Tumor resection, platinum, and 
taxane chemotherapy are common options for treating 
ovarian cancer [5]. Since a significant number of HGSOC 
patients are identified at advanced stages, they have a 
higher recurrence rate and the 5-year rate of survival for 
these patients is < 40% [6, 7]. Identifying non-respond-
ers and patients with primary platinum resistance plays 
a crucial role in achieving a better survival of HGSOC 
patients [7]. As a result, it is critical to identify prognostic 
biomarkers to provide a reference for personalized medi-
cine and improve the prediction of clinical outcomes.

With advances in sequencing technology, it has been 
possible to explore the molecular mechanisms of dis-
ease by mapping the genomes of cancer cases [8]. Many 
of the biomarkers and mechanisms have contributed 
to a deeper understanding of cancer [9, 10]. Numer-
ous studies have been conducted to develop biomark-
ers for survival prediction and the long-term prognosis 
of HGSOC. By analyzing high-throughput gene expres-
sion profiles, genetic markers constructed with several 
to dozens of prognostic genes could effectively predict 
total survival [11, 12], reduce the status of the product 
[13] and platinum treatments [14]. For HGSOC patients 
with extreme chemical reactions, Wisman GBA et al. [15] 
applied genome-wide analysis of DNA methylation to 
construct new HGSOC platin-sensitive epigenetic mark-
ers. According to the transcriptome data, Liu L et al. [16] 
screened seven genes of new signal prediction based on 
high IIIc serous ovarian cancer clinical outcome and cis-
platin sensitivity. However, there are currently no effec-
tive clinical biomarkers for predicting HGSOC patients’ 
response to treatment. Even with relevant research, there 
are too many biomarkers identified, and there is a certain 
operational complexity in clinical application. Thus, iden-
tifying genetic signals related to the prognosis of HGSOC 
by analyzing its biological functions through bioinfor-
matics should be studied.

In the present research, to effectively construct a 
reliable gene signature for predicting the prognosis of 
patients with HGSOC, a systematic pipeline was pro-
posed to screen HGSOC-related genetic markers, 
and gene expression profiles of HGSOC patients were 
obtained from Gene Expression Omnibus (GEO) and 
The Cancer Genome Atlas (TCGA) databases. Screen-
ing of prognostic markers was performed combining 
transcriptome and genomics data, eventually construct-
ing a 2-gene signature. It was found that performance 
in predicting survival rate was validated by external val-
idation sets and test sets. The current findings revealed 
that the 2-gene signatures were involved in important 
pathways and biological processes of HGSOC, indicat-
ing that the 2-gene signature can be utilized in the pre-
diction of prognostic risk among HGSOC patients, and 
provision of baseline information for molecular mecha-
nism comprehension of the prognosis of patients with 
HGSOC. We provided a prospective scientific basis 
for prognostic guidance and in-deep exploration of the 
pathogenesis of HGSOC.

Materials and methods
Data acquisition and processing
The gene expression profile of HGSOC GSE102073 
contained primary tumor tissue samples from eight-five 
patients diagnosed with HGSOC. These samples were 
downloaded from the GEO database on Illumina HiSeq 
2500 platform [17]. The samples were used as training 
sets and clinical information of the data set was from 
Ducie J [17]. In April 2019, RNA-seq data (counts) con-
tained 371 ovarian cancer samples that were obtained 
from the TCGA database (https:// cance rgeno me. nih. 
gov/) as a test set. Three hundred and forty-nine sam-
ples of HGSOC patients with a follow-up period of 
longer than 30 days were extracted (see Table 1). Uni-
fied data standardization in the validation set and the 
training set was conducted using the CalcNormFac-
tors function of R software package DESeq2 [18] to 
filter genes with low expression abundance. The genes 
with a count sum < 20 in all training set samples were 
eliminated, and 18,738 genes with high expression 
abundance were obtained. In addition, to verify the 
cross-platform nature of data, GSE26712 [19] of the 
Affymetrix Human Genome U133A Array platform was 
used as an external validation set. The specific informa-
tion is shown in Table 1. Figure 1 shows the flowchart. 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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Univariate Cox proportional hazard regression analysis
Following Jin-Cheng et al. [20], we utilized the R package 
survival coxph function [21] to conduct univariate Cox 
proportional hazards regression analysis on every gene 
for the purpose of screening those that were remark-
ably related to the patient’s OS in the training data set 
(p < 0.01 was the threshold). Furthermore, unsupervised 
cluster analysis was conducted based on the expression 

profiles of prognostic-related genes to determine the 
classification and prognostic differences of the samples.

