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Abstract 

Keloid formation is a pathological consequence resulting from cutaneous irritation and injury, primarily attributed 
to excessive collagen matrix deposition and fibrous tissue proliferation. Chronic inflammation, left uncontrolled 
over an extended period, also stands as a substantial contributing factor. The precise mechanisms underlying keloid 
formation remain unclear. Therefore, this study aimed to identify key genes for diagnostic purposes. To achieve this, 
we used two Gene Expression Omnibus (GEO) data sets to identify differentially expressed genes. We identified one 
particular gene, homeobox C9 (HOXC9), using a thorough strategy involving two algorithms (least absolute shrinkage 
and selection operator and support vector machine-recursive feature elimination) and weighted gene co-expression 
network analysis. We then assessed its expression in normal and keloid tissues. In addition, we explored its temporal 
expression patterns via Mfuzz time clustering analysis. In our comprehensive analysis, we observed that immune 
infiltration, as well as cell proliferation, are crucial to keloid formation. Thus, we investigated immune cell infiltration 
in the keloid and normal groups, as well as the correlation between HOXC9 and these immune cells. It was found 
that HOXC9 was closely associated with the immune microenvironment of keloids. This shows that HOXC9 can serve 
as a potential biomarker and therapeutic target for keloids.

Introduction
Keloid is an aberrant tissue characterized by over-
growth that arises after the healing of skin injuries or 
wounds, often for unknown reasons. Keloids can form 
over months or years and are linked to excruciating pain, 
inflammation, and different physical and psychosocial 
symptoms, such as pruritus [1]. The back, anterior ear-
lobes, shoulders, and chest are the most prevalent sites 
for keloid formation, with the latter two being especially 
frequent due to higher strain. [2].

During the wound-healing process, myofibroblasts and 
fibroblasts are the primary mediators of collagen matrix 
remodeling and formation. These cells form an extracel-
lular matrix with increased rigidity [3]. Different types 
of glycoproteins, collagens, and glycosaminoglycans 
form the keloid matrix [4]. Over time, the keloid matrix’s 
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overproduction of type III collagen is replaced by a sig-
nificant proportion of type I collagen. Fibers in keloids 
are typically larger compared with those in normal skin 
[5]. Due to their morphology and clinically aggressive 
behavior, keloids caused by dermal trauma are frequently 
regarded as a form of non-specific aetiologic and benign 
fibroproliferative reticular skin tumor. The clinical fea-
tures and morphology of these entities bear resemblance 
to neoplastic cutaneous tumors, exhibiting uncontrolled 
growth, excessive vascularization, and tissue invasion [6, 
7].

The immune microenvironment is a pivotal factor in 
keloid formation. Keloids can form as a result of an exag-
gerated inflammatory response to tissue injury. This 
pathological state is characterized by an elevated number 
of inflammatory cells, particularly T cells, macrophages, 
and mast cells, within keloid tissues to varied extents 
[8]. These cells secrete a diverse array of cytokines/
chemokines, including interleukins (ILs) and transform-
ing growth factor β1, which are crucial inflammatory 
response-related mediators [9].

To date, the exact pathophysiology of keloid formation 
remains unclear; however, it is thought to be caused by 
skin tension [10], tissue hypoxia [11], chronic inflamma-
tion [12], autoimmunity [13], and genetic factors [14]. 
No effective treatment is currently available, and keloids 
often recur even after monotherapies, such as surgical 
removal [2]. As a result, identifying multiple biomark-
ers for this illness could potentially enhance patients’ 
prognoses.

Cellular protein expression is critically involved in 
determining cellular development status [15]. Gene 
expression encompasses mRNA and protein transcrip-
tion, translation, and turnover. The link between mRNA 
and protein levels affects translation and degradation 
processes, which are important for regulating transcrip-
tion, mRNA stability, and gene expression [16]. Gene 
expression is crucial for the development and sustainabil-
ity of several biological activities, including cell prolifera-
tion, cell cycle, and apoptosis, and irregularities in it can 
lead to disorders, such as cancer [17]. Therefore, under-
standing these molecules’ biological activities in keloids 
is crucial for identifying potential treatment applica-
tions. This study aimed to uncover potential markers to 
distinguish patients with keloids from those who did not 
have keloids. The intramodular hub gene and module 
eigengene (ME) can be used to summarize gene clusters 
and find highly linked genes using the weighted gene co-
expression network analysis (WGCNA) technique. In 
addition, it calculates module membership (MM) meas-
ures and establishes connections between modules and 
external sample attributes using the eigengene network 
methodology. Gene screening techniques that use this 

network-based methodology can identify prospective 
therapeutic targets and aid in the development of effec-
tive therapies [18]. In this study, we used WGCNA as one 
of the methods to screen key genes for disease.

