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Abstract 

Introduction Understanding the mechanisms and identifying effective treatments for the COVID-19 outbreak are 
imperative. Therefore, this study aimed to assess the antioxidant status and oxidative stress parameters as potential 
pivotal mechanisms in asymptomatic, non-severe, and severe COVID-19 patients.

Methods This study is a case–control study that was performed on patients referred to the Persian Gulf Martyrs 
Hospital of Bushehr University of Medical Sciences, Bushehr, Iran, from May 2021 to September 2021. A total of 600 
COVID-19 patients (non-severe and severe group) and 150 healthy volunteers of the same age and sex were selected 
during the same period. On the first day of hospitalization, 10 ml of venous blood was taken from subjects. Then, 
hematological, biochemical, serological, antioxidant and oxidative stress parameters were determined.

Results Our results indicated that ESR, CRP, AST, ALT, and LDH significantly augmented in the severe group as com-
pared to the non-severe and normal groups (P ≤ 0.05). It was observed that the levels of FRAP, G6PD activity, and SOD 
activity significantly reduced in the non-severe patients in comparison with the severe and normal groups (P ≤ 0.05). 
We found that MDA content and NO metabolite markedly increased in severe patients as compared to the non-
severe group.

Conclusions Taken together, it seems that the balance between antioxidants and oxidants was disturbed in COVID-
19 patients in favor of oxidant markers. In addition, this situation caused more aggravation in severe patients as com-
pared to the non-severe group.
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Introduction
The coronavirus, as one of the most important patho-
gens, targets the respiratory system [1]. Prevalence of 
previous coronaviruses such as SARS (SARS) and Middle 
East respiratory syndrome (MERS) have been identified 
as an important health threats in recent years [2]. At the 
end of 2019, a new virus from this family was identified in 
Wuhan, China [3]. COVID-19 can damage organs, such 
as the lung, heart, liver, kidneys, immune system, and 
blood. It is necessary to pay attention to possible multi-
organ damage and its protection and prevention [4].

COVID-19 can not only cause pneumonia but can also 
damage other organs, such as the heart, liver, kidneys, 
immune system, and blood. Patients eventually die from 
multiple organ failure, shock, acute respiratory distress 
syndrome, heart failure, arrhythmia, and renal failure. 
Therefore, it is necessary to pay attention to possible 
multi-organ damage and its protection and prevention in 
the treatment of this disease [5].

Oxidative stress is found in many chronic diseases, 
such as diabetes, cancer, coronary heart disease, etc., and 
some infections [6]. Excessive production of reactive oxy-
gen and nitrogen species (ROS and RNS) through oxida-
tion and nitrification of various biological targets within 
the cell causes inflammation and exacerbates the disease 
process, resulting in damage to various organs [7].

In a healthy cell, there is a good balance between pro 
oxidants and antioxidants. With an increase in pro-
oxidants or a decrease in antioxidants, oxidative stress 
occurs, which, if prolonged, can cause serious cell dam-
age. Excessive formation of reactive oxygen species (ROS) 
can induce oxidative stress and lead to cell damage that 
can lead to cell death [8]. The body contains a complex 
antioxidant defense network that relies on endogenous 
and non-enzymatic enzymatic antioxidants. Important 
non-enzymatic sources of  antioxidants include vitamins 
A, C, and E, and compounds, such as beta-carotene, 
and metabolites, such as glutathione [9]. Antioxidant 
enzymes also play an important role; the most important 
of these enzymes are catalase (CAT), glutathione reduc-
tase (GR), glutathione peroxidase (GPx), and superox-
ide dismutase (SOD) [10]. As mentioned, an imbalance 
between free radicals (oxidants) and antioxidant systems 
causes oxidative stress. The cell can tolerate mild oxida-
tive stress, but in more severe cases, the cell membrane 
is damaged, and subsequent pathological complications 
such as lipid peroxidation occur [11]. Reactive oxygen 
species (ROS) can interact with cellular components, 
such as lipids, proteins, and DNA through certain reac-
tions [12]. Among these molecules, lipid peroxidation is 
more harmful, because the formation of lipid peroxida-
tion products directly promotes free radical reactions. 
Excessive oxidation of lipids alters the physical properties 

of cell membranes and can cause covalent changes in 
proteins and nucleic acids [13, 14]. The most common 
of these changes are the oxidation of thiol proteins and 
the formation of carbonyl proteins, which occur mainly 
on the amino acids cysteine and methionine. Oxidative 
changes in proteins can inhibit the binding of the sub-
strate, the quality of the activity of enzymes, and also 
reduce their activity [15].

