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Abstract 

Background For decades, the basic treatment strategies of necrotizing soft tissue infections (NSTI) have remained 
unchanged, primarily relying on aggressive surgical removal of infected tissue, broad-spectrum antibiotics, and sup-
portive intensive care. One treatment strategy that has been proposed as an adjunctive measure to improve patient 
outcomes is hyperbaric oxygen  (HBO2) treatment.  HBO2 treatment has been linked to several immune modulatory 
effects; however, investigating these effects is complicated due to the disease’s acute life-threatening nature, meta-
bolic and cell homeostasis dependent variability in treatment effects, and heterogeneity with respect to both patient 
characteristics and involved pathogens. To embrace this complexity, we aimed to explore the underlying biological 
mechanisms of  HBO2 treatment in patients with NSTI on the gene expression level.

Methods We conducted an observational cohort study on prospective collected data, including 85 patients admit-
ted to the intensive care unit (ICU) for NSTI. All patients were treated with one or two  HBO2 treatments and had one 
blood sample taken before and after the intervention. Total RNAs from blood samples were extracted and mRNA puri-
fied with rRNA depletion, followed by whole-transcriptome RNA sequencing with a targeted sequencing depth of 20 
million reads. A model for differentially expressed genes (DEGs) was fitted, and the functional aspects of the obtained 
set of genes was predicted with GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of genes and Genomes) enrich-
ment analyses. All analyses were corrected for multiple testing with FDR.

Results After sequential steps of quality control, a final of 160 biological replicates were included in the present 
study. We found 394 protein coding genes that were significantly DEGs between the two conditions with FDR < 0.01, 
of which 205 were upregulated and 189 were downregulated. The enrichment analysis of these DEGs revealed 20 GO 
terms in biological processes and 12 KEGG pathways that were significantly overrepresented in the upregulated DEGs, 
of which the term; “adaptive immune response” (GO:0002250) (FDR = 9.88E-13) and “T cell receptor signaling pathway” 
(hsa04660) (FDR = 1.20E-07) were the most significant. Among the downregulated DEGs two biological processes 
were significantly enriched, of which the GO term “apoptotic process” (GO:0006915) was the most significant (FDR = 
0.001), followed by “Positive regulation of T helper 1 cell cytokine production” (GO:2000556), and “NF-kappa B signaling 
pathway” (hsa04064) was the only KEGG pathway that was significantly overrepresented (FDR = 0.001).
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Conclusions When one or two sessions of  HBO2 treatment were administered to patients with a dysregulated 
immune response and systemic inflammation due to NSTI, the important genes that were regulated during the inter-
vention were involved in activation of T helper cells and downregulation of the disease-induced highly inflammatory 
pathway NF-κB, which was associated with a decrease in the mRNA level of pro-inflammatory factors.

Trial registration: Biological material was collected during the INFECT study, registered at ClinicalTrials.gov 
(NCT01790698).

Keywords Necrotizing soft tissue infection, Hyperbaric oxygen treatment, Sepsis, Transcriptomics, Systems medicine, 
Differential gene expression, Inflammation, Immune cells

Background
Necrotizing soft tissue infections (NSTI) are severe 
infections of the soft tissue surrounding the bones, and 
these infections appears to be rising on a global scale [1, 
2]. Severe scarring, amputations, sepsis and its accom-
panying shock, and multi-organ failure are all linked to 
NSTIs [1, 3]. These systemic manifestations of severe 
infections are today understood as maladaptive changes 
in circulatory, cellular, and metabolic functions result-
ing in a dysregulated host response [4, 5]. Adjunctive 
immune modulating therapies, such as immunoglobu-
lins, are used and have been tested for group A strepto-
coccus NSTI infections. In addition, hyperbaric oxygen 
treatment  (HBO2) is one treatment strategy that has been 
proposed as an adjunctive measure to improve patient 
outcomes in severe infections, particularly in NSTIs, 
with resultant improved survival and lower amputation 
requirements [6, 7].  HBO2 treatment entails intermittent 
breathing of 100% oxygen while under increased atmos-
pheric pressure. Because the resulting high oxygen partial 
pressure is in blood plasma solution, it can reach physi-
cally obstructed areas where red blood cells are unable to 
pass allowing tissue oxygenation even when hemoglobin 
oxygen carriage is impaired [8]. When the NSTI diagno-
sis was first introduced, these infections were thought to 
be caused primarily by bacteria that thrived in anaerobic 
conditions, and  HBO2 treatment was used to increase 
oxygen supply to anaerobes, with the goal of halting the 
infection [9, 10]. However, later research reveals that the 
effects of  HBO2 treatment go far beyond simply chang-
ing the oxygen environment for the growing invading 
organisms, and that  HBO2 treatment has been linked to 
a variety of immune modulatory effects, presumably due 
to its ability to promote changes in the oxidation–reduc-
tion (redox) balance in cells [11]. A systematic review of 
58 studies on human tissue indicated that  HBO2 treat-
ment inhibited the pro-inflammatory transcription fac-
tor nuclear factor kappa B (NF-κB), decreased secretion 
of the cytokines IL-1, IL-6, and IL-8, and promoted an 
anti-inflammatory state overall [12]. This may explain 
why  HBO2 treatment has been linked to improve survival 
in individuals with sepsis brought on by NSTIs [13–16]. 

