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Abstract 

Bacterial-derived extracellular vesicles (EVs) have emerged as crucial mediators in the cross-talk between hosts 
and pathogens, playing a significant role in infectious diseases and cancers. Among these pathogens, Helicobacter 
pylori (H. pylori) is a particularly important bacterium implicated in various gastrointestinal disorders, gastric cancers, 
and systemic illnesses. H. pylori achieves these effects by stimulating host cells to secrete EVs and generating internal 
outer membrane vesicles (OMVs). The EVs derived from H. pylori-infected host cells modulate inflammatory signaling 
pathways, thereby affecting cell proliferation, apoptosis, cytokine release, immune cell modification, and endothelial 
dysfunction, as well as disrupting cellular junctional structures and inducing cytoskeletal reorganization. In addition, 
OMVs isolated from H. pylori play a pivotal role in shaping subsequent immunopathological responses. These vesi-
cles incite both inflammatory and immunosuppressive reactions within the host environment, facilitating pathogen 
evasion of host defenses and invasion of host cells. Despite this growing understanding, research involving H. pylori-
derived EVs remains in its early stages across different domains. In this comprehensive review, we present recent 
advancements elucidating the contributions of EV components, such as non-coding RNAs (ncRNAs) and proteins, 
to the pathogenesis of gastric and extragastric diseases. Furthermore, we highlight their potential utility as biomark-
ers, therapeutic targets, and vehicles for targeted delivery.

Keywords Extracellular vesicles, Outer membrane vesicles, Helicobacter pylori, Gastric cancer, Extra-gastrointestinal 
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Introduction
Helicobacter pylori (H. pylori) is a spiral-shaped, spiky, 
gram-negative bacterium found in the gastric tract of 
about half the world’s people [1]. This bacterial infec-
tion has been linked to the pathogenesis of various gas-
trointestinal disorders, including gastritis, stomach 
ulcers, MALT (mucosa-associated lymphoid tissue) 
lymphomas, and stomach cancer [2]. H. pylori thrives 
in the stomach due to the unique environment pro-
vided by the gastric tissue barrier. It can directly injure 
superficial epithelial cells or stimulate the release of 
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proinflammatory mediators from these cells. Addition-
ally, H. pylori-derived products can penetrate the under-
lying mucosa, triggering both non-specific and specific 
immune responses in the host [3]. The literature also 
implicated this gastric pathogen in the development of 
extra-digestive diseases, such as atherosclerosis (AS) [4], 
chronic obstructive pulmonary disease (COPD) [5], non-
alcoholic fatty liver disease (NAFLD) [6], blood diseases 
(idiopathic thrombocytopenic purpura, iron deficiency 
anemia) [7], inflammatory bowel disease (IBD) [8], skin 
diseases [9], and Alzheimer’s disease (AD) [10]. Although 
infection with H. pylori has been shown to cause leaky 
bowel by impairing the tight-junctional proteins occlu-
din, claudin-4, and claudin-5, there is little evidence of H. 
pylori in the blood [11]. It has been suggested that extra-
gastric symptoms result from insulin resistance concern-
ing proinflammatory cytokines produced by inflamed 
mucosa and acute phase reactants [12]. However, the 
fundamental mechanism by which H. pylori products 
cross the epithelial barriers to affect other systems via the 
bloodstream remains unclear.

Extracellular vesicles (EVs) are membrane particles 
with a lipid bilayer surrounding a cytosol compartment 
[13]. EVs are rich in bioactive molecules, including lipids, 
proteins, and nucleic acids (DNA, mRNAs, microRNAs, 
and other non-coding RNAs) [14]. Unlike direct cell-to-
cell contact with signaling molecules secreted by cells, 
EVs are widely recognized as a novel intercellular messen-
ger within the body. They can influence surrounding cells 
by either immediately releasing material from the vesicle 
or transporting contents from the donor to the recipient 
cell [15]. In infectious diseases, infected cells release EVs, 
and viruses, bacteria, parasites, and fungi also release EVs 
during infection. These EVs contain factors derived from 
both the pathogen and the host, and they play a pivotal 
role in pathogen uptake, replication, and regulation of the 
host immune response [16]. In recent years, accumulat-
ing evidence has shown that EVs are essential in regulat-
ing diverse cellular activities in H. pylori-related diseases. 
They can be released by host cells or bacteria and trans-
port biological signaling molecules [17]. This review aims 
to present a comprehensive overview of the association 
between H.pylori infection and gastric/extra-gastric dis-
eases. We will focus on investigating the involvement of 
EV-ncRNA/protein components in the development and 
progression of H. pylori-associated diseases. Additionally, 
we will explore the potential of these EV components as 
biomarkers, therapeutic targets, and delivery vehicles in 
diverse host systems.