Construction of a prognostic immune gene signature
The selected genes were significantly related to the 
patient’s OS. The least absolute shrinkage and selection 
operator (LASSO) [22] regression algorithm was utilized 
for dimension reduction analysis. LASSO approach is 
also used with the Cox model for analysis of survival. At 
present, it has been effectively used to generate sparse 
signatures for survival prediction in a variety of fields 
such as oncology [23–25]. The R software package Glm-
net [26] was utilized to screen prognostic characteristic 
genes, and the optimal characteristics were analyzed by 
tenfold cross-validation. To obtain robust results, 80% of 
the samples were subjected to regression analysis, and 
5,000 repeated samples were put back to analyze and 
calculate the frequency of gene selection. As genes with 
a high frequency were more likely to be stable prognos-
tic genes, those genes with occurrence frequency greater 
than 2000 times were determined as stable characteris-
tic genes. The relationship between the expression of 
each potential characteristic gene and prognosis was 
examined by ROC analysis. Multivariate Cox regression 

Table 1 Clinical information statistics of training set and 
validation set samples

Characteristic GSE102073 
training datasets 
(n = 85)

TCGA test 
datasets 
(n = 371)

GSE26712 
validation set 
(n = 185)

Age

  ≤ 50 62 283 NA

  > 50 11 75 NA

Stage

 Stage III 49 285 NA

 Stage IV 20 53 NA

 Other 4 20 NA

Survival status

 Live 17 160 24

 Dead 56 189 129

Fig. 1 Work flowchart
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analysis was conducted for this study. The constructed 
risk scoring model is illustrated below:

where N denotes the number of prognostic genes, Expk 
denotes the expression value of the prognostic genes, 
and eHRk denotes the estimated value of the regression 
coefficient of the genes in a multivariate Cox regression 
analysis.

Functional enrichment analyses
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) analysis of pathway enrich-
ment was conducted using the R package clusterprofiler 
[27] for the purpose of determining the over-represented 
Gene Ontology terms in 3 groups (cellular component, 
molecular function, and biological processes) and KEGG 
pathway. In the present research, FDR < 0.05 was consid-
ered to be statistically significant.

The MSigDB26 was used to perform gene set enrich-
ment analysis (GSEA)25 on the C2 canonical pathways 
gene set collection (with 1320 gene sets) with the aid of 
the JAVA software (http:// softw are. broad insti tute. org/ 
gsea/ downl oads. jsp) [28]. After conducting 1000 permu-
tations, gene sets with a false discovery rate (FDR) value 
no greater than 0.05 were considered to be significantly 
enriched.

Statistical analysis
Kaplan–Meier (KM) curves were plotted for the pur-
pose of assessing the risk of survival between the low 
and high-risk groups of patients with HGSOC. In addi-
tion, the median risk score of each individual data set was 
used as the cut-off. The independence of gene markers as 
prognostic variables was investigated by means of multi-
variate Cox regression analysis. Significance was defined 
by p values < 0.05. Moreover, R (version: 3.4.3) was used 
to conduct all of the analyses.

Results
Identification of HGSOC survival‑associated gene sets
In the samples of the GSE102073 training set, univariate 
regression analysis was used to analyze the relationship 
between gene expression and overall survival (OS). 148 
univariate genes incorporating 120 genes with HR > 1 and 
28 genes with HR < 1 were identified through Cox regres-
sion log-rank with p-value ≤ 0.01 (Table 2). Based on the 
close relationship between these genes and prognosis, 
the expression profile of these genes was utilized in hier-
archical clustering analysis on ovarian cancer patients, 

RiskScore =

N∑

k=1

Expk ∗ e
HRK,

and it was observed that these genes could classify the 
patients into two groups (Cluster1: N = 31, Cluster2: 
N = 42) (Fig. 2A). 12 cases (38.7%) died in Cluster1, and 
only 1 case (11.9%) died in Cluster2, demonstrating that 
there is a remarkable difference between the 2 groups 
(p= 0.016475). The prognosis of patients in the Cluster1 
group was remarkably poorer compared to patients in 
the Cluster2 group, according to further examination 
of the prognostic differences between the two groups of 
samples (p< 0.001) (Fig. 2B), indicating that the progno-
sis of patients with HGSOC may be accurately stratified 
using the 148 gene expression profile.

Identification of robust prognostic factors
Here, 148 genes related to the prognosis of HGSOC have 
been identified. We further limited the range of these 
genes while ensuring high accuracy. LASSO Cox regres-
sion analysis was performed with the aid of the R soft-
ware package Glmnet, and the frequency distribution 
of gene occurrence yielded two genes with occurrence 
frequency higher than 2000 (AKR1B10 and ANGPT4) 
(Fig.  3A). The two genes showed significantly different 
expressions in Cluster1 and Cluster2, with a mean value 
higher in Cluster1 than in Cluster2 (Fig. 3B). Three-year 
AUC values of the two genes reached 0.7 (Fig. 3C, E). The 
median was set as the cut-off value with the aim of ana-
lyzing the prognostic differences between patients with 
high expression and low expression of AKR1B10 and 