Some articles have suggested that oxidative stress may 
play an important role in activating acute inflammation 
during SARS-CoV-2 infection. Respiratory viral infec-
tions are generally associated with cytokine production, 
inflammation, cell death, and other pathophysiological 
processes that may be associated with redox imbalance 
or oxidative stress [16]. On the other hand, antioxidant 
molecules such as glutathione (GSH) [17], alpha lipoic 
acid (ALA) [18], N-acetylcysteine (NAC) [19], vitamin D 
[20], vitamin C [21], vitamin E [22], and some members 
of the vitamin B family [23, 24] play a key role in main-
taining antioxidant balance and reducing oxidative dam-
age caused by SARS-CoV-2 [6].

Current research on nucleated cells shows that G6PD 
is involved in an assortment of cellular processes through 
redox signaling. A close relationship has been shown 
between G6PD-derived NADPH and reactive species 
[25]. Our previous study suggested that the consump-
tion of antioxidants such as polydatin may be effective 
in reducing oxidative stress and inflammation in patients 
with COVID-19 [26].

Since the outbreak of COVID-19, which has become a 
global epidemic, there is an urgent need to understand 
the mechanisms of this disease and thus identify effec-
tive treatments. Therefore, the purpose of the current 
study was to evaluate the antioxidant status (including 
GSH content and total plasma antioxidant capacity) and 
oxidative stress parameters (including malondialdehyde 
and nitric oxide) as possible key mechanisms in asympto-
matic, non-severe, and severe COVID-19 patients.

Materials and methods
Patient selection
This study is a case–control study that was performed 
on patients referred to the Persian Gulf Martyrs Hos-
pital of Bushehr University of Medical Sciences, Bush-
ehr, Iran, from May 2021 to September 2021. A total of 
600 COVID-19 patients who had been confirmed by a 
specialist physician using a real-time PCR test on naso-
pharyngeal samples or CT scans were included in the 
study. In addition, 150 healthy volunteers of the same age 
and sex were selected during the same period. Healthy 
subjects were confirmed to have no underlying disease. 
Individuals with a history of diabetes, hypertension, can-
cer, severe liver disease, renal insufficiency (GFR < 60 mL/
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min), any form of renal replacement therapy, pregnancy, 
or autoimmune disorders were excluded from both the 
control and patient groups. In addition, subjects were 
excluded from the study if they had a special diet or took 
antioxidant supplements, such as vitamin C, vitamin E, 
selenium, etc.

COVID-19 patients were divided into two groups 
based on clinical manifestations: the first group of 
patients had mild to moderate COVID-19 infection and 
symptoms, such as clinical or radiographic evidence of 
lower respiratory tract disease and oxygen saturation ≥ 94 
(n = 300), and the second group of patients with severe 
COVID-19 infection and symptoms such as oxygen satu-
ration < 94%, respiratory rate ≥ 30 breaths/min, and lung 
infiltration > 50% (n = 300) were selected. The protocol of 
this study was approved by Bushehr University of Medi-
cal Sciences with the code 9906113797 and the ethical 
code: IR.BPUMS.REC.1399.189. Conscious consent was 
obtained from all subjects before entering the study and 
performing the experiments.