However, key cytokines like IL-10 and TGF-β have been 
linked to both a protective effect and no effect of  HBO2 
treatment in sepsis [12, 17], and the effect of important 
transcription factors such as hypoxia inducible factors 
and NF-κB appears to be dependent on both the precon-
ditional stage of hypoxia and inflammation, as well as the 
timing and number of consecutive hyperbaric sessions 
[11, 18]. This heterogeneous complexity may be the rea-
son why efforts to identify disease-progression markers 
to track the effectiveness of treatment have been futile 
[19]. The emergence of new technical platforms makes 
it possible to characterize collections of biological mol-
ecules, which encourages researchers to cast a wider 
net when drawing conclusions regarding illnesses and 
cures. We conducted a functional enrichment analysis 
of all genes that were differentially expressed in whole 
blood samples before and after  HBO2 treatment to better 
understand the underlying biological processes of  HBO2 
treatment effects in patients with NSTI.

Methods
Experimental approach
The current paper presents the findings of the observa-
tional HBOmic study based on prospectively collected 
data. A brief description of methods is provided in this 
paper, additional method description is available in the 
HBOmic study protocol [20] and in Additional file  1: 
Methods. Eighty-five patients submitted to ICU for NSTI 
were enrolled in the present study. All patients have been 
treated with  HBO2 treatment and had one blood sam-
ple taken before and after the intervention. The  HBO2 
treatment consisted of breathing 100% oxygen at a pres-
sure of 284  kPa without air-breaks with a compression 
period lasting 5 min and a decompression rate of 15 min. 
Patients received one or two sessions within the first 24 h 
of admission and the treatment duration of each  HBO2 
treatment session was 90 min.

Data collection
Total RNAs from blood samples were extracted, and 
mRNA purified with rRNA depletion was performed 
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as planned and described in the published study proto-
col [20]. Whole-Transcriptome RNA Sequencing was 
performed on the Illumina Novaseq6000 platform with 
a targeted sequencing read depth of 20 million reads. 
After sequential steps of quality control, a final of 160 
whole blood samples from 83 patients were included in 
the present study (Fig.  1). More details on are provided 
in supplementary methods [see Additional file 1: Quality 
control].

Sample size
The genome-wide transcriptional response to  HBO2 
treatment has not been addressed by other research 
groups. We performed a pilot study prior to the cur-
rent study [20] and estimated the sample size needed to 
find a significant difference in gene expression in whole 
blood samples between before and after  HBO2 treat-
ment by published methods [43]. Assuming a coefficient 
of variation of 0.34, a depth of coverage of human reads 
of 218, a risk of type I error of 5%, and a risk of type II 
error of 20% (power 80%), the number of participants per 

group required is 38 to detect a 25% difference between 
conditions, giving a total sample size of 76 participants. 
We predicted that about 10% of samples would fail qual-
ity control and decided to include 85 participants in the 
study. As expected, in the current study, we focused on 
the genes that performed better, so we anticipate a higher 
power than that estimated from all transcripts in the pilot 
[40].

Data preparation
The obtained reads were trimmed and aligned to the 
human genome using STAR [21]. These genes were nor-
malized, and the data were fit to a gene-wise generalized 
linear model that included the following co-variates; 
patient identifier and a variable indicating whether a 
given samples was collected before or after  HBO2 treat-
ment (Additional file  1:  Methods and Fig. S1). Differ-
ential gene usage was assessed by quasi-likelihood tests 
and adjusted for multiple comparisons with false discov-
ery rate. The obtained data set of differentially expressed 
genes (DEGs) was separated in protein coding genes and 

Fig. 1 Study flow diagram. INFECT Systems Medicine to Study NSTI, TIN transcript integrity number, HBO2 hyperbaric oxygen treatment
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other gene products using GENECODE release 43. Data 
preparation was performed with the edgeR package from 
Bioconductor in software R, version 4.0 [22]. The supple-
mentary methods provide more details on the differential 
expression analysis [see Additional file  1: Data pre-pro-
cessing and Differential expression].