Table 2 The top20 genes most relevant to OS

Genes HR (95%_CI_for_HR) p value

APOC2 240 (16–3600) 7.60E−05

GOLGA8Q 58 (6.1–550) 0.00041

CRYAB 1.8 (1.3–2.4) 0.00048

LSAMP 3.3 (1.7–6.4) 0.00049

CDRT15 59 (5.7–610) 0.00063

SLC6A3 2.9 (1.6–5.4) 0.00064

PMFBP1 9.3 (2.6–33) 0.00066

ASIC2 2.8 (1.6–5.2) 7.00E−04

KRT80 1.7 (1.2–2.3) 0.00082

GP6 13 (2.8–63) 0.001

GALP 9.8 (2.5–38) 0.001

LY6D 2.9 (1.5–5.4) 0.0012

CATSPERG 3.3 (1.6–7) 0.0013

RASGRP4 10 (2.5–42) 0.0014

FAM127B 0.25 (0.11–0.58) 0.0014

DLX2 9 (2.3–35) 0.0015

LGALS14 5.9 (2–18) 0.0015

BTNL8 2.7 (1.4–4.9) 0.0016

OR2AG1 21 (3.1–140) 0.0017

CSTB 0.33 (0.17–0.66) 0.0017

http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp


Page 5 of 13Yuan et al. European Journal of Medical Research          (2023) 28:465  

ANGPT4. The results demonstrated that the prognosis 
of patients with high-expressed AKR1B10 and ANGPT4 
was significantly more unfavorable than those in the low-
expression group (p< 0.01) (Fig. 3D, F).

Identification of a 2‑gene signature for HGSOC survival
By performing multivariate Cox regression analysis, 
a 2-gene signature associated with the prognosis of 
patients with HGSOC based on AKR1B10 and ANGPT4 
was constructed. The model was as follows:

The risk score in each sample was determined in the 
training set. We discovered that a greater risk score was 
associated with a shorter survival duration, and that the 
expression levels of AKR1B10 and ANGPT4 were ele-
vated (Fig. 4A). Furthermore, the average 1, 3, and 5-year 
AUC values of the 2-gene signature reached 0.7 (Fig. 4B). 
Finally, the samples were classified into two groups based 
on the median risk score, and we discovered that patients 
in the low-risk group and the high-risk group had dra-
matically different prognoses (Fig. 4C).

Robustness of the 2‑gene signature model
For the purpose of validating the performance of the 
2-gene signature model, we computed the risk score 
of every sample in the TCGA test set and discovered 
that a higher risk score was associated with a shortened 
survival duration (Fig.  5A). Furthermore, the 2-gene 
signature had a 3-year AUC value of 0.6 (Fig.  5B). A 
remarkable difference in patient prognosis between the 

Risk2 = 0.567 ∗ AKR1B10+ 1.331 ∗ ANGPT4.

low- and high-risk groups was observed when the sam-
ples were categorized based on the median risk score 
(Fig. 5C). According to the results, the performance of 
the model showed consistency between the training set 
and TCGA test set. Among various data platforms, the 
GEO platform data set GSE26712 was used and served 
as the external data set so as to evaluate the classifica-
tion performance of the 2-gene signature model. After 
computing the risk score for each sample in GSE26712, 
we discovered that a greater risk score was correlated 
with a shortened survival duration (Fig.  6A). Further-
more, the signature had a 3-year AUC value of 0.6 
(Fig.  6B). A remarkable difference in patient progno-
sis between the low- and high-risk groups when the 
samples were subjected to classification based on the 
median risk score (Fig.  6C). The model’s performance 
in the GSE26712 set was in line with the training set, 
according to these findings. Moreover, a set of ovar-
ian cancer data set was acquired from the ICGC data-
base. When the 2-gene signature model was used with 
ICGC-OV data set, the findings revealed that there 
was a remarkable prognostic difference between the 
high- and low-risk groups (Fig. 7A), and the signature’s 
3-year AUC was 0.72 (Fig. 7B). Furthermore, to further 
verify the prognostic prediction of the 2-gene signa-
ture, GSE17260 was acquired from the GEO database. 
The findings showed that the prognosis of patients in 
the high-risk group was poorer compared to that in 
the low-risk group (Fig. 7C), and that the ROC analysis 
revealed a 3-year AUC of 0.66 (Fig. 7D). These findings 
indicated that the 2-gene signature was robust, with 

Fig. 2 Identification of molecular subtypes. A Clustering heat map of expression profiles of prognosis-related genes, with the horizontal 
axis representing samples and the vertical axis representing genes, the reddish color indicates higher expression. B Kaplan–Meier (KM) curve 
of the prognostic difference between Cluster1 and Cluster2
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Fig. 3 Identification of robust prognostic factors. A The frequency of genes in five thousand lasso regressions. B The difference in the expression 
distribution of the two genes in Cluster1 and Cluster2. C 1, 3and 5 years AUC of ROC of AKR1B10. D KM survival curve of high expression of AKR1B10 
group and low expression of AKR1B10 group. E 1-, 3-, and 5- years AUC of ROC of ANGPT4. F: KM survival curve of high expression of ANGPT4 group 
and low expression of ANGPT4 group
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high prognostic performance across different validation 
queues.