Classification and biology of extracellular vesicles
Based on size and biology, the International Society for 
Extracellular Vesicles (ISEV) classifies EVs into three 

basic subgroups: exosomes, microvesicles (MVs), and 
apoptotic bodies (ABs) [18]. Microvesicles, with sizes 
ranging from 100 to 1000  nm, are generated through 
direct budding of the plasma membrane. ABs are bilayer 
lipid vesicles formed during programmed cell death 
by plasma membrane vesicles ranging from 1000 to 
5000 nm [19, 20]. Exosomes, which have a size range of 
30–150  nm, are produced and released by many differ-
ent cells; they are endosomal in origin and released from 
multivesicular bodies (MVBs) into the extracellular space 
involving an endosomal sorting required for transport 
(ESCRT) machinery or the ESCRT independent pathway 
[21–23] (Fig.  1). The ESCRT machinery, consisting of 
four complexes (ESCRT-0, -I, -II, and -III) and associated 
proteins, is crucial for endosomal sorting and membrane 
remodeling. Its function involves identifying and binding 
to cargo that is ubiquitinated (ESCRT-0), concentrating 
cargo, and recruiting ESCRT-III, specifically ESCRT-I 
and -II. This process promotes membrane budding and 
fission, resulting in the formation of intraluminal vesicles 
(ILVs) within multivesicular bodies (MVBs). In addition, 
an ESCRT-independent pathway exists that employs dis-
tinct mechanisms for cargo sorting and trafficking. This 
pathway involves membrane bulging and fission medi-
ated by lipid microdomains, which require the participa-
tion of accessory proteins and enzymes [24–27]. Various 
factors, such as cargo characteristics and cellular con-
text, influence vesicle sorting and formation. Pathways 
and molecules involved in signaling activate and regulate 
specific sorting mechanisms. Pathological conditions can 
disrupt the sorting machinery and affect pathway pref-
erence, impacting vesicle trafficking. It’s important to 
note that the ESCRT machinery and ESCRT-independ-
ent pathways can interact and coordinate depending on 
cargo and cellular context, ensuring efficient sorting and 
cellular homeostasis [28–30].

In addition to inducing host cells to produce EVs, H. 
pylori can also secrete bacterial extracellular vesicles 
(bEVs), commonly known as outer membrane vesicles 
(OMVs), by shedding its outer membrane [31]. The for-
mation of OMVs (released by H. pylori), which contain 
various constituents of the bacteria such as proteins, tox-
ins, phospholipids, and nucleic acids, is now considered 
a means of transferring pathogenic factors from bacteria 
to host cells [32]. It is essential for the structure of the cell 
envelope, metabolism, communication between bacteria, 
and the formation of biofilms. Notably, Ricci et  al. [33] 
demonstrated that vacuolating cytotoxin (VacA), when 
encapsulated in OMVs, can serve a distinct function 
from free lytic toxins. For example, OMVs can act as an 
alternative delivery system in environments other than 
the stomach lining (intestine), where OMVs interact with 
epithelial cells and potentially disrupt their integrity. The 
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precise mechanism by which pathogenic factors enter 
host cells through OMVs remains incompletely under-
stood. Chew et  al. [34] utilized confocal microscopy to 
fluorescently label OMVs and observed that H. pylori 
OMVs predominantly enter the Human Gastric Adeno-
carcinoma (AGS) Cell through macrophage phagocyto-
sis, ruling out direct fusion between OMVs and the AGS 
cell membrane. Moreover, there is a lack of consensus 
regarding the precise mechanisms through which OMVs 
from the same pathogen can invade non-phagocytic host 
cells, resulting in an unresolved understanding of the 
exact mode of OMV host cell entry [35].