Functional enrichment analysis
For genes that were differential expressed between before 
and after  HBO2 treatment, functional enrichment analy-
sis was performed using “Gene Ontology” (GO) and 
“Kyoto Encyclopedia of Genes and Genomes” (KEGG) 
pathway enrichment analyses, to interpret gene func-
tional annotation and functional enrichment.

Gene Ontology (GO)
The GO knowledgebase is the world’s largest source of 
information on the function of genes [23]. The ontol-
ogy is a set of terms with defined relationships (i.e., GO 
terms). When annotating the gene to its gene ontology 
the associations between gene products and the GO term 
is investigated. We used the GO annotation to deter-
mine which biological processes were implicated in our 
observable trait of DEGs between the two conditions: 
before and after treatment with  HBO2.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
KEGG is an integrated database resource generated from 
15 publicly available resources, mostly from National 
Center for Biotechnology Information RefSeq and Gen-
Bank and annotated by KEGG in the form of KEGG 
Orthology [24]. The collection is supplemented with a 
KEGG original collection of functionally characterized 
proteins from published literature. KEGG is a reference 
resource for interpreting high-level functions of the 
biological system from large-scale molecular datasets 
generated by high-throughput experimental technolo-
gies. KEGG analysis was aimed at exploring the possi-
ble key regulatory pathways for the enrichment of DEGs 
between the two conditions; before and after treatment 
with  HBO2.

Bioinformatic tools
We used the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) 6.8 to perform GO and 
KEGG annotation of protein coding DEGs [25]. DAVID 
is a free, online bioinformatics resource that lists a com-
prehensive set of functional annotations that can be used 
to identify the biological significance of a list of genes. 
The enriched biological processes were analyzed with 
the DAVID default setting “BP DIRECT”. GO terms and 
KEGG pathways with a false discovery rate < 0.05, as cal-
culated by the FDR adjustment method, were considered 

significant for the enrichment analysis. Further analyses 
are described in supplementary methods [see Additional 
file  1: Annotation of differentially expressed genes]. All 
protein-coding genes that were differentially expressed 
was used as background. For figures on enrichments 
results, we used the GOplot 1.0.2 R package [26] and the 
ShinyGO version 0.77 bioinformatic toll [27].

Up‑ and down‑regulated single markers
To further explore the effects of  HBO2 treatment we 
screened all protein-coding DEGs between the two con-
ditions for pro- and anti-inflammatory factors as well as 
their receptors and antagonists at a significance level of 
FDR > 0.05.

Results
Patient and sample characteristics
The patient characteristics are presented in Table  1. A 
detailed description of the patient population has been 
published previously [3]. The samples collected before 
 HBO2 treatment were collected after a median of 32  h 
and 45 min (16 h and 1 min–79 h and 12 min) from first 
hospital admission with the NSTI diagnosis, a median of 
4 h and 24 min (3 h–7 h 30 min) from arrival at a special-
ized hospital, and a median of 7 min (2–13 min) before 
the intervention with  HBO2. The follow-up samples were 
collected after a median of 5  min (1–10  min) from the 
intervention with  HBO2.

In the present study, we found that the RNA and 
mRNA extracted by the above-described procedures 
were of the same high quality as found in the pilot study 
[20]. The various quality measures obtained are provided 
in the supplementary results [see Additional file 2,: Qual-
ity control].

Differential expressed genes
We identified 394 protein coding genes that were signifi-
cantly differentially expressed between the two condi-
tions, before and after  HBO2 treatment with FDR < 0.01. 
A histogram of the obtained P-values is shown in sup-
plementary results [see Additional File 2: Fig. S2]. In 
comparison to before the intervention, 205 protein cod-
ing genes were upregulated and 189 were downregulated 
after  HBO2 treatment, with a log2-fold change ranging 
between 0.712 and 0.668, as illustrated in the volcano 
plot in supplementary results [see Additional file 2: Fig. 
S3].

Functional gene enrichment analysis
The KEGG and GO enrichment analysis of all the genes 
that were differentially expressed between before and 
after  HBO2 treatment with FDR < 0.01 found that the 
DEGs were primarily involved in a broad range of 
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immunological processes concerning hematopoietic cell 
differentiation, proliferation, and apoptotic selection, as 
well as inflammatory conditions (Fig. 2).