Clinical independence of the 2‑gene signature model
The independence of the 2-gene signature model in a 
real-world scenario was investigated by performing mul-
tivariate and univariate Cox regression analysis to evalu-
ate relevant HR, 95 percent confidence interval of HR, 
and P-value. We systematically analyzed the clinical data 
of patients in the training set, including STIC, age, stage, 
race, surgical outcome, and platinum status (Table  3). 
The multivariate and multivariate results revealed that 
the 2-gene signature showed significant correlation in 
both multivariate and univariate Cox regression analysis. 
Our model 2-gene signature was confirmed to be a prog-
nostic indicator that is independent of other clinical fac-
tors, which could be applied in clinical practice.

Comparison with existing models
The predictive performance of the constructed 2-gene 
signature was subjected to a comparison with three pre-
viously produced gene signatures, namely, the 5-gene 
model of Zhang et  al. [29], the 3-gene signature of Ser-
gio Marchini et al. [30], and the 6-gene signature of Ma 
et  al. [30]. When the same method was used to derive 
the risk scores of the samples by each model, the results 
demonstrated that according to their C-index distribu-
tion (Fig.  7E), the 2-gene signature showed a similar 
performance to the previous studies in the five datasets 
including the training set, the test set, and the external 
validation set, especially in GSE102073 and ICGC data-
set. Thus, as compared with other signatures, the 2-gene 
signature with fewer genes involved showed a more con-
venient detection in clinical practice and had more appli-
cation prospects.

Fig. 4 The relationship between risk score and prognosis. A The relationship between 2-gene signature and survival status, survival duration, 
and expression in the training set samples. B ROC and AUC of 2-gene signature. C KM survival curve of 2-gene signature in the training set
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Analysis of pathway differences between high‑ 
and low‑risk groups
In the training set, GSEA was used to analyze the path-
ways that were significantly enriched in both the high and 
low-risk groups, and two significantly enriched pathways 
REGULATION_OF_AUTOPHAGY and OLFACTORY_
TRANSDUCTION were identified to be significantly 
activated in the high-risk samples (Fig. 7F, G).

Discussion
Ovarian cancer is an extremely heterogeneous illness and 
patients with comparable TNM stages of ovarian cancer 
show different survival outcomes. Currently, demand 
for early screening to detected and treat ovarian cancer 
makes it difficult to predict individual outcomes using 
the conventional clinicopathological indicators, such as 
portal venous thromboembolism, vascular invasion, size 

of tumors, and TNM staging, especially in risk stratifi-
cation, because “one-size-fits-all” treatment strategy has 
been found to be ineffective [31, 32]. The identification 
of prognostic molecular markers indicative of tumor 
biological characteristics has significance in the preven-
tion and treatment of ovarian tumors. This study exam-
ined the expression profiles of the 822 HGSOC samples 
from five research cohorts of TCGA, ICGC, and GEO. 
We examined the OS of patients with KM curves in vari-
ous data queues (Additional file 1: Fig. S1), although the 
median survival time was different. In general, apart 
from GSE102073 datasets, the overall survival rates of 
these datasets were similar. These differences may result 
from differences in living standards, medical conditions, 
such as varied follow-up periods. GSE102073 showed the 
optimal prognosis, while GSE102073 and GSE17260 had 
the shortest follow-up time. Variations in study cohorts, 

Fig. 5 The relationship between risk score and prognosis in TCGA test set. A The relationship between 2-gene signature and survival status, survival 
duration, and expression in TCGA test set. B ROC and AUC of 2-gene signature in TCGA test set. C KM survival curve of 2-gene signature in TCGA test 
set
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follow-up time, and environmental differences are always 
difficult to overcome in multi-data integration analysis, 
and due to the heterogeneity of tumors, these differences 
also have a great impact on the generalization ability of 
the model. Moreover, overfitting problems will also occur 
when different data sets are combined to form a large 
data set. Therefore, in this study, GSE102073 was selected 
as the training set, and the other four data sets served as 
the external validation set to evaluate the robustness and 
universality of the 2-gene model.

The functions of prognostic genes were analyzed with 
the aid of the R package Clusterprofiler to carry out 
GO and KEGG functional enrichment analysis on these 
148 genes. The findings from the KEGG enrichment 
analysis confirmed that the genes were enriched to bio-
logical pathways such as fatty acid degradation, choles-
terol metabolism, tyrosine metabolism, and the AMPK 

signaling pathway (Additional file 2: Fig. S2A). Biologi-
cal process category, genes were mainly enriched to 
negative regulation of endopeptidase activity, organic 
hydroxy compound catabolic process, cholesterol 
transport, regulation of cholesterol transport, and 
other GO Terms (Additional file 2: Fig. S2B). Moreover, 
further study was performed to analyze the difference 
in the KEGG pathway between Cluster1 and Cluster2. 
The expression patterns of all the genes obtained in dif-
ferent KEGG pathways were analyzed by GSEA. Clus-
ter1 samples with poor prognosis were significantly 
activated in the METABOLISM, DRUG METABOLISM 
CYTOCHROME P450, and Cluster2 samples with 
favorable prognosis were significantly activated in the 
CIRCADIAN RHYTHM MAMMAL pathway (Addi-
tional file 2: Fig. S2C).