Nucleic acid components of extracellular vesicles
Among the different EV cargos, ncRNAs are one of 
the most abundant [36]. NcRNAs act as RNA mole-
cules transcribed from the genome and do not encode 

proteins that play essential roles in activating and 
silencing genes, regulating transcription, and splic-
ing and modifying RNA [37]. NcRNAs in EVs employ 
various mechanisms to evade degradation both in the 
extracellular environment and within recipient cells. 
The lipid bilayer membrane enclosing EVs serves as a 
physical barrier, shielding the ncRNAs against RNA-
degrading enzymes present in the extracellular milieu. 
Moreover, ncRNAs interact with RNA-binding pro-
teins, forming ribonucleoprotein complexes (RNPs) 
that confer stability and protection. Some ncRNAs also 
adopt specific secondary structures that make them 
less susceptible to degradation enzymes. Upon uptake 
by recipient cells, ncRNAs may associate with intra-
cellular RNA-binding proteins or reside in specialized 
compartments, such as endosomes or P-bodies, that 
modulate RNA stability [38–40].

Fig. 1 The biogenesis of EVs. The cytoplasmic membrane first invaginates exosomes to form early endo nucleosomes, which further develop 
into late endo nucleosomes, and then the endo nucleosome membrane invaginates to form multivesicular bodies (MVBs). MVB are produced 
in two ways. On one hand, they can fuse with lysosomes and be degraded. On the other hand, MVBs fuse with the cell membrane and release their 
encapsulated luminal vesicles into the extracellular space, thus forming exosomes. The exosomes are released and can interact with the recipient 
cell via cell signaling molecules on their surface. Exosomes can also act by different mechanisms such as endocytosis, phagocytosis or direct 
fusion with the cell membrane into the recipient cell. Microvesicles are formed through direct outward budding and shedding from the plasma 
membrane. Apoptotic bodies(ABs) are small membranous particles released during programmed cell death
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Regulatory ncRNAs can be classified by length (< 200 
or > 200  bp) into small noncoding RNAs, which include 
microRNA (miRNA), small nucleolar RNA(snRNA), 
small interfering RNA(siRNA), Piwi-interacting 
RNA(piRNA) and long ncRNA (lncRNA) [41]. Within 
small ncRNAs, miRNA is a type of endogenous, non-
coding small RNA that plays a significant role in modu-
lating gene expression at the posttranscriptional level. 
H. pylori has the ability to disrupt miRNA expression, 
enabling it to avoid or interfere with host defenses and 
establish persistence within the gastric environment [42]. 
Recent research indicates that during antigen recogni-
tion, miRNAs can be transferred from T cells to antigen-
presenting cells. These transferred miRNAs possess the 
capability to regulate gene expression in recipient cells, 
thereby influencing monosynaptic development [43]. In 
addition to the well-studied miRNAs, exploring the role 
of lncRNAs and ncRNAs could provide a better under-
standing of their relevance to H. pylori-related diseases. 
However, the existing mechanisms are currently limited.

Influence of Exosome‑ncRNAs in gastrointestinal diseases
Recent studies have revealed the implications of several 
microRNAs (miRNAs) in the host immune responses 
triggered by H. pylori, including miRNA-125, miRNA-
146, miRNA-155, miRNA-21, miRNA-221, and the let-7 
family. These particular miRNAs serve a regulatory 
function in the interactions between toll-like receptors 
(TLRs) and lipopolysaccharides (LPS), as well as their 
associated downstream pathways, acting as a connecting 
link connecting gastric inflammation with the develop-
ment of pre-neoplastic and malignant lesions [44]. For 
example, miR-155 has emerged as a pivotal component 
in both innate immunity and the regulation of inflam-
matory reactions. When stimulated by H. pylori, miR-
155 becomes activated in gastric mucosa and epithelial 
cells, resulting in the increased expression of inflamma-
tory cytokines. This enhanced inflammatory response 
not only inhibits H. pylori proliferation but also helps 
inhibit the development of gastritis [45]. Moreover, 
Wang J et al. [46] discovered that H. pylori-infected mac-
rophages release exosomes rich in levels of miR-155. 
These exosomes are then taken up and internalized by 
macrophages. Following overexpression, miR-155 sub-
sequently leads to the downregulation of MyD88 and 
NF-κB, which are key proteins in the inflammatory sign-
aling pathway in macrophages infected with H. pylori. 
This downregulation effectively inhibits the inflammatory 
responses mediated by macrophages, thereby promoting 
their ability to inhibit or eliminate H. pylori and prevent 
H. pylori-induced gastritis (Fig. 2). These findings imply 
that miR-155 could serve as a novel negative regulator 
and potentially hold therapeutic value in gastrointestinal 