Samples and data collection
Demographic information was recorded through inter-
views with participants. On the first day of hospitaliza-
tion, 10 ml of venous blood was taken from subjects and 
added to tubes with EDTA anticoagulant and sodium 
citrate for routine hematology tests and tubes without 
anticoagulation to measure serological, biochemical, and 
oxidative stress parameters. Blood samples were centri-
fuged at 2500  rpm for 10  min, and serums were stored 
at −20  °C after separation to measure serological, bio-
chemical, and oxidative stress analyses. After collecting 
the samples, CBC parameters were performed with an 
automatic hematological autoanalyzer and ESR was per-
formed automatically with an ESR analyzer. Evaluation of 
biochemical and serological parameters was performed 
using standard kits (Pars Azmoun, Tehran, Iran) and a 
biochemical automatic analyzer Dirui CS-400 (Dirui, 
Changchun, China). The level of G6PD enzyme was 
determined using the Pars Azmoon kit and using the Bio-
tecnica BT-3500 chemistry analyzer (Diamond Diagnos-
tics, Holliston, MA, USA).

Measurement of oxidative stress markers
Measurement of malondialdehyde (MDA)
One of the indicators of lipid peroxidation is the evalua-
tion of malondialdehyde (MDA) levels. According to our 
previous study [27], MDA levels were measured based 
on the TBA reaction. Briefly, 100  μl of patient serum 
was mixed in a reagent containing 15% w/v TCA, 0.375% 
w/v TBA, and 0.25 N HCl and then measured at 535 nm. 
Finally, the level of MDA was expressed in µmol/L.

Nitric oxide metabolite
Nitrite level was measured as a nitric oxide indicator by 
the Griess method [28]. First, patients’ serum was depro-
teinized with acetonitrile, and then 100  μl of superna-
tant was added to the Griess reagent. After incubation 
for 30  min, the absorbance of the samples was read at 
540 nm. Sodium nitrite was also used as a standard, and 
the level of nitric oxide metabolite was calculated using a 
standard curve.

Total antioxidant capacity
Total serum antioxidant capacity was measured by the 
ferric reducing antioxidant power (FRAP) method [29]. 
Total antioxidant capacity is expressed by the method of 
determining the antioxidant/regenerative power of ferric. 
At low pH, the ferric–TPTZ complex is reduced to fer-
rous form, and its concentration in blue was measured at 
593 nm. The standard curve was drawn based on stand-
ard solutions of ferrous sulfate. The change in absorption 
is directly related to the total antioxidant-reducing power 
of the complex reaction. FRAP content is expressed in 
µmol/L.

Measuring the antioxidant enzyme activity
Measurement of superoxide dismutase activity was per-
formed using a commercial Ransod kit (Randox, Crum-
lin, UK). Serum SOD activity was measured according to 
the previous study [30] spectrophotometry. In this pro-
tocol, SOD prevents the reduction of iodonitrotrazole 
(INT) in the presence of xanthine oxidase and xanthine. 
Then, at a wavelength of 505  nm, they were read, and 
their activity was expressed in U/mg.

Statistical analysis
Entry and analysis of all data were done using a sta-
tistical software package (SPSS for Windows, Version 
16.0, SPSS Inc., Chicago, IL). At first, the Shapiro–
Wilk statistical test was used to assess the normality 
assumption. Data were presented as mean ± SD when 
distributed normally and as median with interquartile 
range (IQR) if the distribution was skewed. For com-
parisons among groups, if the data had a normal dis-
tribution, they were analyzed by ANOVA (Tukey’s 
post-hoc test) and Pearson correlation, and Kruskal 
Wallis (Bonferroni correction for pairwise compari-
sons) and Spearmen correlation if the data did not have 
a normal distribution. The Chi-square test compared 
qualitative variables among three study groups. In all 
tests, the significance level was set at 0.05. A simple 
binomial logistic regression analysis was used to assess 
the effect of variables on the severity of diseases. A 
multiple binomial logistic regression analysis was then 
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performed, including all variables that had a p value in 
the simple logistic regression analysis < 0.2. The multi-
ple regression analyses, p value, odds ratio (OR), and 
95% confidence intervals (CI) for each variable were 
reported.

