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Abstract 

Endometrial receptivity has been widely understood as the capacity of the endometrium to receive implantable 
embryos. The establishment of endometrial receptivity involves multiple biological processes including decidualiza-
tion, tissue remodeling, angiogenesis, immune regulation, and oxidative metabolism. Extracellular vesicles (EVs) are 
lipid-bilayer-membrane nanosized vesicles mediating cell-to-cell communication. Recently, EVs and their cargo have 
been proven as functional factors in the establishment of endometrial receptivity. In this review, we comprehen-
sively summarized the alteration of endometrium/embryo-derived EVs during the receptive phase and retrospected 
the current findings which revealed the pivotal role and potential mechanism of EVs to promote successful implanta-
tion. Furthermore, we highlight the potentiality and limitations of EVs being translated into clinical applications such 
as biomarkers of endometrial receptivity or reproductive therapeutic mediators, and point out the direction for fur-
ther research.
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Background
The success of human embryo implantation relies on the 
synchronized dialogue between a receptive endometrium 
and a functional blastocyst [1]. This process, depend-
ent on ovarian steroids, can only occur during a limited 
period from days 20 to 24 of the menstrual cycle named 
the ‘window of implantation’ (WOI) [1]. Perturbation 
of this process leads to implantation failure, accounting 
for approximately 75% of human pregnancy losses [2–7]. 
The endometrium plays a critical role in this process, as 

compromised factors within the endometrium account 
for two-thirds of implantation failures [1, 6, 8–10]. The 
endometrium not only provides a suitable microenviron-
ment for early embryo development, but also actively 
modulates the process of implantation via intricate sign-
aling networks [11–13].

Extracellular vesicles (EVs) have emerged as a potent 
mediator of signaling between the endometrium and 
embryo [11, 14–17]. They encapsulate diverse molecules 
for intercellular communication, including proteins, 
lipids, and RNAs [11, 18–22]. In the past decade, EVs 
have gained significant attention in the field of reproduc-
tive pathophysiology due to their diverse roles in game-
togenesis and dynamic embryo–endometrial cross-talk 
[23, 24].

In this review, we retrospected the novel findings 
revealing the vital role and potential mechanism of EVs 
in the establishment of endometrial receptivity during 
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embryo implantation. In addition, the utility and poten-
tial of EVs as clinical and therapeutic mediators, along 
with their limitations, were emphasized. This paper will 
contribute to a novel perspective on understanding the 
establishment of endometrial receptivity, thereby offer-
ing new insights for the treatment of reproductive system 
disorders.

Extracellular vesicles
Extracellular vesicles are bilayer-membrane nanosized 
vesicles (30–1000 nm) secreted by cells as a part of their 
normal physiological processes and also during patho-
logical conditions [25–27]. EVs are composed of three 
subtypes, including exosomes (50–150  nm), microvesi-
cles (MVs) (100–1000  nm), and apoptotic bodies (500–
5000  nm) [28–30]. They can be broadly classified into 
two categories: small EVs with a size range of approxi-
mately 30–150  nm and large EVs with a size range of 
approximately 150–500 nm [31–33]. The small EVs com-
prise exosomes of endocytic origin, which form via two 
times of membrane bubbling [28, 34–36]. And the large 
EVs include MVs that are produced by cell shedding 
directly [28, 34, 35, 37]. However, due to the challenge of 
complete separation between MVs and exosomes, it was 
thought difficult to discern the distinct functions of vari-
ous types of EVs [28].

Exosomes have been investigated in 1908s [38]. How-
ever, it was after the discovery of their capability to facili-
tate intercellular transportation of functional mRNAs 
and microRNAs (miRNAs) that EVs started garnering 
increased attention from researchers [39, 40]. To date, 
EVs are known transporters of a variety of molecules, 
such as nucleic acids, proteins, and lipids to conduct 
intercellular communication [39–41]. The molecules 
in the EVs remain stable due to being protected from 
enzyme degradation [28]. EVs can interact with certain 
target cells specifically due to carrying the surface recep-
tors or ligands of original cells [35]. The way EVs trans-
mit signals between cells provides a new mechanism 
for intercellular communication in addition to contact-
dependent and autocrine, paracrine, or endocrine signals 
[28]. EVs have been demonstrated to be secreted by the 
uterus and embryo, playing a crucial functional role in 
embryo–endometrial dynamic communication [14, 15, 
27, 42–49]. Therefore, it is important to explore the role 
and mechanism of EVs in endometrial receptivity during 
embryo implantation.