diseases caused by H. pylori infection. However, a more 
thorough investigation is required to elucidate the pre-
cise mechanisms involved.

Exosome‑ncRNAs promotes atherosclerosis
In endothelial cells, multiple miRNAs play a role in regu-
lating essential inflammatory factors. One such miRNA 
is miR-25, which influences various cellular processes, 
including proliferation, apoptosis, and cytokinesis [47]. 
Findings by Qi et  al. [48] support the significance of 
miR-25 in vascular smooth muscle cell (VSMC) prolif-
eration and the development of TNF-induced athero-
sclerosis. Yao et al. [49] discovered that individuals with 
coronary heart disease (CHD) and hypertension have an 
increased risk of heart failure when their levels of miR-
19b-5p, miR-221, and miR-25-5p in peripheral blood 
mononuclear cells are combined. Furthermore, they 
found a positive correlation between elevated expression 
of miR-25-5p and the severity of CHD. Li B et  al. [50] 
demonstrated that there were high levels of miR-25 in H. 
pylori-infected patients’ plasma, indicating that H. pylori 
can induce an increase in the levels of exosomal miR-25 
through infection of gastric epithelial cells. Next, Li N 
et al. [51] determined that exosome miR-25 regulates NF-
kappaB signaling pathways in atherosclerosis by target-
ing Kruppel-like factor 2 (KLF2), an inhibitor of vascular 
inflammation and atherosclerosis. These findings imply 
that high levels of exosomal miR-25 may increase the 
potential risk of coronary heart disease in the peripheral 
blood. Furthermore, it is possible that H. pylori exert bio-
logical effects on endothelial cells through the miR-25/
KLF2 axis (Fig. 2).

Exosome ncRNAs not only influence inflammation but 
also impact other pathogenic processes related to ath-
erosclerosis. They regulate lipid metabolism, cholesterol 
homeostasis, endothelial dysfunction, plaque formation, 
vascular smooth muscle cell behavior, and vascular calci-
fication. Exosome ncRNAs serve as signaling molecules, 
communicating between various cell types in the arterial 
wall, thereby exerting either promotional or inhibitory 
effects on these processes [52–55].

OMVs‑sncRNAs mediated immune escape
Small non-coding RNAs (sncRNAs) produced by bac-
teria are classified as small regulatory RNAs (sRNAs), a 
category of post-transcriptional regulators that control 
gene expression to adapt to varied environmental con-
ditions or influence the virulence genes of pathogenic 
microorganisms [56]. Bacterial OMVs play a vital role 
in host–pathogen communication. Recent evidence 
suggests that OMVs influence host immune responses 
through the inclusion of different packaged sncRNAs 
targeting the function of host mRNA [57]. According 
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to Zhang et al. [58], two specific sncRNAs (sR-2509025 
and sR-989262) have been proposed to facilitate the 
delivery of H. pylori into host cells, which are abun-
dant in OMVs. These sncRNAs reduce the secretion of 
IL-8 induced by lipopolysaccharides or OMVs in AGS 
cells cultured in  vitro, thereby facilitating immune 
evasion. Li et al. [59] further showed that OMV-encap-
sulated sncRNA is essential in regulating the immune 
response in aminal hosts infected by H. pylori. The 

results showed that sR-2509025 and sR-989262 stim-
ulated higher serum IgG and IgA production in mice. 
The levels of vaginal sIgA and gastric sIgA confirmed 
that the depletion of sncRNAs suppressed the immune 
response of the host, leading to enhanced mucosal and 
humoral immunity. These findings provide support 
for the hypothesis that sncRNAs present in H. pylori 
OMVs play a critical role in directly modulating the 
host immune response, allowing H. pylori to evade the 