Results
Socio‑demographic characteristics
The flow diagram of this study is shown in Fig.  1. The 
mean [± standard deviation (SD)] age of COVID-19 
patients, including normal, non-severe, and severe 
groups, in this study were 37.29 ± 10.63, 39.55 ± 9.84, 
and 40.37 ± 9.99  years, respectively. There was a sig-
nificant change between normal and severe group 
(P ≤ 0.05). Male-to-female percent of normal, non-
severe, and severe group in the current study were 
51.7/48.3%, 56.0/44.0%, and 43.1/56.9%, respectively 
(Table 1).

Hematological and biochemical parameters in different 
stages of COVID‑19 patients
Our results indicated that ESR, CRP, AST, ALT, and 
LDH significantly increased in the non-severe group 
in contrast to the normal group (P ≤ 0.01). Moreo-
ver, these markers were significantly augmented in 
the severe group as compared to non-severe patients 
(P ≤ 0.01). In addition, the lymphocyte count markedly 
declined gradually in COVID-19 patients with differ-
ent disease severity (P ≤ 0.01); the severe group had the 
lowest level of it (Fig. 2). The saturation of oxygen was 
markedly reduced in the normal and non-severe groups 
as compared to the severe group (P ≤ 0.01) (Fig.  3). 
Additional file  1: Table  S1 shows other parameters 
between groups (Table 2).

A disturbed oxidant–antioxidant balance is associated 
with increased disease severity
Figure  4 shows comparisons of G6PD, FRAP, NO 
metabolite, MDA, and SOD levels between groups. It 
was observed that the levels of FRAP, G6PD activity, 
and SOD activity were significantly reduced in non-
severe patients in comparison with the normal group 
(P ≤ 0.0001). Furthermore, these parameters mark-
edly decreased in the non-severe group as compared 
to severe patients (P ≤ 0.0001). We found that patients 
with different degrees of COVID-19 showed a gradual 
increase in MDA content, with the lowest level found 
in the normal group and the highest level observed 
in the severe group. It showed that the levels of NO 
metabolite significantly increased in severe patients in 
comparison with the normal and non-severe groups 
(P ≤ 0.0001). However, NO metabolite level showed no 
significant change between the normal and non-severe 
groups.

Analysis of correlations between studied parameters
We found that there is a statistically significant positive 
correlation between the saturation of oxygen and LYM 
count (r = 0.46, P < 0.0001), the saturation of oxygen 
and SOD activity (r = 0.52, P < 0.0001), as well as plasma 
MDA and CRP levels (r = 0.66, P < 0.0001). However, 
negative correlations were observed between the satu-
ration of oxygen and CRP (r = −0.80, P < 0.0001), ESR 
(r = −0.50, P < 0.0001), and MDA (r = −0.60, P < 0.0001) 
content, as well as plasma MDA and SOD activity 
(r = −0.40, P < 0.0001) (Additional file 1: Table S1).

The negative correlations were observed between 
the death and LYM count (r = −0.27, P < 0.0001), SOD 
activity (r = −0.24, P < 0.0001), as well as the satura-
tion of oxygen (r = −0.32, P < 0.0001). However, a posi-
tive correlation was observed between the death and 

Total admission

N = 807

Non COVID-19

N = 150

Suspected COVID 19

N = 657

Negative RT-PCR

N = 57

Positive RT-PCR

N = 600

Severe COVID-19

N = 300

Non-severe COVID-19

N = 300

Fig. 1 Schematic flow diagram of the study

Table 1 Patient demographic information and clinical 
characteristics

Normal Non‑severe Severe p value

Age (years) 37.29 ± 10.63 39.55 ± 9.84 40.37 ± 9.99 0.009

Gender

 Male 78 (51.7%) 168 (56%) 131 (43.1%) 0.025

 Female 73 (48.3%) 132 (44%) 173 (56.9%)
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CRP (r = 0.27, P < 0.0001), AST (r = 0.26, P < 0.0001), 
LDH (r = 0.32, P < 0.0001), and MDA level (r = 0.32, 
P < 0.0001) (Additional file 1: Table S1).