Changes in endometrium‑derived EVs 
during the endometrial receptivity phase
Cyclic changes in the endometrium are regulated by 
estrogen and progesterone [12, 50]. During the secre-
tory phase of the human menstrual cycle, estrogen and 

progesterone induce decidualization of human endome-
trial stroma, resulting in a receptive decidua that is not 
dependent on implantation [51, 52]. Decidualization 
refers to the process of endometrial stromal cells (ESCs) 
undergoing epithelioid transformation during embryo 
implantation [53, 54]. Adequate decidualization plays a 
crucial role in ensuring successful pregnancy establish-
ment, regulating trophoblast invasion, and optimizing 
placental perfusion [52]. EVs have been isolated from 
cultured ESCs, as well as decidualized stromal cells [15, 
55–57]. Ma, Q. et al. discovered that during decidualiza-
tion, primary human endometrial stromal cells (hESCs) 
were found to secrete EVs, which is controlled by a con-
served HIF2α-RAB27B pathway [58]. Their study also 
demonstrated that the internalization of EVs carrying 
the glucose transporter 1 (GLUT1) by hESCs, promotes 
glucose absorption, thereby supporting and advancing 
the decidualization process [58]. Gurung et al. indicated 
hESCs response even before decidualization, and EVs of 
poor decidualized stromal cells are significantly differ-
ent from those that readily decidualize [59]. EV-proteins 
from poorly decidualized ESCs may be detrimental to the 
core functions of endometrial receptivity, placentation, 
menstrual health, and endometrial regeneration via dys-
regulated pathways including complement and coagula-
tion cascades, innate immune response, B cell receptor 
signaling and platelet degranulation [59].

By utilizing estrogen and progesterone to mimic the 
menstrual cycle phases in  vitro cultured RL95-2 cells, 
Hart, et al. demonstrated that while endometrial-derived 
EVs were secreted independently of hormonal stimula-
tion, their sizes were significantly altered by it [60]. Pro-
teomics analysis revealed that EVs in the receptive phase 
group induced by estrogen and progesterone are impli-
cated in various processes, including endometrial recep-
tivity (ACE2, PDIA3, PLAT, SLC6A6, TSPAN6, DNAJB1, 
LUC7L3, and INHBB), embryo development (FUCA1 
and LDHA), and embryo implantation (CDH5, HSPG2, 
KIF5C, EIF4E, FSTL1, ITGA2B, and AASDHPPT) [46, 
49, 60–63]. In the secretory (estrogen plus progesterone-
driven) versus proliferative (estrogen-driven) phases of 
fertile women, Rai et al. found an enrichment of invasion-
related proteins (LGALS1/3, S100A4/11), proving that 
EVs from estrogen plus progesterone-driven versus estro-
gen-driven human endometrial epithelial cells (EECs) 
promote trophectoderm cell invasion [64]. EVs derived 
from an original endometrial epithelial cell line treated 
with estrogen and progesterone exhibited a rapid and 
significant increase in the adhesive and invasion capac-
ity of HTR8 cells by promoting outgrowth on fibronectin 
[46]. This finding is consistent with the results obtained 
from their proteomic analysis, which has shown selective 
enrichment in secretory EVs of the cell surface (HSPG2, 
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CD55, CD47, EGFR), and secreted (CYR61) molecules, 
cytoskeletal regulators (CLDN3, CELSR2, PARVA), 
enzymes (ADAMTS15, DPP3, ANPEP, ADAM10) [46]. 
Fatmous et al. detailed that estrogen/progesterone-regu-
lated endometrial EVs (but not estrogen alone-regulated 
EVs) promote human trophectodermal cell invasion via 
MAPK activation and that pharmacological inhibition of 
MAPK activation abrogates this process [65]. Therefore, 
it is crucial to understand the role of EVs from the endo-
metrium in regulating endometrial receptivity.