Fig. 6 The relationship between risk score and prognosis in the GSE26712 set. A The relationship between 2-gene signature and survival status, 
survival duration, and expression in the GSE26712 set. B ROC and AUC of 2-gene signature in GSE26712 set. C KM survival curve of 2-gene signature 
in GSE26712 set
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Currently, gene signatures, such as Oncotype DX 
expressing 21 genes [33–35], and an 18-gene expres-
sion signature of coloprint in colon cancer, have been 
applied in clinical practice [36–38]. Gene expression 
profiling has evolved as a viable tool of high-throughput 
molecular identification for the purpose of identifying 
new prognostic indicators in cancer. Ding Q et  al. [39] 
developed a 9-gene signature for evaluating the progno-
sis of patients with ovarian cancer by LASSO to analyze 

tumor microenvironment-associated genes. Wang R et al. 
[29] screened differentially expressed genes to develop a 
5-gene signature, which was verified as an independent 
prognostic factor. Sun H et  al. [40] identified 28 DNA 
repair genes related to the prognosis of patients with 
ovarian cancer by performing cluster analysis, univari-
ate analysis, and stepwise regression. Although a variety 
of prognostic markers have been studied, there is cur-
rently a lack of prognostic markers directly available for 

Fig. 7 Analysis of pathway differences between high- and low-risk groups. A Enrichment results of REGULATION_OF_AUTOPHAGY. B Enrichment 
results of OLFACTORY_TRANSDUCTION

Table 3 Univariate and multivariate Cox regression analyses identified clinical factors and clinical independence associated with 
prognosis

Variables Univariate analysis Multivariable analysis

HR 95%CI of HR P value HR 95%CI of HR P value

Age 0.98 0.93–1.03 0.4356 0.9845 0.93–1.04 0.59

STAGE 1.53 0.67–3.5 0.3126 2.3353 0.96–5.66 0.06

RiskScore 2.72 1.63–4.52 0.00012 3.2963 1.82–5.95 7.7e−05
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ovarian cancer in clinical practice. The inclusion of mul-
tiple genes will increase detection troubles of a signature, 
which also proves the applicability and detection conven-
ience of the 2-gene signature in clinical practice.

Tumor heterogeneity is one of the important reasons 
leading to different clinical outcomes of tumor patients. 
Therefore, there are molecular differences between dif-
ferent tumor patients than cell lines. LASSO is a dimen-
sion reduction method to find a relative optimal solution 
from high dimension to low dimension. Its principle also 
involves cross-validation and re-sampling. Therefore, dif-
ferent results will be obtained even if the same data set 
is used with the same LASSO method (known as “opti-
mal solution” in the optimization method). This study 
used 100, 200, 500, 1000, 2000, 5000, 10,000 repetitions 
to perform LASSO regression on 80% of the samples ran-
domly chosen from the training set, and analyzed the fre-
quency of the top 10 genes with the greatest frequency 
(Additional file 3: Fig. S3). The results demonstrated that 
AKR1B10 and ANGPT4 genes showed the highest fre-
quency in the seven repetitions.

AKR1B10 and ANGPT4 in our 2-gene signatures were 
risk factors. AKR1B10 is member B10 of Aldo–Keto 
Reductase family 1. The glycolysis ability of tumor cells 
with high-expressed AKR1B10 was reduced. Glucose is 
a cellular source, and an increase in oxidative utilization 
of fatty acids will enhance the metastasis and coloniza-
tion of tumor cells [41]. AKR1B10 has been identified as 
a tumor proliferation and metastasis marker in multiple 
tumors, for example, AKR1B10 expression is predictive 
of the treatment response of locally advanced stomach 
cancer [42], and its expression is associated with poor 
prognosis and lymph node metastasis. Qi Wang et al. [43] 
found that serum expression of AKR1B10 is a diagnostic 
biomarker, as its expression is significantly up-regulated 
in patients with lung cancer that has metastasized to the 
brain, thus, determining the level of AKR1B10 can pre-
dict lung cancer patients with brain metastasis. Many 
experimental studies also proved AKR1B10 role in the 
pathogenesis of liver cancer, development, and resistance 
to chemotherapeutic drugs [44–46]. Oral squamous cell 
carcinoma patients with a high level of AKR1B10 in the 
saliva are often related to poor prognosis and progression 
[47]. AKR1B10 expression is remarkably downregulated 
in colorectal cancer, and its low expression is highly cor-
related with the unfavorable prognosis of patients with 
colorectal cancer [48]. These findings confirmed that 
the abnormal expression of AKR1B10 is closely associ-
ated with the occurrence and development of tumors. At 
present, the relationship between AKR1B10 expression 
and prognosis in HGSOC is rarely reported. The cur-
rent findings confirmed that high-expressed AKR1B10 
was related to a poor prognosis of HGSOC, and we also 