Analysis of multiple logistic regression
For one unit increase in CRP, the chance of patients 
being in the severe group versus the non-severe group 
increased by approximately 6%, and this value was sta-
tistically significant (OR = 1.069; P < 0.001). In addition, 
for one unit increase in BS, the chance of patients being 
in the severe group significantly increased by approxi-
mately 2% (OR = 1.016; P < 0.001). The chance of being in 
the severe group was twice that of the non-severe group 
per one-unit increase in MDA (OR = 2.022; P < 0.001). In 

addition, for one unit decrease in FRAP, the chance of 
patients being in the severe group significantly decreased 
by 0.2% (OR = 0.998; P = 0.042). For one unit decrease in 
SOD, the chance of patients being in the severe group sig-
nificantly decreased by approximately 0.6% (OR = 0.939; 
P = 0.028).

Discussion
Various studies have shown that  COVID-19 patients  is 
involved in inducing oxidative stress and inhibiting the 
activity of the body’s antioxidant system [31, 32]. Our 
findings in this study revealed that  COVID-19  patients 
have low levels of antioxidant parameters such as TAC, 
SOD and high serum levels of oxidative stress markers, 
such as MDA.

The imbalance between oxidant production and anti-
oxidant mechanisms leads to oxidative stress, which can 
lead to oxidative damage, such as lipid peroxidation and 
DNA oxidation [33]. Malondialdehyde, which is derived 
from lipid peroxidation, is one of the best indicators of 
oxidative stress [34, 35]. We only found a statistically 
significant positive correlation between plasma MDA 
and CRP levels. It seems that MDA and CRP levels in 
COVID-19 patients increased significantly, which is pro-
portional to the severity of the disease. Viruses induce 
oxidative stress to facilitate their proliferation within the 
cell [36]. Reactive oxygen species (ROS) are produced by 
pulmonary alveolar macrophages in response to COVID-
19 infection [37]. Extensive production of ROS and fail-
ure to neutralize it by the body’s defense mechanisms, 
including innate immunity and antioxidant defense, 

Fig. 2 Levels of biochemical and hematological parameters between groups. A Lymphocyte count; B ESR; C CRP; D AST; E ALT; and F LDH. *p < 0.01, 
in comparison with normal group. #p < 0.01, in comparison with non-severe group

Fig. 3 Levels of saturation of oxigen between groups. *p < 0.05, 
in comparison with normal group. #p < 0.05, in comparison 
with non-severe group
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Table 2 Multiple logistic regression to assess the effect of variables on the severity of diseases