The separate enrichment analysis of the DEGs that 
were significantly up- and down-regulated, revealed 
20 GO terms in the category biological process that 
were significantly overrepresented in the upregulated 
DEGs, of which the term; “adaptive immune response” 
(GO:0002250) was the most significant (FDR = 9.88E-
13). Other important biological processes associated 
with these upregulated DEGs were “T cell activation” 
(GO:0042110) and “T cell receptor signaling pathway” 
(GO:0050852) (Table  2). The KEGG enrichment analy-
sis of the upregulated DEGs found 12 overrepresented 
pathways, with the “T cell receptor signaling pathway” 
(hsa04660) being the most significant (FDR = 1.20E-07), 

followed by “Th1 and Th2 cell differentiation” and “Th17 
cell differentiation” (Table 2).

GO enrichment analysis of the downregulated DEGs 
found two biological processes that were significantly 
enriched, of which the GO term “apoptotic process” 
(GO:0006915) was the most significant (FDR = 0.001), 
followed by “Positive regulation of T helper 1 cell 
cytokine production” (GO: 2000556). “NF-kappa B sign-
aling pathway” (hsa04064) was the only KEGG pathway 
that was significantly overrepresented in the dataset of 
significantly downregulated DEGs (Table 3).

Additional enriched biological GO terms and KEGG 
pathways can be found in supplementary results, illus-
trating all results from DEGs that are differentially 
expressed with FDR < 0.02 [see Additional file  2: Tables 
S1–S4].

Differentially expressed pro‑ and anti‑inflammatory 
markers
Aside from the markers in the above-mentioned enriched 
terms and pathways, single factors related to inflamma-
tory processes were up- or downregulated from before to 
after  HBO2 treatment, these are shown in supplementary 
results and included one cytokine, three chemokines, 18 
ligand receptors, and one cell adhesion protein [see Addi-
tional file 2: Table S5].

Discussion
The present study used gene enrichment analysis to 
predict the functions of protein coding genes that were 
differentially expressed from before to after  HBO2 treat-
ment in patients with NSTI. The functional profile of the 
differentially expressed gene set showed that upregulated 
genes were primarily involved in regulation of the T cell-
driven immune response, and the downregulated genes 
were involved in inflammatory signaling and apoptosis.

Activation of T helper cells during treatment with HBO2
Protein coding DEGs that were upregulated during 
 HBO2 treatment were related to T helper cell signal-
ing and differentiation and the adaptive immune sys-
tem. All three transcription factors; GATA-3, T-bet 
and RORγ that govern the effector subsets of T helper 
cells; Th1, Th2 and Th17 were upregulated, along with 
upstream positive signaling transducers and activa-
tors as well as components of the T cell receptor. These 
key transcription factors possess dual action while 
both promoting one effector fate and repressing the 
alternative pathway in a complex transcription factor 
network (reviewed in [28]). This indicates that a poly-
clonal activation of CD4+ helper cells occurred within 
at least these three lineages following treatment with 
 HBO2. In sepsis the number of CD4+ helper cells are 

Table 1 Patient characteristics

Continuous data are presented as medians (IQR) and categorical data as 
absolute numbers (percentage)

BMI body mass index, COPD chronic obstructive pulmonary disease, septic shock 
on admission, defined as lactate > 2 mmol/L and use of vasopressor or inotrope, 
LRINEC Laboratory Risk Indicator for Necrotizing Fasciitis Score, NSTI necrotizing 
soft-tissue infection, SAPS II Simplified Acute Physiology Score II, SOFA Sequential 
Organ Failure Assessment
* Data were missing for two (2.4%) patients
† Data were missing for two (2.4%) patients
‡ Data were missing for 11 (13.3%) patients
§ Data were missing for one (1.2%) patient

Characteristics, N = 83

Age 61 (52–69)

Sex, female 28 (34)

BMI 26 (23–31)

Comorbidities

 Cardiovascular disease 43 (52)

 Diabetes 29 (35)

 Peripheral vascular disease 10 (12)

 COPD 8 (9.6)

 Chronic kidney disease 6 (7.2)

 Malignancy 5 (6)

 Immune deficiency 3 (3.6)

 Rheumatoid disease 3 (3.6)

 Liver cirrhosis 2 (2.4)

Disease severity measures

 Septic shock on admission 34 (41)

 SAPS II* 43 (35 
−48)

 SOFA, day 1† 8 (6–9)

 LRINEC‡ 8 (6–9)

Prognosis

 Days hospitalized in the intensive care unit 9 (5–14)

 Amputation within seven days 10 (12)