found that the high expression of ANGPT4, a member 
of the angiogenin family, led to an unfavorable progno-
sis of patients with HGSOC, which is consistent with 
the research conclusion proposed by Qin Yu et  al. [49]. 
Regarding the expression of AKR1B10 and ANGPT4 
genes, a 2-gene signature was established and verified 
to have the ability to stratify the prognosis of patients in 
the training set, TCGA test set, and the GEO verification 
set. GSEA revealed that the 2-gene signature-enriched 
pathway was strongly correlated with the pathways and 
biological processes involved in the occurrence and pro-
gression of tumors. These findings suggested that this 
model has clinical utility and can serve as a possible tar-
get for clinical patient diagnosis.

Nevertheless, several limitations remained. Firstly, a 
lack of certain clinical follow-up information excluded 
the possibility to take factors, including the existence 
of other health conditions of the patients, into consid-
eration when distinguishing prognostic biomarkers. Sec-
ondly, the results acquired from bioinformatics analysis 
were not fully reliable, necessitating further experimental 
confirmation. Therefore, experimental and genetic stud-
ies involving a larger sample size and experimental verifi-
cation need to be conducted in the future.

In this study, bioinformatics techniques were employed 
in this study for the purpose of identifying possible can-
didate genes for cancer prognosis from large samples. In 
conclusion, we constructed a 2-gene prognostic stratifi-
cation system, with a low AUC in the validation and the 
training sets. The 2-gene signature was independent of 
clinical manifestations. Gene classifiers can optimize 
survival risk prediction compared with clinical charac-
teristics. As a result, the adoption of the 2-gene signature 
as a molecular diagnostic test with a view of determin-
ing prognostic risk in patients with HGSOC could be 
promoted.
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the greatest frequency. E 2000 repetitions to perform LASSO regression 
analyzed the frequency of the top 10 genes with the greatest frequency. F 
5000 repetitions to perform LASSO regression analyzed the frequency of 
the top 10 genes with the greatest frequency. G 10,000 repetitions to per-
form LASSO regression analyzed the frequency of the top 10 genes with 
the greatest frequency. H 80,000 repetitions to perform LASSO regression 
analyzed the frequency of the top 10 genes with the greatest frequency.

Acknowledgements
Not applicable.

Author contributions
YQ, DY designed the study. HZ and YZ conducted a literature search. XZ and 
HZ contributed to data acquisition; TW analyzed data; YQ interpreted data; DY 
contributed to the initial draft of the manuscript. All of the authors have read 
the manuscript and approved it.

Funding
This study was supported by the Establishment of a recurrence risk model 
of ovarian cancer by Four-dimensional color Doppler ultrasound combined 
with OCMI and ROMA (LH2019H021); Postdoctoral Research Start-up Fund 
(LBH-Q20043).

Availability of data and materials
The datasets generated and/or analyzed during the current study are available 
in the [GSE102073] repository, [https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. 
cgi? acc= GSE10 2073]; in [GSE26712] repository, [https:// www. ncbi. nlm. nih. 
gov/ geo/ query/ acc. cgi? acc= GSE26 712]. in [GSE17260] repository, [https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE17 260].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
No competing interests were declared by the authors.

Author details
1 Department of Obstertrics and Gynecology, The Second Affiliated Hospital 
of Harbin Medical University, Harbin 150086, China. 2 Department of Gyneco-
logical Oncology, Renji Hospital Affiliated to Medical College of Shanghai 
Jiaotong University, Shanghai 200000, China. 3 Department of Hepatological 
Surgery, The Third Affiliated Hospital of Harbin Medical University, Har-
bin 150001, China. 4 Department of Gynecology, The First Hospital of Jiaxing 
City, Jiaxing 314000, China. 5 Department of Obstertrics and Gynecology, The 
First Affiliated Hospital of Harbin Medical University, Harbin 150001, China. 

Received: 23 March 2023   Accepted: 18 September 2023

References
 1. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351(24):2519–29.
 2. Kobel M, et al. Differences in tumor type in low-stage versus high-stage 

ovarian carcinomas. Int J Gynecol Pathol. 2010;29(3):203–11.
 3. Lu Z, Chen J. Introduction of WHO classification of tumours of female 

reproductive organs, fourth edition. Zhonghua Bing Li Xue Za Zhi. 
2014;43(10):649–50.