The role of endometrium‑derived EVs 
in endometrial receptivity
Endometrial receptivity refers to the ability of the endo-
metrium to facilitate normal implantation, and opti-
mal receptivity is crucial for successful implantation 

processes that establish a healthy pregnancy [66–68]. 
During the mid-secretory phase of the menstrual cycle, 
the human endometrium undergoes a brief period of 
receptivity characterized by its ability to provide an 
immune-privileged and nutritive environment for the 
embryo, which is called WOI [69, 70]. EVs can be iso-
lated from endometrial cells and have been shown to 
exist in uterine fluid [20, 46, 64, 71, 72]. EVs from the 
uterine fluid recapitulate the dynamic physiological 
state depending on the different phases of the men-
strual cycle [20, 46, 64, 71–74]. Here, our focus lies in 
exploring the functional role of endometrium-derived 
EVs in various aspects of endometrial receptivity, which 
is presented in Fig. 1.

Fig. 1 The role of endometrial cell-derived EVs in regulating the endometrial receptivity and the trophoblast function. The EVs can regulate tissue 
remodeling, promote angiogenesis, exert antioxidant activity, and exert immunosuppressive function. Moreover, the EVs promote the migration 
and invasion of the trophoblast cells
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The role of endometrium‑derived EVs in tissue remodeling
The uterus is a unique organ that experiences signifi-
cant tissue remodeling throughout each menstrual cycle, 
pregnancy, and postpartum period [75]. The metzincin 
gene superfamily can be found in membrane-anchored 
or soluble forms and plays pivotal roles in inflamma-
tion, tissue, and extracellular matrix remodeling, as 
well as organogenesis [76, 77]. During the endometrial 
remodeling in the menstrual cycle, several matrix metal-
loproteinases (MMPs) are highly expressed in the endo-
metrium at the initiation of menstruation, then positively 
regulated by estrogen and suppressed by progesterone 
[46, 55, 78–81]. At the time of embryonic implantation 
and endometrial decidualization, the process of endo-
metrial remodeling is also precisely regulated by the 
expression of MMPs and their inhibitors (Tissue Inhibi-
tors of Metalloproteinase Inhibitors, TIMPs) [82, 83]. 
To date, the proteins MMP-1, -3, and -10, A disintegrin 
and metalloproteinase (ADAM) -9, -10, -15, and -34, as 
well as A disintegrin and metalloproteinase with throm-
bospondin motifs (ADAMTS) -5, -8, -9, and -12 have 
been observed in stromal cell-derived EVs [39, 84, 85]. A 
potential mechanism of action for endometrium-derived 
exosomal MMPs involves the activation and degradation 
of other proteins [86]. For instance, human endometrial-
derived EVs have been demonstrated to contain MMPs 
that are internalized by human uterine fibroblasts and 
promote the production of MMP-1/-2/-3, which are 
critical factors for tissue remodeling [75]. Moreover, the 
extracellular matrix metalloproteinase inducer (EMM-
PRIN), a transmembrane glycoprotein belonging to the 
MMP family, plays a pivotal role in embryo implanta-
tion and placentation by stimulating the expression of 
MMPs in uterine stromal cells through microvesicle 
shedding, particularly MMP-2 and -14 [81, 87, 88]. The 
MMP-2 is a prominent EV cargo protein of decidualized 
mouse endometrial stromal cells (mESCs), which modu-
lates uterine remodeling during decidualization [89]. The 
MMP-14 is expressed at the fetal–maternal interface in 
both human and mouse models, with pronounced upreg-
ulation observed in extravillous trophoblast cells, which 
plays a pivotal role in trophoblast invasion and influ-
ences the outcome of pregnancy [90–94]. Consequently, 
exosomal active MMPs can modulate the activity and 
bioavailability of various factors, thereby influencing the 
exosome-mediated communication between the embryo 
and endometrium.