In this study, we integrated two data sets sourced from 
the GEO database to augment the sample size. We com-
pared gene expression profiles between the normal and 
disease groups and identified the differentially expressed 
genes (DEGs). WGCNA was then used to obtain hub 
genes, which were then intersected with the DEGs. The 
LASSO technique was used to further screen the genes 
selected to identify a key gene. We analyzed the expres-
sion of this key gene in normal and keloid tissues, exam-
ined its temporal changes concerning other genes using 
Mfuzz time clustering [19], and recognized the most 
relevant gene cluster. Finally, we examined immune cell 
infiltration in the keloid and normal groups, as well as the 
correlation between this key gene and immune cells.

Materials and methods
Data sources and quality control
We retrieved two data sets of original expression profile 
data from the NCBI’s GEO database, GSE7890 [20] and 
GSE83286 [21], for this investigation. These data sets 
were associated with the GPL570and GPL19612 plat-
forms, respectively. Smith J. et  al. (https:// www. ncbi. 
nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE78 90) collected 
samples from both normal dermis and keloids of adult 
males and females in the GSE7890 data set. From these 
samples, primary cells were collected for further culture 
and analysis. To ensure data integrity, samples treated 
with hydrocortisone were excluded from our study, leav-
ing us with a total of ten samples. The GSE83286 data set 
contained three samples of keloid lesions from human 
earlobe keloids and three samples of normal skin from 
earlobe piercing. Guo L. et  al. provided (https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE83 286). In 
addition, we used the GSE145725 [22] (https:// www. ncbi. 
nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE14 5725) data set 
based on GPL16043, which contained ten normal fibro-
blasts and nine keloid fibroblasts, for validation.

Preparation and identification of DEGs
To annotate two series matrix files, several official gene 
symbols from the data table of the microarray platform 
were employed. The ensuing gene expression matrix files 
were then combined into a single file. The expression 
data from the three data sets were then batch-normal-
ized using the “sva” R package. The “limma” R pack-
age was used to perform DEG analysis on the generated 
gene expression matrix files. To identify DEGs, we used 
a cutoff threshold of P < 0.05 and |logFC|> 1.5. Based on 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7890
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7890
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the findings of the DEG analysis, volcano plots and heat 
maps were generated.

Enrichment analysis
Gene ontology (GO)
The “clusterProfiler” package was used in R to perform 
GO enrichment analysis. To find enriched GO terms, 
we set a threshold of P value < 0.05 and an adjusted P 
value < 0.05.

protein–protein interaction (PPI) network analysis
Utilizing the Search Tool for the Retrieval of Interact-
ing Genes (STRING) database (http:// www. string- db. 
org), the DEGs identified in this investigation were used 
to develop a PPI network. The minimal interaction score 
needed was set at 0.4.

WGCNA network construction and module identification
Using the “WGCNA” R package, we analyzed co-expres-
sion networks [23]. Initially, we examined the samples 
for potential outliers or missing values and processed or 
removed them as necessary. We then used an automatic 
network construction function to develop the co-expres-
sion network. The soft thresholding power was deter-
mined using R’s "pickSoftThreshold" function. After that, 
we performed a hierarchical clustering analysis (min-
ModuleSize = 60) after converting the adjacency matrix 
into a topological overlap matrix (TOM). Similar mod-
ules were merged based on commonalities discovered 
using the dynamic tree-cut function. We computed the 
ME, which reflects the module’s first principal compo-
nent and characterizes the module’s expression pattern. 
In addition, we calculated the MM to determine the rela-
tionship between genes and MEs. This metric serves as 
an indicator of the dependability of genes in modules and 
supports the identification of modules related to clini-
cal features. Following that, gene significance (GS) was 
calculated to link modules to clinical features, and the 
resulting data were shown. Finally, we retrieved pertinent 
gene information from the corresponding modules for 
further study.