 4. Bast RC Jr, Hennessy B, Mills GB. The biology of ovarian cancer: new 
opportunities for translation. Nat Rev Cancer. 2009;9(6):415–28.

 5. Markman M, et al. Phase III randomized trial of 12 versus 3 months of 
maintenance paclitaxel in patients with advanced ovarian cancer after 
complete response to platinum and paclitaxel-based chemotherapy: a 

Southwest Oncology Group and Gynecologic Oncology Group trial. J 
Clin Oncol. 2003;21(13):2460–5.

 6. Jemal A, et al. Cancer statistics, 2010. CA Cancer J Clin. 
2010;60(5):277–300.

 7. Coleman MP, et al. Cancer survival in Australia, Canada, Denmark, 
Norway, Sweden, and the UK, 1995–2007 (the International Cancer 
Benchmarking Partnership): an analysis of population-based cancer 
registry data. Lancet. 2011;377(9760):127–38.

 8. Hutter C, Zenklusen JC. The Cancer Genome Atlas: creating lasting 
value beyond its data. Cell. 2018. https:// doi. org/ 10. 1016/j. cell. 2018. 03. 
042.

 9. Shen Y, Peng X, Shen C. Identification and validation of immune-
related lncRNA prognostic signature for breast cancer. Genomics. 2020. 
https:// doi. org/ 10. 1016/j. ygeno. 2020. 02. 015.

 10. Yu L, et al. Characterization of cancer-related fibroblasts (CAF) in 
hepatocellular carcinoma and construction of CAF-based risk signature 
based on single-cell RNA-seq and bulk RNA-seq data. Front Immunol. 
2022. https:// doi. org/ 10. 3389/ fimmu. 2022. 10097 89.

 11. Spentzos D, et al. Gene expression signature with independent 
prognostic significance in epithelial ovarian cancer. J Clin Oncol. 
2004;22(23):4700–10.

 12. Crijns AP, et al. Survival-related profile, pathways, and transcription fac-
tors in ovarian cancer. PLoS Med. 2009;6(2): e24.

 13. Bonome T, et al. A gene signature predicting for survival in sub-
optimally debulked patients with ovarian cancer. Cancer Res. 
2008;68(13):5478–86.

 14. Jazaeri AA, et al. Gene expression profiles associated with response 
to chemotherapy in epithelial ovarian cancers. Clin Cancer Res. 
2005;11(17):6300–10.

 15. Tomar T, et al. Methylome analysis of extreme chemoresponsive patients 
identifies novel markers of platinum sensitivity in high-grade serous ovar-
ian cancer. BMC Med. 2017;15(1):116.

 16. Liu G, et al. Seven genes based novel signature predicts clinical outcome 
and platinum sensitivity of high grade IIIc serous ovarian carcinoma. Int J 
Biol Sci. 2018;14(14):2012–22.

 17. Ducie J, et al. Molecular analysis of high-grade serous ovarian carcinoma 
with and without associated serous tubal intra-epithelial carcinoma. Nat 
Commun. 2017;8(1):990.

 18. Love MI, Huber W, Anders S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

 19. Vathipadiekal V, et al. Creation of a human secretome: a novel compos-
ite library of human secreted proteins: validation using ovarian cancer 
gene expression data and a virtual secretome array. Clin Cancer Res. 
2015;21(21):4960–9.

 20. Guo JC, et al. Protein-coding genes combined with long noncoding RNA 
as a novel transcriptome molecular staging model to predict the survival 
of patients with esophageal squamous cell carcinoma. Cancer Commun 
(Lond). 2018;38(1):4.

 21. Moreno-Betancur M, et al. Survival analysis with time-dependent covari-
ates subject to missing data or measurement error: multiple imputation 
for joint modeling (MIJM). Biostatistics. 2018;19(4):479–96.

 22. Lee TF, et al. Using multivariate regression model with least absolute 
shrinkage and selection operator (LASSO) to predict the incidence of 
Xerostomia after intensity-modulated radiotherapy for head and neck 
cancer. PLoS ONE. 2014;9(2): e89700.

 23. Zhang JX, et al. Prognostic and predictive value of a microRNA signature 
in stage II colon cancer: a microRNA expression analysis. Lancet Oncol. 
2013;14(13):1295–306.

 24. Papaemmanuil E, et al. Clinical and biological implications of driver muta-
tions in myelodysplastic syndromes. Blood. 2013;122(22):3616–27 (quiz 
3699).

 25. Yuan Y, et al. Assessing the clinical utility of cancer genomic and prot-
eomic data across tumor types. Nat Biotechnol. 2014;32(7):644–52.

 26. Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin. Epigenet-
ics. 2019;11(1):123.

 27. Yu G, et al. clusterProfiler: an R package for comparing biological themes 
among gene clusters. OMICS. 2012;16(5):284–7.