Fig. 2 Role of EVs induced by H. pylori infection in gastric and extragastric diseases. A Following H. pylori infection, EVs containing p-MET are 
released. They are then internalized by macrophages, which release pro-inflammatory cytokines that promote tumour growth and increase cell 
proliferation, migration and invasion. B MiR-155 exosomes from H. pylori-infected macrophages increased the production of the inflammatory 
cytokines IL-23, IL-6, IL-1βand TNF-α, in addition to the cell signalling proteins CD81, CD63, CD40 and MCH-I. Meanwhile, inflammatory signalling 
pathway proteins such as MyD88 and NF-kappaB have been downregulated in H. pylori-infected macrophages due to miR-155 overexpression. C 
H. pylori-derived exosomes upregulate the expression of soluble IL-6 receptor in GES-1 human gastric epithelial cells promoting the presentation 
of the pro-inflammatory cytokine IL-1α via its mediated IL-6 trans signal. D Serum exosomes derived from H. pylori-positive patients (Exo(Hp)) 
increased the expression of NLRP12 in intestinal epithelial cells, and NLRP12 reduced the expression of the chemokines MCP-1 and MIP-1α 
by inhibiting the Notch signalling pathway, ameliorating colitis symptoms. E CagA-containing exosomes derived from GES-1 human gastric 
epithelial cells regulate the expression of the tight junction protein claudin-2 at the transcriptional level via a CDX2-dependent mechanism, 
delaying the repair of the intestinal mucosa. F H. pylori induces gastric epithelial cell-derived exosomal miR-25 can enter the circulation and then 
regulate the NF-kappaB signaling pathway by targeting the transcription factor KLF2, leading to increased expression of ICAM-1, MCP-1, 
VCAM-1, and IL-6,, and accelerate the progression of atherosclerosis in vascular endothelial cells. G CagA in H. pylori-infected vascular endothelial 
cells-derived exosomes mediated reactive oxygen species(ROS) formation deregulates signals activating signal transducer and activator 
of JAK-STAT3 in endothelial cells, promoting atherogenesis. H CagA in exosomes derived from gastric epithelium infected with H. pylori induces 
the formation of macrophage foam cells and promotes atherosclerosis
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host immune response. However, further research on 
host–pathogen interactions is warranted.

Proteins in the exosomes of H. pylori‑infected Host Cells
Proteins within EVs include those involved in their 
biogenesis, such as the ESCRT machinery, cytoskeletal 
components, transmembrane, adhesion, antigen pres-
entation, and other proteins [60]. Increasing evidence 
suggests that H. pylori infection can shift the protein 
profile of exosomes emitted by a host cell and contrib-
ute to various cellular functions. For instance, the exo-
somal mesenchymal–epithelial transition (MET) factor 
may be a promising modulator of the protumorigenic 
role of macrophages in GC pathogenesis. Che Y et al. 
[61] observed that EVs loaded with phosphorylated 
mesenchymal–epithelial transition factor (p-MET) are 
released following H. pylori infection. Macrophages 
ingest them, releasing inflammatory cytokines that 
stimulate tumor growth, proliferation, invasion, 
and migration (Fig.  2). To investigate the changes in 
EVs released from gastric host cells during H. pylori 
infection, González et  al. [62] isolated and character-
ized EVs from H. pylori-infected and non-infected 
human gastric epithelial cells GES-1 (designated as 
EVHp + and EVHp-, respectively). They demonstrated 
that extracellular vesicles from H. pylori-infected gas-
tric epithelial cells promoted alterations in receptor 
cells associated with malignancy. These alterations 
included decreased cell viability, increased IL-23 con-
centrations, enhanced migration, and transendothelial 
invasion. In another study, Chen et  al. [63] cultured 
human intestinal epithelial cells with serum exosomes 
obtained from patients diagnosed with H. pylori-pos-
itive chronic gastritis. They employed an antibody 
microarray or PCR array to analyze cytokine and gene 
expression in signaling pathways. Their findings dem-
onstrated that serum exosomes from H. pylori-infected 
patients with chronic gastritis stimulated the soluble 
IL-6 receptor in human gastric epithelial cells, result-
ing in the release of the proinflammatory cytokine 
IL1-α (Fig. 2). IL1-α is expressed in immune cells, epi-
thelial cells, and stromal cells alike, and it prominently 
contributes to the development of various human con-
ditions, including inflammation and cancer.