The role of endometrium‑derived EVs in angiogenesis
The endometrium is a cyclic dynamic tissue with 
significant physiological angiogenesis occurs. In a 
menstrual cycle, the arterioles are straight in the prolif-
erative phase and become spiraled and transformed into 

a low-resistance vascular network by dilation, and dis-
organization of the vascular smooth muscle cells in the 
secretory phase [95–97]. Endometrial receptivity and 
successful embryo implantation require coordinated 
development and maintenance of blood vessels at the 
maternal–embryonic interface to provide a nutritional 
environment [98–100]. A significant angiogenic prolif-
eration occurs concomitantly with the process of uterine 
decidualization. EVs serve as a mechanism of intercel-
lular communication that exerts significant influence 
on various endothelial functions, such as vascular tone 
regulation, the interaction between endothelial cells and 
smooth muscle cells or pericytes, and angiogenesis [101]. 
Ma, Q. et al. reported that EVs secreted by decidualized 
mESCs augmented the differentiation potential of mESCs 
and stimulated their production of angiopoietin 2 [89]. 
Additionally, EVs derived from ESCs can stimulate the 
proliferation of human endothelial cells and enhance vas-
cular network formation [58]. Stromal cell-derived EVs 
also can induce tubercle vein endothelial cells in  vitro, 
indicating their potential role in regulating angiogenesis 
during implantation [58]. Endometrial cell-derived EVs-
associated microRNA-138-5p (by adjusting angiogenic 
player GPR124) and miR-100-5p enhance angiogenesis 
during the implantation process [102, 103]. There is evi-
dence suggesting that endometrial mesenchymal stromal 
cells (endMSCs) exert a paracrine influence on embry-
onic activities, thereby facilitating endometrial angiogen-
esis and vascularization through the release of EVs [104]. 
When co-cultured with murine embryos, EVs derived 
from endMSCs enhance blastocyst cell proliferation and 
expansion rate, while also inducing the release of pro-
angiogenic factors such as vascular endothelial growth 
factor (VEGF) and platelet-derived growth factor-AA 
(PDGF-AA) from the embryos [105].

The role of endometrium‑derived EVs in immune 
regulation
The homeostasis between active immunity and toler-
ance at the maternal–fetal surface between the uterus 
and embryo is crucial for a successful pregnancy [106, 
107]. The embryos can secrete immunosuppressive 
IL-10, hCG, and HLA-G, protecting themselves from 
maternal immune attacks [15, 107, 108]. Decidual stro-
mal cells may play an essential role during the pregnancy 
by inhibiting T cell function and promoting regulatory 
T cells (Tregs) through the activation of indoleamine-
2,3-dioxygenase (IDO), prostaglandin E2, programmed 
death ligand (PD-L)1, and interferon-gamma (IFN-γ) 
[109–111]. Recently, uterine fluid EVs were proven to 
possess potent immunomodulatory effects on the mater-
nal immune system during implantation. Nakamura 
et  al., reported that uterine fluid-EVs via bta-miR-98 
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collaborate with bta-miR-26b negatively regulated sev-
eral immune system-related genes (CTSC, IL6, CASP4, 
IKBKE, and PSMC6, CD40, and IER3, respectively) in 
bovine EECs during receptivity phase [44, 112]. By global 
analysis of differentially expressed proteins between EVs, 
revealed EVs affected the down-regulation of “neutrophil 
activation involved in immune response” and “neutro-
phil-mediated immunity” [112].

The role of endometrium‑derived EVs in antioxidant 
activity
Oxidative metabolism is the main source of energy in 
humans. There is a defense system against reactive oxy-
gen species (ROS) to maintain a balance between pro-
oxidants and antioxidants [113]. Physiological levels of 
ROS play a crucial regulatory role through diverse sign-
aling pathways in folliculogenesis, oocyte maturation, 
endometrial cycle, luteolysis, implantation, embryogen-
esis, and pregnancy [114]. Mammalian blastocysts are 
hatched from their zona pellucida before implantation. 
Thomas, M. et al. have demonstrated that peri-hatching 
blastocysts generate a significantly high level of ROS for 
an extremely brief period in comparison to pre-hatching 
(unhatched) and post-hatching (hatched) blastocysts, due 
to a decline in the antioxidative superoxide dismutase 
(SOD) activity and an outburst of superoxide anion radi-
cal generation in the peri-hatching (peri-implantation) 
blastocysts of mice [115]. However, embryos at this stage 
are particularly susceptible to oxidative stress and dam-
age. The antioxidants protect embryos from ROS-medi-
ated damage, implantation failure, and pregnancy loss 
[116, 117]. There are already several studies indicating 
that uterine lavage contains a variety of antioxidants that 
protect pre-implantation embryos by reducing oxidative 
damage [118–122]. Rai et  al. used mass spectrometry-
based quantitative proteomics to show that compared 
to infertile women, EVs isolated from uterine lavage of 
fertile women in the secretory phase are enriched with 
proteins that have been implicated in antioxidant activity, 
including SOD1, GSTO1, MPO, and CAT [64].