 28. Liberzon A, et al. Molecular signatures database (MSigDB) 3.0. Bioinfor-
matics. 2011;27(12):1739–40.

 29. Wang R, et al. Development of a five-gene signature as a novel prognos-
tic marker in ovarian cancer. Neoplasma. 2019;66(3):343–9.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102073
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102073
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17260
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17260
https://doi.org/10.1016/j.cell.2018.03.042
https://doi.org/10.1016/j.cell.2018.03.042
https://doi.org/10.1016/j.ygeno.2020.02.015
https://doi.org/10.3389/fimmu.2022.1009789


Page 13 of 13Yuan et al. European Journal of Medical Research          (2023) 28:465  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 30. Benvenuto G, et al. Expression profiles of PRKG1, SDF2L1 and PPP1R12A 
are predictive and prognostic factors for therapy response and survival in 
high-grade serous ovarian cancer. Int J Cancer. 2020;147(2):565–74.

 31. Llovet JM, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J 
Med. 2008;359(4):378–90.

 32. Cheng AL, et al. Efficacy and safety of sorafenib in patients in the 
Asia-Pacific region with advanced hepatocellular carcinoma: a phase 
III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 
2009;10(1):25–34.

 33. Siow ZR, et al. Spotlight on the utility of the Oncotype DX((R)) breast 
cancer assay. Int J Womens Health. 2018;10:89–100.

 34. Bhutiani N, et al. Multigene signature panels and breast cancer therapy: 
patterns of use and impact on clinical decision making. J Am Coll Surg. 
2018;226(4):406-412 e1.

 35. Wang SY, et al. Cost-effectiveness analyses of the 21-gene assay in 
breast cancer: systematic review and critical appraisal. J Clin Oncol. 
2018;36(16):1619–27.

 36. Kopetz S, et al. Genomic classifier ColoPrint predicts recurrence in stage II 
colorectal cancer patients more accurately than clinical factors. Oncolo-
gist. 2015;20(2):127–33.

 37. Tan IB, Tan P. Genetics: an 18-gene signature [ColoPrint(R)] for colon 
cancer prognosis. Nat Rev Clin Oncol. 2011;8(3):131–3.

 38. Maak M, et al. Independent validation of a prognostic genomic 
signature (ColoPrint) for patients with stage II colon cancer. Ann Surg. 
2013;257(6):1053–8.

 39. Ding Q, et al. A nine-gene signature related to tumor microenviron-
ment predicts overall survival with ovarian cancer. Aging (Albany NY). 
2020;12(6):4879–95.

 40. Sun H, et al. Identification of a prognostic signature associated with DNA 
repair genes in ovarian cancer. Front Genet. 2019;10:839.

 41. van Weverwijk A, et al. Metabolic adaptability in metastatic breast cancer 
by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation. 
Nat Commun. 2019;10(1):2698.

 42. Ahmed SMU, et al. AKR1B10 expression predicts response of gastric 
cancer to neoadjuvant chemotherapy. Oncol Lett. 2019;17(1):773–80.

 43. Liu W, et al. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain 
metastasis of lung cancer cells in a multi-organ microfluidic chip model. 
Acta Biomater. 2019;91:195–208.

 44. Han C, et al. Identification of a role for serum aldo-keto reductase family 1 
member B10 in early detection of hepatocellular carcinoma. Oncol Lett. 
2018;16(6):7123–30.

 45. Torres-Mena JE, et al. Aldo-keto reductases as early biomarkers of hepa-
tocellular carcinoma: a comparison between animal models and human 
HCC. Dig Dis Sci. 2018;63(4):934–44.

 46. DiStefano JK, Davis B. Diagnostic and prognostic potential of AKR1B10 in 
human hepatocellular carcinoma. Cancers (Basel). 2019;11(4):486.

 47. Ko HH, et al. Increased salivary AKR1B10 level: association with progres-
sion and poor prognosis of oral squamous cell carcinoma. Head Neck. 
2018;40(12):2642–7.

 48. Ohashi T, et al. AKR1B10, a transcriptional target of p53, is downregulated 
in colorectal cancers associated with poor prognosis. Mol Cancer Res. 
2013;11(12):1554–63.

 49. Brunckhorst MK, et al. Angiopoietins promote ovarian cancer progres-
sion by establishing a procancer microenvironment. Am J Pathol. 
2014;184(8):2285–96.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Development and validation of an individualized gene expression-based signature to predict overall survival of patients with high-grade serous ovarian carcinoma
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Data acquisition and processing
	Univariate Cox proportional hazard regression analysis
	Construction of a prognostic immune gene signature
	Functional enrichment analyses
	Statistical analysis

	Results
	Identification of HGSOC survival-associated gene sets
	Identification of robust prognostic factors
	Identification of a 2-gene signature for HGSOC survival
	Robustness of the 2-gene signature model
	Clinical independence of the 2-gene signature model
	Comparison with existing models
	Analysis of pathway differences between high- and low-risk groups

	Discussion
	Anchor 23
	Acknowledgements
	References