Another research team [64] reported that exosomes 
derived from H. pylori augmented the levels of 
NLRP12 inflammatory vesicles in intestinal epithelial 
cells. Furthermore, NLRP12 suppressed the expression 
of chemokines MCP-1 and MIP-1α by inhibiting the 
Notch signaling pathway, thereby improving the symp-
toms of colitis (Fig. 2).

H. pylori‑specific proteins in exosomes
Moreover, specific proteins of H. pylori can be secreted 
into host cell-derived exosomes. One such protein is 
cytotoxin-associated gene A (CagA), which acts as a 
virulence factor. Upon entry into host cells via the type 
IV secretory system (T4SS) [65], CagA triggers multiple 
signal transduction pathways, resulting in alterations 
in cell structure and an elevated susceptibility to gas-
trointestinal disorders [66]. Exosomes transport CagA 
proteins to remote locations from the primary disease, 
potentially causing extra-gastric diseases. However, the 
mechanism by which H. pylori and its products traverse 
the epithelial barrier and enter the bloodstream is still 
under investigation [67].

Shimoda et al. [68] employed liquid chromatography-
tandem mass spectrometry (LC–MS/MS) to investigate 
whether CagA is expressed in exosomes released by 
CagA + H. pylori-infected individuals. They discovered 
that exosomes originating from CagA-expressing gas-
tric epithelial cells travel through the bloodstream to 
distant organs and tissues. In a study conducted by Xia 
X et al. [69], exosomes obtained from CagA + H. pylori-
infected human gastric epithelial cells, as well as serum 
exosomes from H. pylori-infected individuals and mice, 
markedly hindered endothelial functions in  vitro. This 
impairment was manifested through reduced migra-
tion, tube formation, and proliferation. In H. pylori-
infected mice, inhibition of exosome release via 
GW4869 effectively preserved endothelial function. 
The authors of this study [70] further suggested that 
CagA + H. pylori, as opposed to CagA- H. pylori, pro-
tects against infection-induced endothelial dysfunction 
and contributes to the development of atherosclerosis 
through the generation of ROS via CagA-containing 
exosomes. Additionally, a recent investigation revealed 
that CagA delivered by exosomes can deactivate the 
JAK-STAT3 signaling pathway in endothelial cells, 
thereby accelerating the inflammatory response or 
facilitating the production of reactive oxygen species, 
promoting atherogenesis [71] (Fig. 2). More specifically, 
Yang S et al. [72] proposed that CagA-positive H. pylori 
infection did not cause atherosclerosis, but it acceler-
ated its progression via exosomes. CagA in H. pylori-
infected gastric epithelium-derived exosomes inhibits 
cholesterol transporter protein transcription by down-
regulating the expression of transcription factors 
PPARγ and LXRα. This consequently leads to the devel-
opment of foam cells derived from macrophages and 
promotes the progression of atherosclerosis (Fig.  2). 
The findings of this study provide evidence that the pri-
mary virulence factor of H. pylori, known as CagA, may 
play a role in the formation of vascular lesions by facili-
tating the transmission of exosomes. This discovery 
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presents a novel mechanism for elucidating the extra-
gastric manifestations of H. pylori disease.

Additionally, Guo et al. [67] discovered that CagA-posi-
tive H. pylori strains disrupted the integrity of the intesti-
nal mucosal barrier and heightened the damage inflicted 
on the intestinal epithelium by IFN-gamma. These effects 
were facilitated by exosomes that functioned as media-
tors and involved CagA. Specifically, CagA upregulated 
the transcriptional expression of claudin-2 through a 
CDX2-dependent mechanism, thus delaying the recovery 
of colitis-damaged mucosa in vitro (Fig. 2).