The role of endometrium‑derived EVs in trophoblast 
adhesion and invasion
The blastocyst attaches to the receptive endometrium 
through the processes of adhesion and invasion [28]. It 
has been proved that EVs secreted by endometrial cells 
promote these processes [46, 73–75]. When compared 
to the proliferative phase, proteomic studies of EVs from 
the uterine fluid of fertile and infertile women revealed 
an enrichment of proteins linked to invasion (LGALS1/3, 
S100A4/11) and implantation (PRDX2, IDHC, CAT, 
ANXA2) in secretory phase [64]. Decidual stromal cell-
derived EVs can also be internalized by trophoblast cells, 

thereby inducing invasion through the SMAD2/3-N-cad-
herin signaling pathway [57]. EVs derived from human 
endMSCs have been observed to significantly promote 
blastomere division, augment the total cell number of 
mice embryos, and embryo hatching of pre-implan-
tation mice embryos [105]. The proteomic analyses of 
the EVs derived from human endMSCs found proteins 
related to embryo development (transferrin, vinculin, 
and fibronectin) and implantation (MMP-2, -3, and -9, 
and E-cadherin) [105]. Gurung et al. used EECs-derived 
EVs to intervene in human trophectodermal spheroids 
and came to a similar result [74]. Transcriptomic sug-
gests miRNAs of endometrial EVs (e.g., hsa-miR-30d, 
miR-100-5p, hsa-miR-362-3p) and mRNAs (PAEP, ESR1, 
PGR) can reprogram gene expression of trophoblast cells 
[21, 49, 71, 103]. It is worth noting that the enhanced 
adhesion can be partially reduced by EV uptake inhibi-
tors, providing evidence for the impact of endometrium-
derived EVs [73]. The findings of our research team 
reveal an intriguing observation that EVs derived from 
women experiencing recurrent implantation failure (RIF) 
exhibit a suppressive effect on the growth and invasion of 
embryos [11]. The subsequent experiment demonstrated 
that EVs of RIF patients inhibit the proliferation, migra-
tion, and invasion of HTR8/SVneo cells [17].

Taken together, endometrium-derived EVs play crucial 
roles in decidualization, tissue remodeling, angiogenesis, 
immune regulation, and oxidative metabolism during 
the establishment of endometrial receptivity. The sig-
nificance of the EVs secreted by the embryo in mediating 
endometrial receptivity should also be emphasized.

The embryo‑derived EVs modulate endometrial 
receptivity
Studies have demonstrated that the endometrial recep-
tive stage undergoes significant changes during the pre-
implantation phase [123–129]. Embryo-derived factors 
like human chorionic gonadotropin (hCG) and interleu-
kin-1beta (IL-1β) are thought to mediate the modula-
tion of the receptive endometrium [128, 130]. Indeed, 
embryos can also produce EVs, and the production 
rate and type of EVs are subject to change during their 
development process [14, 15, 24, 131–135]. The cul-
ture medium for both day 3 (D3) and day 5 (D5) in vitro 
embryos contains EVs ranging from 50 to 200 nm, with 
an average size of 100 nm [53]. Both D3 and D5 culture 
media of human embryonic EVs are positive for CD9, 
CD63, ALIX, and HLA-G, which are enriched with 
mRNAs encoding pluripotency genes including Oct4, 
Sox2, Klf4, c-Myc, and Nanog [136–140]. The embryo-
derived EVs can traverse the zona pellucida, and exert 
both autocrine effects on trophoblast cells and paracrine 
effects on the endometrium [15, 135, 141]. The evidence 
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has demonstrated that embryos release a diverse popu-
lation of EVs containing embryonic-specific molecules, 
which are selectively targeted to both epithelial and stro-
mal cells. This novel mechanism of intercellular com-
munication facilitates cellular activities such as adhesion 
and migration, implying the potential for modifying the 
endometrial genome during embryonic development. 
[15, 53, 135, 138, 142, 143]. Interestingly, Es-Haghi et al. 
discovered that only embryos with a favorable progno-
sis exhibited the observed effects, while degenerated 
embryos failed to elicit any alterations [42]. The proposed 
hypothesis suggests that the signaling from the embryo 
to the endometrium serves as a component of a quality 
control mechanism employed for evaluating the develop-
mental competence or incompetence of the embryo [52, 
144]. Furthermore, Nakamura et  al. assessed the poten-
tial role of EVs containing interferon tau (IFNT) on pri-
mary uterine EECs. The EVs secreted by the blastocyst 
after hatching from the zona pellucida regulate genes 
and maintain progesterone production for the successful 
establishment of pregnancy [47].