 Mortality, day 90§ 11 (13)
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Fig. 2 Enriched GO terms and KEGG pathways among differentially expressed genes. A GOchord plot of top 10 GO terms sorted by FDR. Only 
genes that are assigned to a minimum of 2 terms are displayed. Genes are ranked according to logFC, with red colors signifying upregulated 
genes and blue colors signifying downregulated genes. Genes symbols are used to describe genes. B Top 10 KEGG pathways sorted by FDR. 
Color code indicates -10log(FDR); the length of the bar indicates fold enrichment defined as the percentage of differentially expressed genes 
belonging to the pathway, divided by the corresponding percentage in the background. The size of the bubbles indicates the number of genes 
in the enriched pathway
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greatly reduced following disease onset [29]. Research 
on the impact of  HBO2 treatment on T cell activation 
and differentiation during severe infections is scant. In 
line with our findings, an experimental setup demon-
strated polyclonal activation of T cells and a decrease 
in the production of pro-inflammatory cytokines in 
response to lipopolysaccharide (LPS) after  HBO2 treat-
ment [30]. Also, an in  vitro model found that hyper-
baric oxygen culture induced CD4+ regulatory cells in 
a Th2-type environment. [31]. In contrast, in healthy 
volunteers the level of CD4+ T cells decreased after a 
single exposure to  HBO2 [32]. In the recent years it has 
been described how T helper cells adapt to changes in 

the microenvironment by forced expression of key reg-
ulators in differentiated T cells. This T helper cell plas-
ticity is discovered to be highly integrated with tissue 
homeostasis and metabolic reprogramming, in particu-
lar changes in glucose metabolism [33]. This establishes 
a link to  HBO2 treatment and provides a possible expla-
nation for the effects described above;  HBO2 treatment 
can cause changes in cellular energy metabolism, pos-
sibly causing lymphocytes to switch from glycolysis to 
oxidative phosphorylation [18, 34].

Table 2 Enriched biological processes and pathways from upregulated genes. Results from gene enrichment analysis with Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). All differentially expressed genes with FDR < 0.01 and positive 
fold change were included in the analysis. Percent is the percentage of differentially expressed genes belonging to the pathway. P 
value is the significance level of the enrichment. Genes are the gene symbol of the differentially expressed genes belonging to the 
pathway. FDR is the significance level after correction for multiple testing with false discovery rate

Category Term Percent P value Genes FDR

Upregulated GO terms (top 3)

BIOLOGICAL PROCESS Adaptive immune response 11% 8.01E-16 EOMES, TRAT1, SH2D1A, TARM1, CAMK4, ZNF683, ZAP70, 
KLRD1, CD3D, CD3E, LAX1, CD3G, ITK, SKAP1, CD247, JCHAIN, 
THEMIS, CD6, CD7, CD8A, CD8B, TXK, LAG3

9.88E-13

BIOLOGICAL PROCESS T cell activation 7% 1.45E-14 DPP4, CD28, NLRC3, RASGRP1, ZAP70, CD2, CD3E, CD3G, ITK, 
CD7, CD8A, LAG3, CD8B, LY9

8.98E-12

BIOLOGICAL PROCESS T cell receptor signaling pathway 8% 4.45E-14 GATA3, CD28, ZNF683, ZAP70, BTN3A3, CD3D, CD3E, CD3G, 
ITK, PLCG1, CD247, SKAP1, THEMIS, LCK, CD8A, CD8B, TXK

1.83E-11

Upregulated KEGG pathways (top 3)

PATHWAY T cell receptor signaling pathway 7% 6.45E-10 NFATC2, CD28, RASGRP1, ZAP70, CARD11, CD3D, CD3E, 
CD3G, ITK, PLCG1, CD247, LCK, CD8A, CD8B

1.20E-07

PATHWAY Th1 and Th2 cell differentiation 6% 1.44E-09 RUNX3, GATA3, NFATC2, IL2RB, ZAP70, CD3D, CD3E, CD3G, 
PLCG1, CD247, STAT4, TBX21, LCK

1.34E-07

PATHWAY Th17 cell differentiation 6% 9.73E-09 GATA3, NFATC2, IL2RB, ZAP70, RORA, RORC, CD3D, CD3E, 
CD3G, PLCG1, CD247, TBX21, LCK

6.04E-07

Table 3 Enriched biological processes and pathways from downregulated genes. Results from gene enrichment analysis with Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). All differentially expressed genes with a cut off FDR < 0.01 
and negative fold change were included in the analysis. Percent is the percentage of differentially expressed genes belonging to 
the pathway. P Value is the significance level of the enrichment. Genes are the gene symbol of the differentially expressed genes 
belonging to the pathway. FDR is the significance level after correction for multiple testing with false discovery rate