Screening biomarkers
To identify key genes, we selected appropriate module 
genes and intersected them with DEGs. We then per-
formed minimum absolute value convergence using the 
glmnet package and variable selection using LASSO. 
Using the cv. glmnet function in the glmnet package, a 
model cross-validation analysis was performed with the 
following parameters: Family = “binomial,” alpha = 1, and 
nfolds = 10. The “svmRadial” method in R was also used 
to implement another algorithm, SVM–RFE, and a model 

cross-validation analysis was carried  out, for further 
analysis and identification of the key gene.

Verification of biomarkers
The receiver operating characteristic (ROC) approach 
was used with the R package "pROC" to evaluate the 
sensitivity and specificity of the genes identified through 
SVM–RFE and LASSO analyses. We collected skin and 
keloid tissues from patients having scar excision surgery 
to isolate fibroblasts and primary keratinocytes for the 
expression profile data.

Cell‑ and tissue‑specific gene expression analysis
The Human Protein Atlas (HPA) database (https:// www. 
prote inatl as. org/) is a web-based resource that contains 
data from transcriptomics, proteomics, and system biol-
ogy. It facilitates the identification of target gene expres-
sion in various cells, tissues, and organs and provides 
detailed maps of these biological components. The data-
base includes information on patient survival curves as 
well as the protein expression of normal tissues as well as 
diseased tissues. Another useful online tool for retrieving 
and comparing gene expression patterns across several 
animal species is the Bgee database (https:// bgee. org/). 
The gene expression levels of normal tissues can be com-
pared using the expression data provided on this website, 
which are derived exclusively from healthy tissues uti-
lized in earlier studies.

Mfuzz time clustering analysis
Genes within our samples were clustered using Mfuzz, an 
R tool created for the soft clustering of microarray data, 
based on their expression profiles to establish unique 
gene sets. After removing outliers or missing values from 
this analysis, we determined that there were 30 gene clus-
ters. Subsequently, we used the “GSVA” method to cal-
culate the enriched scores for these gene clusters. This 
enabled us to assess the variations in scores across sev-
eral gene clusters between the control and scar groups. 
To investigate the expression features of the three genes 
indicated above further, we calculated and plotted shifts 
in marker gene expression across multiple gene clusters 
and performed correlation tests.

PPI network
To investigate the gene clusters selected earlier, we con-
ducted protein interaction network analyses. Using the 
STRING database, we set the confidence levels for clus-
ters 1 and 5 at ≥ 0.07 and ≥ 0.09, respectively. We used 
Cytoscape (3.7.2) to visualize the results.

http://www.string-db.org
http://www.string-db.org
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://bgee.org/
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Analysis of immune cell infiltration and differences
Each tissue’s immune infiltration was examined using 
CIBERSORT, a program that analyzes gene expression 
profiles to determine the cell composition of complex 
tissues. In addition, we assessed the relative number of 
immune cells in our samples using the ssGSEA algorithm. 
We previously acquired comprehensive gene sets related 
to immune cells for this study. The enrichment scores 
we calculated for the samples served as an estimate of 
the immune cell infiltration level. Using these results, we 
constructed heat maps of immune cell distributions. Sub-
sequently, we conducted comparisons to identify varia-
tions in the expression patterns of distinct immune cells 
between the keloid and normal groups.

Analysis of correlation between biomarkers and immune 
cells
Using the R packages “tidyverse,” “reshape2,” and “limma,” 
we conducted a correlation analysis between immune 
cells and marker genes. We formatted the data using the 
“ggplot2” package to effectively present the results.

Results
Identification of DEGs
We obtained the GSE7890 and GSE83286 data sets from 
the GEO database, which have been previously stud-
ied. After correcting for batch effects, we combined 
them. We identified 40 DEGs in total using the "limma" 
R package, with 22 upregulated and 18 downregulated 
genes. The heatmap shows all of the DEGs (Fig. 1A). In 
addition, Fig.  1B shows DEG distribution, with red and 
blue dots showing the same expression characteristics as 
previously.