Owing to the coordinated efforts of monocytes, Tregs, 
natural killer (NK) cells, and a balanced cytokine pro-
file, the developing embryo can thrive in an immuno-
logically favorable environment [145]. Embryos also 
secrete immunosuppressive molecules in EVs and stim-
ulate the production of immunosuppressive factors to 
evade maternal immune responses. Trophoblast-derived 
EVs dose-dependently enhanced monocyte migration 
and significantly upregulated the production of IL-1β, 
IL-6, Serpin-E1, granulocyte colony-stimulating factor, 
granulocyte/monocyte colony-stimulating factor, and 
tumor necrosis factor-alpha [146]. Likewise, the troph-
oblast-derived EV-associated HSPE1 and miRNA cargo, 
including hsa-miR-23b, hsa-miR-146a, hsa-miR-155, 
hsa-miR-22, and hsa-miR-221, play a crucial role in the 
differentiation of Tregs at the feto-maternal interface 
[147]. The mouse embryonic EVs containing progester-
one-induced-blocking factor 1 (PIBF), which interact 
with CD4+ and CD8+ peripheral T cells and stimulate 
IL-10 production, have been suggested to regulate NK 
cell activity [145]. Moreover, the trophoblast can express 
histocompatibility antigen, class I, G (HLA-G), which 
necessitates intercellular transport via EVs and serves 
as a defense mechanism against NK cell-mediated death 
[15, 148]. The mechanism by which embryo-derived EVs 
regulate endometrial receptivity is shown in Fig. 2.

In summary, embryonic-derived EVs possess the 
potential to modulate endometrial responses, includ-
ing enhancing progesterone production and stimulating 
immunosuppressive factors. This contributes to estab-
lishing endometrial receptivity and facilitating successful 
implantation.

The possible clinical utility of EVs in embryo 
implantation
EVs as biomarkers of endometrial receptivity
The ability to accurately detect endometrial WOI would 
significantly enhance the success rates of fertility treat-
ments [149, 150]. Though limited in value, we used ultra-
sound (endometrial thickness, character, volume, and 
blood flow patterns), histological (pinopods), biochemi-
cal (integrins, leukemia inhibitory factor, homeobox A10, 
mucin 1, calcitonin, cadherin 6, and cyclo-oxygenase 2) 
markers to assess endometrial receptivity for a long time 
[1, 13, 61, 151–158]. Transcriptomics (i.e., endometrial 
receptivity array, ERA) is currently regarded as the most 
established technology available for assessing the endo-
metrial factor [152, 156, 159–162]. However, the use of 
transcriptomics has not demonstrated improved preg-
nancy outcomes in patients with RIF [12, 163–168]. 
There is still a challenge in diagnosing endometrial recep-
tivity due to the absence of an accurate, noninvasive, and 
clinically applicable test.