Category Term Percent P value Genes FDR

Downregulated GO terms (significant)

Biological process Apoptotic process 12% 7.82E + 08 IL1B, RNF144B, STK3, DRAM1, CASP5, MAP2K6, DDIT4, PLK3, 
GADD45Α, PLSCR1, MARCKS, HIP1, KLLN, BMX, BCL2A1, NLRP3, 
KIF1B, NFKBIA, TNFAIP3, TNFRSF10D, NR2E1, NAIP

0.001037

Biological process Positive regulation of T helper 
1 cell cytokine production

2% 5.62E + 10 ARID5A, IL1B, IL18R1, IL1R1 0.03726

Downregulated KEGG pathways (significant)

PATHWAY NF-kappa B signaling pathway 5% 7.17E-06 IL1B, TNFSF13B, IL1R1, BCL2A1, CXCL1, ICAM1, TNFAIP3, NFKBIA, 
TRIM25, GADD45Α

0.001147
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Downregulation of infection induced inflammatory signaling 
pathways during treatment with HBO2
The nuclear factor-kappa B (NF-κB) signaling pathway 
was significantly downregulated during  HBO2 treatment 
in our cohort of NSTI patients (Fig.  2B and Table  3). 
NF-κB is the generic name of a family of transcrip-
tion factors that function as dimers and regulate genes 
involved in immunity, inflammation, and cell survival. 
Activation of the NF-κB pathway is known as the primary 
initiator of the hyperinflammatory cytokine storm in sep-
sis [19]. NF-κB is thought to be a redox-sensitive tran-
scription factor and exposure to  H2O2 or other oxidants 
has been shown to trigger nuclear translocation of NF-κB 
in certain cells, whereas antioxidants inhibit NF-κB 
induction in lymphoid cells (reviewed in [35]). The NF-κB 
pathway relies on IKK-mediated phosphorylation of 
IκBα (I-Kappa-B-Alpha), leading to its degradation. This 
allows NF-κB dimer to enter the cell nucleus and acti-
vate gene transcription (Fig. 3). IκBα mRNA expression is 
induced by LPS [36], and by NF-κB in an autoregulatory 
pathway due to a NF-κB responsive IκBα promoter [37], 
thus the downregulation of the expression of IκBα in the 
present study indicates a repression of NF-κB signaling. 
Interestingly, the ROS sensitive step in NF-κB activation 
is hypothesized to lie at the level of IκBα or immediately 
upstream thereof [35]. Downregulation of IκBα mRNA 

levels was accompanied by a reduction in the expres-
sion of several target genes, as well as the interleukin-1 
receptor type 1 (IL-1R1) and Toll-like receptor 2 and 4 
(TRL2- and 4); two important receptors for NF-kappa 
B-activation, which strongly promotes inflammation [38]. 
This is illustrated in Fig.  3 and results are available in 
Additional file 2: Table S4.

TLRs are expressed on all innate immune cells such as 
macrophages, neutrophils, dendritic cells, natural killer 
cells, mast cells, basophils, and eosinophils [39]. There 
is broad consensus that TLR2 and 4 cooperate at physi-
ological concentrations of the ligands responsible for 
their activation, and it is believed that TLR4 is the recep-
tor for LPS [40], whereas TLR2 is the receptor for Gram-
positive bacterial cells [41]. The effect of  HBO2 treatment 
on the mRNA expression of TLR2 and TLR4 has previ-
ously been investigated in an experimental rat model of 
zymosan-induced shock [42]. This study reported that 
 HBO2 treatment downregulated the zymosan induced 
high levels of TLR2 and TLR4, and thereby specifically 
inhibited the translocation of NF-κB to the nucleus, 
which was associated to reduced organ dysfunction and 
amelioration of local and systemic inflammation [42]. 
Similar attenuating effects of  HBO2 treatment on TLR4/
NF-κB-mediated inflammation have been demonstrated 
in other models [43–45].