DEG PPI and function prediction
We conducted GO analyses comprising biologi-
cal processes (BPs), cellular components (CCs), and 
molecular functions (MFs) to acquire insights into the 
probable functionalities of these 40 DEGs. These DEGs 
were shown to be enriched in BPs such as cell prolifera-
tion implicated in heart morphogenesis, positive control 
of mesenchymal cell proliferation, and stem cell popula-
tion maintenance, according to the findings. In addition, 
they were linked to CCs, such as adherens junctions, the 
apical plasma membrane, and the extracellular matrix, 

which contains collagen. Using MF analysis, it was dis-
covered that DEGs had a strong correlation with collagen 
binding, RNA polymerase II-specific activity, DNA-bind-
ing transcription activator activity, and extracellular 
matrix structural constituents (Fig.  1C, D). GOcircus 
(Fig. 1E) additionally demonstrated that seven genes were 
enriched in GO terms.

We developed a PPI network using the STRING data-
base (http:// www. string- db. org), an online database, 
based on the interactions between these genes. These 
interactions are presented in Fig.  1F. For upcoming 
research, genes that do not interact with others were 
eliminated.

WGCNA and key module identification
Using WGCNA, we identified co-expression modules 
of genes with high degrees of co-expression and topo-
logical overlap resemblance Initially, the samples were 
clustered, and a sample clustering tree was generated 
(Fig. 2A). A scale-free network was successfully designed 
using the R function “pickSoftThreshold” by establishing 
a soft thresholding power of 7 according to the scale-free 
topology criterion, resulting in an R2 value of 0.83. The 
adjacency matrix was then converted into a TOM to dis-
play node similarity while accounting for weighted cor-
relations (Fig.  2B, C). We merged similar modules after 
locating them using hierarchical clustering and dynamic 
tree-cut analysis. More ME, MM, and GS calculations 
were performed to link modules to clinical characteris-
tics. The generated data were presented using heatmaps 
(Fig. 2D) and bar charts to underline the importance of 
each module. These results (Fig. 2E) revealed that the tur-
quoise module gene, which was considered a key module, 
had the lowest P value.

Screening biomarkers
We chose the turquoise module genes and intersected 
them with the DEGs based on earlier calculations before 
further screening the resulting genes (Fig. 2F). We iden-
tified three high-expressed and four low-expressed 
DEGs in the turquoise module. LASSO and SVM–RFE 
were then used. Cross-validation analysis in the LASSO 
regression model selected the optimal λ value, minimiz-
ing error and finding three keloid-related genes: HSPA2, 
HECW2, and homeobox C9 (HOXC9) (Fig. 2G). Using the 

Fig. 1 Identification of differentially expressed genes (DEGs) and their enrichment. A Heatmap visualizes the DEGs, with red indicating high 
expression and blue indicating low expression. Deeper colors represent greater differences. B Volcano plot shows DEG distribution. Blue and red 
dots show low- and high-expressed DEGs, respectively. C Gene ontology (GO) enrichment analysis of DEGs. Every GO term’s number of genes 
is shown on the horizontal axis. D, E Circlize and circos diagrams of the GO enrichment analysis of DEGs. F Protein–protein interaction network 
of DEGs

(See figure on next page.)

http://www.string-db.org
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SVM–RFE technique, two genes, HOXC9 and F2R, were 
discovered similarly (Fig. 2H). Finally, using the intersec-
tion of the genes found by the two algorithms, we discov-
ered HOXC9 to be the biomarker (Fig. 2I).

Biomarker verification
We used ROC analysis to determine HOXC9’s diagnos-
tic value in the merged GSE7890 and GSE83286 samples. 
The high diagnostic value of HOXC9 was indicated by its 
area under the curve value of 1.000 (Fig. 3A). To validate 
the reliability of these results, we selected the GSE145725 
data set for verification, yielding a result of 0.844 for the 
gene (Fig. 3C). This finding further confirms the validity 
of our previous analysis.