Proteins in the H. pylori‑derived OMVs
Several studies have demonstrated that OMVs derived 
from H. pylori, once internalized, can induce the secre-
tion and release of pro-inflammatory cytokines and 
chemokines. This triggers an inflammatory response 
and recruits immune cells to the site of infection. Choi 
HI and coworkers [73] initially found that gastric fluids 
of patients with gastric cancer contained a considerably 
higher presence of H. pylori cells and H. pylori-derived 
OMVs compared to healthy individuals serving as con-
trols. These OMVs from H. pylori contribute to a chronic 
inflammatory state in the gastrointestinal tract and pro-
mote persistent H. pylori infection. Gastrointestinal 
OMVs protect pathogens, facilitate infection, impair cell 
function, and regulate host immune defense by induc-
ing apoptosis in immunosuppressive cytokines interleu-
kin-10 and Jurkat T cells. These cytokines are generated 
by human peripheral blood mononuclear cells (PBMCs) 
[74]. GGT acts as a virulence factor, resulting in cell 
cycle arrest, apoptosis, and necrosis in stomach epithe-
lial cells. It depletes glutathione (GSH), generates reactive 
oxygen species, and induces apoptosis in oral cavity epi-
thelial cells [75, 76]. Furthermore, GGT fosters immune 
tolerance by inhibiting T cell-mediated immunity and 
dendritic cell differentiation, thereby facilitating the per-
sistence and colonization of H. pylori [77, 78] (Fig.  3). 
Later, Choi MS et al. [79] found that OMVs derived from 
H. pylori potentially contribute to the pathogenesis of 
diverse gastric diseases by inducing IL-8 expression via 
NF-kappaB activation. Through the isolation of OMVs 
derived from H. pylori using endoscopic biopsy sam-
ples obtained from patients with gastric ulcer, gastritis, 
or gastric cancer, the researchers observed variations in 
the size and morphology of the vesicles across different 
disease groups. In comparison to healthy controls and 
patients with gastric ulcers, individuals with gastric can-
cer displayed significantly elevated IL-8 production and 
NF-kappaB activation (Fig. 3).

It is important to highlight that H. pylori-OMVs can 
induce inflammation in sites beyond the stomach. Their 
potential to regulate neutrophil migration indicates an 

additional mechanism that could contribute to a pro-
inflammatory milieu. Nonetheless, additional research is 
required to fully understand the implications of this find-
ing [80]. Recently, Zahmatkesh ME et al. [81] highlighted 
the relevance of newly discovered virulence factors, 
including OMVs. They observed that exosomes derived 
from OMV-contaminated hepatocytes showed increased 
expression of markers that activate hepatic stellate cells 
(TIPM1 and a-SMA) and markers associated with fibro-
sis (e-cadherin, vimentin, and b-catenin) compared to 
untreated hepatic stellate cells (Fig.  3). These findings 
propose a potential contribution of H. pylori OMVs in 
modifying hepatocellular exosomes, with potential impli-
cations for stellate cell activation and liver fibrosis pro-
gression. Additionally, Xie J et al. [82] demonstrated that 
OMVs appear to communicate with the communication 
pathway between the brain and gut in H. pylori infec-
tion by modulating the physiological functions of glial 
cells and neurons, and may worsen Alzheimer’s disease 
pathology. This study further supports the concept that 
OMVs derived from H. pylori are associated with the 
pathogenesis of diseases outside the gastrointestinal tract 
and suggests that further research is warranted to deter-
mine the exact mechanism of H. pylori’s extra-gastroin-
testinal manifestations and pathogenesis.