Variables B S.E Wald df p value OR 95% CI for OR

Lower Upper

Age −0.001 0.019 0.005 1 0.942 0.999 0.962 1.036

M/F(1) 0.600 0.450 1.777 1 0.182 1.823 0.754 4.405

WBC −0.033 0.064 0.269 1 0.604 0.967 0.854 1.096

RBC 0.152 0.362 0.177 1 0.674 1.165 0.573 2.367

Hb −0.173 0.131 1.731 1 0.188 0.841 0.651 1.088

LYM 0.024 0.050 0.226 1 0.634 1.024 0.928 1.130

Net 0.043 0.042 1.025 1 0.311 1.044 0.961 1.134

ESR 0.018 0.011 2.756 1 0.097 1.018 0.997 1.039

CRP 0.067 0.009 54.011 1  < 0.001 1.069 1.050 1.088

PTT 0.002 0.010 0.037 1 0.848 1.002 0.982 1.022

BS 0.015 0.004 12.238 1  < 0.001 1.016 1.007 1.024

BUN 0.000 0.004 0.003 1 0.955 1.000 0.993 1.008

Cra −0.093 0.237 0.155 1 0.694 0.911 0.572 1.451

Bili.d −1.242 1.161 1.143 1 0.285 0.289 0.030 2.814

Bili.T 0.767 1.037 0.547 1 0.459 2.153 0.282 16.434

AST 0.003 0.011 0.077 1 0.782 1.003 0.982 1.024

ALT −0.002 0.007 0.058 1 0.810 0.998 0.986 1.011

CPK 0.001 0.001 1.212 1 0.271 1.001 1.000 1.002

LDH 0.000 0.001 0.005 1 0.942 1.000 0.998 1.002

Alb −0.452 0.463 0.952 1 0.329 0.636 0.257 1.577

K 0.075 0.428 0.031 1 0.861 1.078 0.466 2.494

G6PD −0.009 0.048 0.036 1 0.850 0.991 0.901 1.089

FRAP −0.002 0.001 4.136 1 0.042 0.998 0.996 1.000

NO 0.078 0.053 2.194 1 0.139 1.081 0.975 1.199

MDA 0.704 0.105 45.032 1  < 0.001 2.022 1.646 2.483

SOD −0.063 0.028 4.836 1 0.028 0.939 0.888 0.993

Constant −11.713 5.458 4.605 1 0.032 0.000

Fig. 4 Levels of oxidative stress parameters between groups A G6PD; B FRAP; C NO metabolite; D MDA; and E SOD. *p < 0.0001, in comparison 
with normal group. #p < 0.0001, in comparison with non-severe group
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following viral infection leads to a wide range of patholo-
gies [38]. In some cases, viruses have the ability to sup-
press the Nrf2 (a transcription factor that regulates the 
expression of genes responsible for the production of 
antioxidant proteins)  pathway [39, 40]. The expression 
of Nrf2 target genes, including homoxygenase-1 (HO-1), 
SOD1, SOD3, glutathione S-transferase (GST), catalase 
(CAT), and glutathione peroxidase (GPX) decreases [39]. 
Therefore, these findings confirm that oxidative stress 
plays an effective role in the response to the SARS-CoV-2 
viral infection. In line with our finding, previous studies 
[41, 42] depicted that SARS-CoV-2 infection increases 
oxidative stress, and oxidative stress also plays a role in 
exacerbating the infection.

Viral infections are associated with decreased anti-
oxidant defenses [43]. According to our results, SOD 
activity and TAC were significantly reduced in these 
patients. SOD is one of the main enzymes in the anti-
oxidant defense system. Decreased SOD expression can 
increase the production of ROS and thus increase pro-
inflammatory responses [44]. In general, an excessive 
inflammatory response is also associated with the sever-
ity of SARS-CoV-2 infection [44]. In line with our results, 
Lin et al. reported that H5N1 influenza infection in lung 
epithelial cells reduced SOD expression at mRNA and 
protein levels [45].

Nitric oxide is a gaseous free radical that is involved in 
regulating immune responses [46]. According to our data, 
a significant decrease in NO was observed in patients. 
Vasodilation effected by NO may potentially diminish 
lung injuries due to COVID-19 [46]. NO inhalation or 
a nitrate-rich diet can be useful in reversing pulmonary 
hypertension and mortality caused by COVID-19 [47, 
48]. Decreased or impaired NO metabolism is associated 
with the intensity of COVID-19 disease [47]. Decreasing 
NO and increasing oxidative stress disrupt endothelial 
function and macrophages, and increases inflammatory 
cytokines such as tumor necrosis factor (TNF) and 
monocyte–absorption protein (MCP-1) in endothelial 
cells and monocytes [49, 50].

NO production is positively associated with G6PD 
activity. G6PD deficiency reduces the amount of NADPH 
required to form NO [37].

G6PD deficiency has a positive association with the 
severity of COVID-19 disease [51]. G6PD may play a 
substantial role in viral infections. G6PD deficiency 
enhances cytopathic effects and viral replication [52, 53]. 
According to the results of our study, the level of G6PD 
in these patients was significantly reduced. NADPH, the 
main product of G6PD, is vital for the regeneration of 
GSH, which plays an important role in cellular antioxi-
dant defense [54]. NADPH also plays a variety of roles 
in cellular regulation by redox signals, for example, ROS 

and RNS, which produce NADPH oxidase (NOX) and 
nitric oxide synthase (NOS), respectively [54]. G6PD 
maintains redox homeostasis by keeping cytotoxic ROS 
at appropriate levels, because high levels of ROS are cyto-
toxic [55]. G6PD is involved in modulating the inflamma-
tory response in immune cells. Peripheral mononuclear 
cells produce lower levels of proinflammatory cytokines, 
IL-6 and IL-1β, under G6PD deficiency [56]. G6PD defi-
ciency affects many cellular immune responses, such as 
increased production of the pro-inflammatory cytokine 
IL-8 and impaired inflammasome activation [57, 58]. In 
addition, G6PD deficiency has been shown to increase 
viral infections. During the current COVID-19 epidemic, 
G6PD deficiency has exacerbated the severity of the 
infection [59].