Expression of the biomarker in normal tissues
To gain a comprehensive understanding of this bio-
marker, we examined its expression across the entire 
body (Fig.  4A) using data from the HPA database. We 
also investigated its enrichment profile in diverse skin 
tissue cell types. According to our findings, the following 
cell types expressed HOXC9: endothelial cells, smooth 
muscle cells, eccrine sweat gland cells, adipocytes, and 
fibroblast_2 (mesenchymal cells) (Fig.  4B). In addition, 
using the Bgee database, we evaluated its expression 
in multiple skin locations and the adjacent tissues of 
healthy persons, and a histogram of the results is shown 
in Fig. 4C. These results revealed that the differences in 
gene expression between the subcutaneous adipose and 
skin tissue were not particularly pronounced, suggesting 
its possible role in keloid formation.

Temporal biomarker expression clustering and correlation 
analysis
Based on the expression pattern, we organized the genes 
into 30 distinct clusters. Subsequently, we explored the 
changes in HOXC9 expression across these clusters, elu-
cidating how the expression of other genes correlated 
with the biomarker levels (Fig. 5A). To delve deeper into 
the expression characteristics of the biomarker, we cal-
culated the enrichment scores for each gene set in which 
the sample genes were located. We compared the scores 
and visualized the outcomes between the keloid and 

normal groups (Fig. 5B). The gene clusters with P < 0.05 
are highlighted in this figure. Following this, correlation 
tests were conducted, which indicated that HOXC9 dis-
played the highest level of positive association with gene 
cluster 5 and the most substantial negative correlation 
with cluster 1 (Fig.  5C). The relationships were subse-
quently shown (Fig.  5D, E), and two gene clusters were 
chosen for further research.

Gene cluster PPI and core gene role
Using online tools, protein–protein interaction network 
analysis was performed on the two gene clusters stated 
above. Using Cytoscape software, we further constructed 
PPI networks for clusters 1 and 5. Cluster 1 had a total 
of 409 nodes and 439 identified edges, according to 
STRING, whereas Cluster 5 had 440 nodes and 770 iden-
tified edges. The final results are presented in Fig. 5F, G. 
Based on previous studies, MDM2 and CDK1, the clus-
ter’s core genes, are linked to HOXC9. These key genes 
affect cell growth and immune infiltration. Due to the 
importance of immune infiltration in keloid formation, 
the immune microenvironment must be studied.

Correlation between biomarker and immune cell 
infiltration
The surrounding microenvironment, in particular the 
immune microenvironment, plays a crucial role in the 
formation of keloid lesions. Uncertainty persists regard-
ing the precise relationship between immune cells and 
keloid formation. We investigated the immune infiltra-
tion in several tissues using CIBERSORT, and the out-
comes are shown in Fig. 6A. We generated a correlation 
heatmap of immune cells (Fig.  6B). In addition, we uti-
lized the ssGSEA algorithm to investigate immune cell 
infiltration in the tissues. We made a heatmap of immune 
cells (Fig. 6C) to better visualize our results. Red denotes 
a positive correlation, blue denotes a negative correlation, 
and the intensity of the color denotes the strength of the 
association. The expression of certain immune cells was 
then investigated in keloid and normal tissues. Significant 
variations were found in the expression of type 2 T helper 
cells, gamma delta T cells, plasmacytoid dendritic cells, 
natural killer T cells, neutrophils, natural killer cells, and 

(See figure on next page.)
Fig. 2 Screening biomarkers. A Weighted gene co-expression network analysis (WGCNA) of genes. Branches are distinguished by different colors, 
representing seven distinct modules. B, C Evaluation of the scale-free topology criterion with R2 = 0.83 and the soft thresholding power = 7. D 
Correlation plot of WGCNA modules with trait attributes. Rows and columns represent modules and trait attributes, respectively. Red denotes 
a positive correlation, whereas blue denotes a negative correlation. E Significance of each module’s genes. F Venn diagram showing the intersection 
genes of DEGs and the turquoise module. G Cross-validation for choosing LASSO regression model tuning parameters. Three genes were 
examined, and dotted vertical lines were created at the optimal levels. H Screening genes using the SVM–RFE algorithm. The number of genes 
with the optimal accuracy is represented by the blue dots. I Venn diagram showing the discovery of significant genes using LASSO and SVM 
analyses
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Fig. 3 Biomarker verification. A HOXC9-related ROC analysis. B, C GSE145725 data set-based HOXC9 validation