The ERA of endometrial tissue revealed WOI displace-
ment in 25.9% of patients with RIF and 12% of the con-
trol population [169]. Referencing the ERA gene list, 
the transcriptome of EVs from uterine fluid correlates 
with the endometrial tissue transcriptome [20]. Moreo-
ver, the proteome of uterine fluid-derived EVs highlights 
a distinct protein landscape in EVs between fertile and 
infertile women to predict WOI [64]. Furthermore, other 
investigations have explored the potential of EVs from 
the uterine fluid as predictors of receptivity. Li et al., have 
identified EVs from uterine fluid containing small non-
coding RNA biomarkers (11 miRNAs and 1 piwi-inter-
acting RNA) of endometrial receptivity and implantation 
success [21]. Ibañez-Perez, J. et al., introduced protocols 
to analyze the miRNAs in EVs from uterine fluid and 
used hsa-miR-99b-5p (employing the PBP-N detection 
method) to predict the endometrial receptivity [170]. The 
proteome also highlights the EVs from the uterine fluid 
as potential applicability for biomarkers in endometrial 
receptivity. Rai et  al. showed that EVs from the uterine 
fluid of fertile women carry known receptivity protein 
markers (S100A4, FGB, SERPING1, CLU, ANXA2) [64]. 
Marina Segura-Benítez et  al. investigated and identified 
82 proteins in EVs secreted by primary human EECs col-
lected from fertile women and cultured in  vitro could 
define them as novel biomarkers of endometrial recep-
tivity and implantation success [171]. Gurung et al. pro-
vides insight into EVs-proteomes as a benchmark of 
well-decidualized endometrial stromal cell, which may 
be beneficial to the functions of endometrial receptiv-
ity [59]. In the field of assisted reproduction, uterine 
fluid-derived EVs may serve as a less-invasive molecu-
lar marker to accurately determine the optimal timing 
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for embryo transfer [71]. Therefore, transcriptomic and 
proteomic analysis of human endometrium-derived EVs 
could make it possible to use it as a less invasive way to 
detect endometrial receptivity. However, it is important 
to acknowledge that inadequate isolation and purification 
of EVs may compromise the validity of results, thereby 
confounding data interpretation [24].

EVs as reproductive therapeutic mediators
EVs are enriched in RNA transcripts and protein mol-
ecules, which are crucial for implantation [46, 64, 73, 
170]. The study of endometrial EVs in patients with 
RIF confirmed the negative effect of EVs on endome-
trial receptivity and embryo implantation [11, 17]. This 
has led to the interest in harnessing EVs for therapeutic 
development. Marinaro et  al. indicated that human EVs 

of endometrial stem cell origin could improve the devel-
opmental competence of aged oocytes and increase the 
odds of implantation and subsequent delivery [172]. 
Hamed Hajipour et al. used uterine fluid-derived EVs as 
a drug carrier system to deliver the hCG to the endome-
trial cells. The EV-encapsulation enabled a steady release 
of hCG over a period of 72  h, resulting in a significant 
increase in the effect of hCG on the expression of LIF and 
Muc-16 [173]. Morteza Taravat et  al. loaded rosmarinic 
acid into serum-derived exosomes. The EV-encapsulated 
rosmarinic acid exerts an anti-inflammatory effect by 
inhibiting the TLR4–NLRP3 signaling pathway, thereby 
ameliorating pathological changes, and reducing mye-
loperoxidase production in a murine model of endome-
tritis [174]. Therefore, natural, or engineered EVs hold 

Fig. 2 The embryo-derived EVs regulate the endometrial receptivity via regulating progesterone production and immunosuppression
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potential as therapeutic agents for reproductive disorders 
in the future. Compared to conventional drugs, therapeu-
tic EVs offer numerous advantages. Owing to the lipid 
membrane, EVs are more easily taken up by cells to exert 
a therapeutic function. Moreover, EVs can also be engi-
neered to express surface ligands to target specific recipi-
ent cell types, which promotes the efficiency of the use of 
EVs [175].

The considerable attention garnered by applications of 
natural, or engineered EVs with predetermined contents 
for therapeutic purposes. However, some challenges 

in the clinic’s use of EVs still need to be addressed: (1) 
there is a lack of universally recognized standards for 
the separation, concentration, as well as nomenclature 
for subclassifying EVs based on their diverse biophysi-
cal properties [29]. (2) Current technologies relying on 
ultracentrifugation, ultrafiltration, antibody-coupled 
magnetic beads, and cryoelectron microscopy encoun-
ter significant challenges in terms of exosome separation, 
purification, and quantification [176]. (3) The heteroge-
neity of EV preparations will lead to variations in yields 
and concentrations, posing challenges for their clinical 

Table 1 The characteristics of the endometrium- and embryo-derived EVs

Source Markers Contents Function References

Endometrial epithelial cells Alix, HSP70
TSG101, CD9, CD63

1: Proteins:
SOD1, PRDX6, PRDX1, TMP4, PARK7
2: Protein:
EMMPRIN
3: Proteins:
BMPR2, DDR1, IGSF8, MST1R4
4: Proteins:
COPS3, CUL3, NOTCH1, PLCG1, ADAM10
5: Proteins:
CSTB, DDR1, RAB25, ST14, TXN
6: sncRNAs:
miR-100-5p