In laboratory findings in COVID-19 patients, the num-
ber of lymphocytes and percentage of oxygen satura-
tion decreased, but the levels of liver enzymes (AST and 
ALT), inflammatory markers (CRP and ESR), and lac-
tate dehydrogenase increased. Important causes of lym-
phocyte deficiency in COVID-19 patients include: (a) 
because lymphocytes express the coronavirus receptor 
called ACE2, SARS-CoV-2 can directly infect lympho-
cytes and lead to lymphocyte death [60]. (B) Increased 
inflammatory cytokines induced by SARS-CoV-2 may 
lead to increased  lymphocyte  apoptosis compared to 
other viruses [61]. Thus, a decrease in lymphocytes may 
eventually reduce the host’s antiviral immunity, which 
causes infection.

Coagulation, sepsis, and decreased oxygen transport to 
tissues are significant symptoms in COVID-19 patients 
[62]. According to our results, the percentage of oxygen 
saturation in these patients showed a significant decrease. 
Hypoxia in tissues causes the production of ROSs, such 
as superoxide and  H2O2, which increase the expression 
of inflammatory cytokines [63, 64]. These inflammatory 
cytokines aggravate the infection in COVID-19 patients 
by increasing oxidative stress.

Serum aminotransferase levels are effective indicators 
of hepatocellular injury [65]. The results of our study 
showed an increase in hepatic aminotransferase such 
as AST and ALT in COVID-19 patients compared to 
the control group. Hepatocytes and bile duct cells over 
express the ACE2 receptor, which binds to the SARS-
CoV-2 virus [66]. This ACE2 receptor could be one of the 
receptors involved in the liver damage seen in COVID-19 
[67]. Similar to our results, a study by Medetalibeyoglu 
et  al. showed that an increase in hepatic aminotrans-
ferases such as AST and ALT was associated with a more 
severe course and an increase in mortality in COVID-19 
patients [68].

Some cytokines, such as hepatocyte growth fac-
tor (HGF), play an important role in the severity of 
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COVID-19 [69]. Increased inflammatory mediators 
play an important role in pneumonia caused by human 
pathogenic coronaviruses, including SARS-CoV-2 
[44]. In this study, high levels of the two inflammatory 
markers CRP and ESR were associated with the sever-
ity of COVID-19, thus confirming the results of pre-
vious studies [70, 71]. Recent research demonstrated 
that patients with CRP > 64.75  mg/L were more likely 
to have severe complications [72, 73]. Alamdari et  al. 
[7] showed an increase in the oxidative stress level of 
COVID-19 patients as well as a significant relationship 
between CRP and nitrite levels in the inflammatory 
phase. Moorthy et al. [74], depicted that the CRP, LDH, 
eosinophil, and lymphocyte counts serve to predict 
the severity and prognosis of COVID-19 patients [74]. 
Some studies have shown that LDH has a poor prog-
nosis with COVID-19 [67, 75]. According to the find-
ings of this study, the serum level of LDH in COVID-19 
patients related to the severity of the disease had a sig-
nificant decrease compared to the control group. LDH 
has been found to affect the prognosis of different dis-
eases, including cancer [76]. Elevated LDH in patients 
with COVID-19 can indicate lung and tissue damage 
[60]. COVID-19 may lead to inadequate tissue perfu-
sion and multiple organ failure by various mechanisms, 
including thrombosis, which increases LDH [77]. 
Thus, high LDH serves as a biomarker of the disease 
expansion.

Our study has some limitations. First, patients with 
mild symptoms may not visit the clinics and only stay 
at home. This may potentially increase the ratio of 
patients with drastic illness in our study; second, most 
of our patients were admitted to the hospital only when 
they developed symptoms of COVID-19. This diagnos-
tic criterion may underestimate the actual population 
of COVID-19 patients.
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