Fig. 4 The biomarker’s expression in normal tissues. A Human protein Atlas HOXC9 expression. B HOXC9 expression in different skin cell types. C 
Human tissue HOXC9 expression

(See figure on next page.)
Fig. 5 Time clustering of expression and correlation tests of biomarkers. A Changes in gene expression in 30 different gene clusters as marker 
gene expression increases. B Differences in enrichment scores between the keloid and normal groups. C Correlation of HOXC9 with different gene 
clusters. D, E Correlation of HOXC9 with clusters 1 and 5. F, G Protein–protein interaction network of gene clusters 1 and 5
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(Th2) cells (Fig. 6D). We conducted a correlation analy-
sis to determine the association between immune cells 
and HOXC9, which demonstrated a positive relationship 
between HOXC9 and macrophages (Fig. 6E).

Discussion
Keloids are characterized by the formation of scar tis-
sue that extends beyond the original skin injury site, and 
they commonly occur in persons who are predisposed to 
this condition [24]. The etiology of these benign fibro-
proliferative disorders is uncertain. They are further dis-
tinguished by blood vessel hyperproliferation [25, 26], 
epidermal thickening, increased mesenchymal cell den-
sity [27], thick and dense hyalinized collagen fibers [28], 
and excessive fibronectin proliferation [29]. Keloid tis-
sue has an extensive extracellular matrix meshwork [27] 
due to excessive collagen deposition and growth [30] and 
irregular fiber distribution. In contrast, normal skin pos-
sesses collagen bundles parallel to the epidermis [31].

Currently, a variety of methods, including compres-
sion therapy, corticosteroid injections, and surgical 
procedures, are used in clinical practice for the treat-
ment of keloid scars. However, the recurrence rates of 
keloids remain high [12]. Keloids can potentially impair 

limb function and affect patients’ quality of life in some 
cases. Our study aimed to discover prospective targets 
for keloid therapy. We found that DEGs were abundant in 
BPs, CCs, and MFs associated with keloid fibroblasts by 
means of differential expression analysis. In terms of MF, 
many DEGs were involved in DNA replication activities 
and the construction of the extracellular matrix. In BPs, 
we observed enhanced cell proliferation abilities. In addi-
tion, their positive regulation of mesenchymal cells and 
the maintenance of stem cells were emphasized. These 
findings suggest that these DEGs may lead to the highly 
activated state of cells in keloid tissue, resulting in exces-
sive proliferation and increased deposition of the extra-
cellular matrix. Furthermore, some skin cells, such as 
dermal fibroblasts, can secrete extracellular matrix com-
ponents, such as collagen. As the proliferation ability and 
quantity of cells increase, so does the extracellular matrix 
increase, including collagen. Moreover, the cells become 
tightly connected, contributing to the tough texture of 
keloids. Cellular component analysis further supports 
these findings.

We used the LASSO algorithm and WGCNA to 
explore potential biomarkers. Using this comprehensive 
approach, we discovered a key gene, HOXC9, that was 

F G

Fig. 5 continued

(See figure on next page.)
Fig. 6 Immune cell infiltration and correlation between biomarkers and immune cells. A Infiltration of different immune cells in tissues. B Heatmap 
of immune cell infiltration. C Correlation heatmap of immune cells. Red indicates a positive correlation, blue indicates a negative correlation 
and darker colors denote stronger correlations. D Differences in different types of immune cells between the two groups of samples. E The 
correlation of HOXC9 with different immune cells
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related to keloids in the GSE7890 and GSE83286 data 
sets. In normal tissues, our data demonstrated that the 
HOXC9 expression pattern was similar in the skin and 
its adjacent tissues. However, HOXC9’s specific expres-
sion pattern in keloid tissues indicated its crucial role in 
keloid formation regulation.