Fig. 3 Illustration of the overrepresented genes in the KEGG pathway NF-κB signaling. Simplified version of the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway (hsa04064); NF-κB signaling pathway. Differentially expressed genes from immediately before to immediately 
after hyperbaric oxygen treatment that are significantly downregulated are marked in red (FDR < 0.02). Genes are named with their gene symbol
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IL1R1 is the receptor for the two cytokines, IL-1α and 
IL-1β, of which IL-1β was also significantly downregu-
lated in the present study (Fig. 3 and Table 3). IL-1β is a 
highly pro-inflammatory cytokine primarily transcribed 
by monocytes, macrophages, and dendritic cells follow-
ing TLR activation by pathogen-associated molecular 
patterns or cytokine signaling [46]. NSTI patients have 
higher levels of IL-1β than patients with other cutane-
ous infections such as cellulitis [47]. The IL-1β network 
has also been identified as a critical network involved 
in the modulation of Group A streptococcal NSTIs in a 
rat model, and high levels of IL-1β were positively cor-
related with disease severity both in this model [48], and 
in a comparable cohort of NSTI patients [15]. Likewise, 
serum levels of IL-1β, IL-1-receptor antagonist (IL-1Ra), 
IL-18 and interferon-gamma has previously been demon-
strated to be significantly elevated in NSTI patients with 
fatal outcome compared to survivors [49]. We found that 
both IL-1β and IL-1Ra mRNA expression, as well as their 
receptor IL1R1 and co-receptor IL1RAP (interleukin-1 
receptor accessory protein) were significantly downregu-
lated during  HBO2 treatment, as were the IL-18 receptor 
IL18R1 and the accessory receptor IL18RAP (accessory 
receptors are not shown in the enrichment analysis). 
This indicates a downregulation of IL-1β signaling in our 
cohort of NSTI patients during treatment with  HBO2. In 
an experimental setup,  HBO2 treatment has previously 
been demonstrated to downregulate IL-1β production, 
both in a model of zymosan-induced multi-organ fail-
ure [42], in a model of LPS-induced IL-1β production 
in human blood-derived monocyte-macrophages [50], 
and in a rat model of endocarditis [51]. In contrast, the 
plasma protein expression of IL-1β was unchanged after 
1 daily  HBO2 session on 3 consecutive days in a compa-
rable cohort of 209 NSTI patients [15]. This discrepancy 
between results on mRNA and protein expression in 
blood could either be explained by false discovery, post-
transcriptional regulation of IL-1β mRNA, or if a reduced 
production of IL-1β is not reflected in the amount 
secreted to plasma. Interestingly, the secretion of mature 
IL-1β is accelerated in response to alteration in the cells 
basic redox state [52].

Downregulation of target genes involved in inflammation 
and apoptosis during treatment with HBO2
Besides the above-mentioned downregulation of IL-1β 
and IL-18, the gene ontology overrepresentation analy-
sis also displayed downregulation of the Arid5a (AT-rich 
interactive domain-containing protein 5a) mRNA (Fig. 3 
and Table 3). TLR4-activated acetylation of the p65 sub-
unit of NF-κB induces the transcriptional activation of 
the Arid5a promotor [53]. Upon inflammation, Arid5a 
translocates to the cytoplasm and stabilizes a variety 

of inflammatory mRNA transcripts and contributes to 
inflammatory responses, including septic shock [54].

Furthermore, several target genes involved in inflam-
mation and regulatory apoptosis were displayed in the 
downregulated NF-κB pathway (Fig.  3). Regulation of 
TNFSF13B (Tumor Necrosis Factor Superfamily Mem-
ber 13b), BCL2A1 (the B cell lymphoma protein 2 (Bcl-
2) family member A1), TNFAIP3 (TNF alpha induced 
target gene 3) and GADD45A (Growth Arrest and 
DNA Damage Inducible Alpha) has not previously been 
linked to  HBO2 treatment. However, mRNA expression 
of TNFSF13B, BCL2A1 and TNFAIP3 has been demon-
strated to be redox sensitive. Hydrogen peroxide  (H2O2) 
has been described to induce BCL2A1 gene expres-
sion in a T cell line, and this was described to occur in 
an NF-κB-dependent manner and was associated with 
cell survival [55]. Likewise, exogenous  H2O2 treatment 
has been shown to increase TNFSF13B promoter activ-
ity, while activity was decreased by the ROS scavenger 
N-acetyl-cysteine [56]. The expression levels of TNFAIP3 
have similarly been shown to be increasing in response 
to  H2O2 and decreasing in response to N-acetyl cysteine, 
which was linked to increased endotoxin tolerance [57]. 
These four proteins are expressed by both adaptive and 
innate immune cells [58–61]. TNFSF13B [62], BCL2A1 
[60] and GABB45α [58] are known to promote inflam-
mation, and TNFSF13B [63] and GABB45α [58] have 
been described to be overexpressed in response to LPS, 
whereas both low and high levels of TNFAID3 have 
proven beneficial in severe infections [64, 65]. Particu-
larly pertinent to NSTI is the discovery that group A 
streptococcus up-regulates TNFAIP3 in infected hosts to 
decrease the release of inflammatory cytokines, thereby 
facilitating immune surveillance escape and prolonging 
the pathogen’s survival in the host [66].