Application of extracellular vesicles
EVs have emerged as promising candidates for liquid 
biopsy of tumors due to their unique expression patterns 
and the consistent composition they exhibit. To detect 
methylation, Yamamoto et al. [83] employed EVs derived 
from gastric cancer cell strains, normal gastric cells, and 
gastric juice. They identified elevated levels of methyla-
tion in the BARHL2 gene in gastric juice from early gas-
tric cancer patients and gastric cancer cell strains, with 
a decrease observed in patients diagnosed with regular 
gastritis or atrophic gastritis. Assessing the methyla-
tion of BARHL2 in EV DNA derived from gastric fluid 
could serve as a potential biomarker for monitoring the 
early stages and progression of gastric cancer. Fu and 
colleagues [84] found that the level of TRIM3 protein in 
exosomes isolated from the serum of gastric cancer sub-
jects was significantly lower compared to healthy vol-
unteers, suggesting that TRIM3 expression in exosomes 
isolated from the serum could serve as a potential pre-
dictive biomarker for gastric cancer. In another study, 
Shi et  al. [85] utilized exosomal RNA in their pulldown 
analysis, revealing that miR-1246, previously identi-
fied as significantly upregulated in the plasma of gastric 
cancer patients, is encapsulated in exosomes with the 
involvement of HuR. This finding offers a justification for 
considering miR-1246 as a potential biomarker for the 
specific condition.
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Characterizing the role of EVs in the autoimmune 
microenvironment may aid in identifying new therapeu-
tic targets. First, considering their ability to activate host 
immune responses such as T-cell responses, B-cell anti-
body secretion, and inflammatory responses, EVs have 
been proposed as a potential vaccine. Meanwhile, under 
the premise of effectively inducing protective immunity, 
EVs can reduce bacterial load and improve functional 
immune efficiency [86]. Song Z et al. [87] examined the 
viability of naturally secreted OMVs in gram-negative 
bacteria as immunogens with clinical effectiveness. Their 
findings revealed that OMVs not only boosted humoral 
and mucosal immunity but also had significant inhibi-
tory effects on H. pylori colonization, ultimately leading 
to the crucial outcome of promoting H. pylori eradica-
tion. As a result, OMVs could be used as an adjuvant in 
developing a new generation of vaccines against H. pylori 
infection. Li Y et al. [88] created a powerful biomimetic 

nanomedicine by coating drug-loaded polymer micelles 
with bacterial OMVs to achieve effective cancer immu-
notherapy and inhibit metastatic spread. In  vivo, OMV 
anti–programmed cell death protein 1 (PD-1) pro-
motes tumor immune cell infiltration and the antitumor 
immune response. Its high accumulation at tumor sites 
and effective binding with PD-L1 on tumor cells even-
tually block the PD1/PD-L1 inhibitory axis by exhaust-
ing PD-L1 on tumor cells, leading to a higher antitumor 
response. This study demonstrates the potential of OMVs 
as immunotherapy drugs that can comprehensively regu-
late the tumor immune microenvironment and signifi-
cantly improve therapeutic antitumor efficacy.

Conclusions and future research
Host cells infected with H. pylori release EVs and 
OMVs, which play a crucial role in facilitating inter-
cellular communication, tumor progression, vascular 

Fig. 3 Role of H. pylori-OMVs in gastric and extragastric diseases. A H.pylori-derived OMVs may contribute to the inflammation of gastric epithelial 
cells through the induction of IL-8 production by NF-kappaB activation. B H. pylori derived gamma-glutamyl transpeptidase(GGT) induces 
the production of ROS and then promotes cell apoptosis; In addition, by inhibiting T-cell mediated immunity and dendritic cell differentiation, 
GGT could induce cell cycle arrest via the nuclear response and immune tolerance. C In addition, H.pylori-derived OMV upregulates the expression 
of hematopoietic stem cell activators and fibrosis markers in exosomes secreted by hepatocytes. Further activation of hepatic stellate cells (ahsc) 
promotes the progression of liver fibrosis
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function, and immunity in the development of H. 
pylori-related diseases. The characteristics of H. pylori 
EVs enable them to breach the stomach wall and access 
the bowel and bloodstream, making them potential 
key players in H. pylori pathobiology and the develop-
ment of extra-gastric manifestations as vectors of viru-
lence factors. Although some progress has been made 
in studying EVs in H. pylori infection, several issues 
remain unresolved. Given that a majority of EVs studies 
have employed cell culture models, it is crucial to ascer-
tain the applicability of in vitro observations to animal 
models that mimic cell-specific knockdown of exosome 
release. Further investigation is needed to understand 
the dual role of EVs in H. pylori infection and the inter-
action between OMVs secreted by H. pylori and host 
cell exosomes. Additionally, more research is needed 
to explore the time-dependent variability of EV charge 
during disease progression and its impact on cell inter-
face markers. The emergence of multidrug-resistant 
microorganisms and the post-antibiotic era have 
underscored the need for new strategies in controlling 
infectious and contagious diseases. Advancements in 
scientific and engineering technologies related to intra-
cellular vesicles could serve as an invaluable tool in 
combating contagious pathogens.
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