The homeobox gene family contains the protein-coding 
gene HOXC9. Homeobox genes encode a highly con-
served group of transcription factors known for their 
involvement in morphogenesis during the development 
of multicellular organisms. HOXC9 has been linked to 
different disorders, despite not previously being con-
nected to keloids. It is well-known that HOXC9 plays a 
crucial function in regulating vascular morphogenesis 
and preserving endothelial cell quiescence[32]. HOXC9 
may have an impact on angiogenesis, which is crucial for 
the formation of keloids. In addition, HOXC9 can modu-
late these processes via inhibiting interleukin (IL)-8 [33]. 
Studies have linked low expression of HOXC9 to various 
conditions, including lymph node metastasis, papillary 
thyroid cancer, and Hashimoto’s thyroiditis [34]. Con-
versely, high HOXC9 expression has been observed in 
human gastric cancer [35] and non-small cell lung cancer 
(NSCLC) [33]. It might be linked to a poor tumor prog-
nosis depending on the situation. Overexpression of this 
gene promotes the invasion and development of NSCLC 
cells. It has also been determined that the circCENPF/
has-miR184 axis is a potential target for the develop-
ment of cancer cells [36]. HOXC9 overexpression can 
also promote the development of stem cell- and metas-
tasis-like cells in gastric cancer cells [37]. The inhibition 
of the DAPK1/RIG1/STAT1 axis can lead to interferon-
gamma resistance [38]. HOXC9 overexpression enhances 
invasiveness but decreases proliferation in various breast 
cancer cell lines. This is suggestive of a switch from the 
proliferative to the invasive phase of cancer cell develop-
ment [39]. Consequently, HOXC9 may play a crucial role 
in cell proliferation, cell migration, angiogenesis, and 
other activities significantly linked to keloid formation.

Using a soft cluster analysis, we identified two gene 
sets closely associated with changes in HOXC9 expres-
sion. The key genes in these two sets were CDK1 and 
MDM2. According to reports, MDM2 can activate fibro-
blasts, resulting in fibrosis [40]. It may also contribute to 
the emergence of inflammation [41]. CDK1 is necessary 
for controlling cell division during the G2/M phase and 
mitosis. Its overexpression has been linked to the devel-
opment and progression of various cancers [42]. When 
THRIL is overexpressed, CDK1, which is involved in cel-
lular motility and proliferation, is downregulated [43]. 
Several studies and analyses have connected CDK1 to 
immune infiltration in lung adenocarcinoma [44], colo-
rectal cancer [45], and hepatocellular carcinoma [46, 

47]. These findings illustrate that these two key genes, 
which have a high correlation with HOXC9, are involved 
in cell proliferation and are intimately related to immune 
infiltration. Keloids exhibit a close relationship with 
the immune microenvironment, and genes related to 
immune infiltration and immune cell abnormalities may 
underlie keloid formation. Therefore, it is imperative to 
investigate the immune microenvironment within keloid 
tissues.

As inflammatory proliferative fibrous diseases, immune 
infiltration is critically involved in keloid formation. Pre-
vious studies have underscored the substantial role of 
various inflammatory cells in the wound-healing pro-
cess. For instance, the equilibrium between the M1 and 
M2 phenotypes is critical for controlling inflammation 
and tissue healing, which are regulated by macrophages. 
High macrophage infiltration, mostly of the M2 type, has 
been found in the keloid specimens [48]. Similarly, T cells 
are vital contributors. T-cell subset diversity contrib-
utes to these cells’ complex role in the keloid formation 
process. For instance, it is known that Th2 cells release 
IL-4 and IL-13, which can both boost collagen synthesis 
and metabolism and cause the accumulation of reticu-
lar fibrin [49]. Th1 cells can attenuate tissue fibrosis by 
secreting IFN-γ, which suppresses fibroblast proliferation 
and decreases the expression of type I and III collagen 
genes [50]. Treg cells, known for regulating other effec-
tor T cells, may directly influence collagen deposition in 
keloids. Furthermore, the substantial increase in mast 
cell population in keloids implies their integral role in 
keloid formation [51], with their numbers and activation 
status being positively y associated with the degree of 
keloid formation [52]. By secreting IL-4, VEGF, and basic 
fibroblast growth factors via the PI-3  K/Akt signaling 
pathway, mast cells can enhance fibroblast proliferation 
[52, 53]. Furthermore, it is worth noting that inflamma-
tory chemicals play an important role as key mediators in 
the execution of immune cell activities. TGF-β levels are 
increased by Th2 cytokines, such as IL-4 and IL-13, lead-
ing to fibrosis. Hence, blocking Th2 cytokines represents 
a potential treatment avenue for keloids [54]. According 
to a previous study, keloid tissue’s growing margin (per-
ilesional region) also contains IL-17. It can encourage the 
production of SDF-1 in fibroblasts, which in turn facili-
tates the recruitment of Th17 cells that produce IL-17, 
establishing a positive feedback loop [55]. In addition, 
IL-17 greatly increases STAT3 and HIF-1 expression in 
healthy fibroblasts, impairing autophagy, which is linked 
to an increase in necroptosis and fibrosis [56]. This find-
ing shows that suppressing STAT3 might be a feasible 
keloid therapy strategy [55].