1: Enhance trophectoderm invasion
2: Stimulates metalloproteinase pro-
duction
3: Epithelial cell migration
4: Embryo development
5: Cell invasion
6: Promote trophoblast migration 
and invasion and promote angiogen-
esis

[65]
[75]
[103]
[65] 

Endometrial stromal cells CD63
CD81

1: sncRNAs:
miR-138-5p, miR-100-5p
2: Proteins:
MMP-1/3/10, ADAM9/10/15/34, 
ADAMTS5/8/9/12

1: Induce tubercle vein endothelial cells 
and angiogenesis
2: Regulates embryo implantation 
and early pregnancy
3: Induce the release of VEGF 
and PDGF-AA of embryo

[102]
[58]
[104]

Uterine fluid ALIX, CD63, TSG101, CD9 1: RNAs:
AC114491.1, AC008608.2, PMS2P5, 
C10orf99, NPTN-IT1, AC012358.3, 
ANKRD18A, GLIS2-AS1, AC011447.7, 
AL009174.1, C1QTNF2, TMED6, 
AC016355.1, AL021392.1
2: RNAs:
CD200R1, FAM66B, AL391834.1, WNT9B, 
CECR7
3: Proteins:
MPO,PRDX1/2, TXN, PARK7
4: Proteins:
LGALS1, LGALS3, VIM
5: sncRNAs:
hsa-miR-501-5P, hsa-miR-411-3P,
hsa-miR-18a-5P,
hsa-miR-196a-5P,
hsa-miR-493-5P,
hsa-miR-497-5P

1: Selectively detected in women 
with successful implantation
2: Selectively detected in women 
with failed implantation
3: Regulate antioxidant activity
4: Invasion-related
proteins
5: TGF-β receptor signaling pathway, 
Hippo signaling pathway, and immune 
response

[20]
[65]
[21]

Trophoblast PD-L1, CD63
CD81
CD9
PLAP
MIC-A/B
ULBP1-5

1: RNAs:
HSPE1
2: sncRNAs:
has-miR-23b
3: sncRNAs:
hsa-miR-146a, hsa-miR-155

1: Regulate  Treg cells
2: Inhibit the Th17 signaling
3: Regulate  Treg cells

[147]
[148]

Embryo CD9
CD63
Alix
HLA-G

1: RNAs:
Oct4, Sox2, Klf4, c-myc, Nanog
2: Proteins:
IFNT, HLA-G, PIBF

1: Regulate the production of proges-
terone
2: Modulate the activity of decidual NK 
cells, macrophages, T cells, and B cells

[48]
[136–140]
[148]
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application [32]. Besides, the heterogeneity of EV con-
tents will introduce ambiguity to the underlying mecha-
nism of EV treatment. (4) The safety issues of EVs and 
engineered EVs should be considered and assessed by 
long-term monitoring [29].

Conclusions
EVs play a crucial role as bidirectional signaling regula-
tors in embryo implantation at the interface between 
the embryo and maternal tissues. Nevertheless, the 
exact mechanisms underlying the embryo–endometrial 
cross-talk mediated by EVs are not fully comprehended 
and additional research is necessary. In this paper, we 
present a comprehensive review of the studies that sup-
port the involvement of EVs in the intricate process of 
endometrial receptivity and their pivotal role in embryo-
mediated modulation of the receptive endometrium 
(Table 1). Although we acknowledge the heterogeneity of 
endometrial EVs in terms of size, current data only pro-
vide pooled estimates for this diverse population. Further 
research is necessary to comprehend the unique bio-
logical impacts of diverse cargos carried by EVs of vary-
ing sizes. In addition, our understanding of the roles of 
endometrial EVs is currently limited to their protein and 
RNA cargo. The development of omics technologies will 
undoubtedly enhance our comprehension of the pivotal 
role played by EVs in endometrial receptivity. Future 
research should prioritize the development of techniques 
for isolating and characterizing endometrial EVs. This 
will pave the way for the development of noninvasive 
biomarkers for endometrial receptivity and therapeutic 
mediators for pathophysiology.
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