We investigated the degree of immune cell infiltration 
in the samples from the GEO database, since immune 



Page 14 of 16Li et al. European Journal of Medical Research          (2023) 28:476 

infiltration contributes significantly to the formation of 
scarring. According to our findings, there were signifi-
cant variations in the levels of neutrophils, natural killer 
T cells,  gamma delta T cells, plasmacytoid dendritic 
cells, Th2 cells, and natural killer T cells between the 
two groups. A previous study has shown that an abnor-
mal T-cell response triggers keloid progression [57]. In 
our research, we delved into the link between HOXC9 
and immune cells, and the findings are presented in the 
preceding section. HOXC9 has been shown to exhibit a 
certain relationship with T-cell activity [58], which is a 
factor that has previously been discussed in the context 
of keloids. Collectively, our findings underscore the criti-
cal function of HOXC9 in keloids. However, its functional 
mechanism and association with immune infiltration 
remains unclear, warranting further investigation.

In our study, we not only compared the differences in 
HOXC9 expression between normal and keloid tissues 
but also highlighted the aberrant HOXC9 expression in 
keloids by evaluating its expression in normal tissues. 
Given the findings of differential and enrichment analy-
ses, we hypothesize that HOXC9 may promote keloid 
formation by promoting cell proliferation and migra-
tion, increasing extracellular matrix deposition, and 
enhancing angiogenesis in keloid tissues. Furthermore, 
we identified key gene sets associated with the upregu-
lation of HOXC9, further highlighting its connection to 
keloid formation and the immune microenvironment. 
Nevertheless, this study has some limitations. First, some 
differences were present between the samples. In this 
investigation, we chose GSE7890 and GSE83286 data sets 
and evaluated their combined results with GSE145725. 
These data sets, on the other hand, contain samples 
obtained from tissue samples or primary cells obtained 
from tissues. Consequently, variations between them 
could lead to differences in gene expression. Second, 
because the sample size is still too small, more microarray 
data must be evaluated to increase the results’ reliability. 
Finally, further experimental validation, including cellu-
lar and animal experiments, is required to substantiate 
these findings. Our study findings suggest that HOXC9 
may influence the immune microenvironment of keloids, 
thereby promoting their growth. Subsequent experi-
ments may include the establishment of animal models of 
keloid. These models can be used to observe tissue sizes 
and histological changes after reducing HOXC9 expres-
sion to verify the effect of HOXC9 on keloid growth. Fur-
thermore, in cellular experiments, primary cells, such as 
fibroblasts and keratinocytes, can be cultured to investi-
gate the effects of HOXC9 reduction on cellular activities, 
including cell proliferation, migration, and apoptosis. In 
addition, keloid formation is influenced by environmen-
tal factors, such as inflammatory cell infiltration. The 

association between HOXC9 and immune infiltration 
remains unclear [36]. Therefore, investigating whether 
reducing HOXC9 expression can lead to improved 
immune cell infiltration. Gene therapy methods are gain-
ing prominence, but their application in keloid treatment 
remains relatively rare. Validating the role and expression 
of HOXC9 in keloids through various methods can pave 
the way for its clinical use. This approach offers a feasible 
method for keloid treatment.

Conclusion
In this study, we performed bioinformatics analyses to 
detect key genes, such as HOXC9, which exhibited differ-
ential expression between normal and keloid tissues. Our 
findings demonstrate that HOXC9 is critical in keloid 
formation and intricately linked to the keloid immune 
microenvironment. Therefore, it may serve as a valuable 
biomarker for keloid diagnosis and treatment. Our study 
findings not only provide valuable insights for future 
experimental investigations but also offer a novel avenue 
for clinical intervention.
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