ICAM-1 (intercellular adhesion molecule-1) expres-
sion has also been shown to be redox sensitive, as it 
is induced by both up-regulation of nitric oxide syn-
thase [67] and exogenous  H2O2 [68]. Furthermore, the 
therapeutic outcomes of  HBO2 in patients with ther-
mal burns have previously been linked to downregula-
tion of ICAM-1 mRNA expression in blood [67]. This 
capacity of  HBO2 treatment to reduce disease mediated 
elevated levels of ICAM-1 with subsequent ameliora-
tion of inflammation, has been verified in more models 
and conditions [69–71], with insignificant results in one 
study, however [72]. ICAM-1 is known to be increased in 
septic shock patients [73, 74], and models of experimen-
tal sepsis have demonstrated a less severe clinical course 
and improved survival rates in ICAM-1-knockout mice 
[75, 76]. Previous studies on the effect of  HBO2 treat-
ment on CXCL1 (C-X-C motif ligand (1) are limited to 
expression in astrocytes. In this cell type  HBO2 also had 
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ameliorating effects on high levels of CXCL1 following 
LPS stimulation or traumatic brain injury, which resulted 
in alleviated inflammation and injury [77, 78]. CXCL1 is 
a pro-inflammatory chemokine that is produced by mac-
rophages,  neutrophils, epithelial cells and  Th17  cells, 
and in innate immune cells the expression of CXCL1 is 
dependent on IL-1β and TLR4 signaling. CXCL-1 acts as 
a chemoattractant for immune cells, especially  neutro-
phils to the site of injury or infection [79]. The migration 
and infiltration of neutrophils to infectious sites dur-
ing high CXCL1 expression aids in pathogen killing and 
has been shown to be critical in CXCL1-deficient animal 
models [79]. However, CXCL1 expression is also linked 
to many adverse conditions associated with uncontrolled 
inflammation and tissue damage, such as sepsis-asso-
ciated encephalopathy, sepsis-associated acute kidney 
injury, and sepsis-induced lung injury [80]. Correspond-
ingly, reducing LPS induced high levels of CXCL-1 has 
been associated with increased survival in animal models 
[81, 82].

Strengths, limitations, and future perspectives
Some of the genes and pathways identified in this study 
have previously been linked to  HBO2 cellular mecha-
nisms of action, including NF-κB signaling, ICAM-1, 
IL-1ß and CXCL-1 [12, 42, 67, 78]. Besides that, like 
other studies investigating gene expression patterns 
in circulating lymphocytes [83], we identified immune 
response genes not previously described in the con-
text, and Arid5a, TNFSF13B, and BCL2A1 are high-
lighted here as prospective future study topics. This 
demonstrates one advantage of using an omics systems 
approach rather than a potentially misguided hypoth-
esis-driven approach, and as shown in Fig.  2, many 
genes and pathways were identified to be impacted 
by  HBO2 treatment in this study, which we have not 
discussed further in the current paper. Although the 
mRNA level of the transcription factor NF-κB was not 
directly downregulated following  HBO2 treatment, we 
may state that the current study indicated an overall 
downregulation of NF-κB signaling because of another 
equally obvious strength of the study design: the ability 
to examine the expression of a marker in the context of 
the pathway in which it operates. The used approach, 
however, also has some limitations. Enrichment analy-
ses are susceptible to abundance biases, which occur 
because some genes have more annotations than the 
average gene. This could be genes that are strongly 
linked to specific diseases and thus receive more sci-
entific attention and funding, or genes that are highly 
expressed genes and therefore easier to study; such 
biases can result in inflated significance and even arti-
ficial enrichment. In this regard, one advantage of the 

DAVID tool over other gene ontology analysis pro-
grams is that it uses annotation data from a broader 
range of sources. Another limitation of enrichment 
analysis is pathway overlap. Because the same genes 
can participate in multiple pathways, when cytokines 
are involved, pathways and terms involved in various 
inflammatory diseases can be identified, which also 
occurred in our study [see Fig. 2 and Additional File 2: 
Table  S1–S4]. One limitation of studying gene expres-
sion is that it only provides information on mRNA 
expression. In the enrichment analysis, a highlighted 
transcript may never leave the nucleus in significant 
amounts as effective proteins. A previous study on 
the expression of ICAM-1 mRNA and protein lev-
els in patients with injury-induced elevated levels of 
ICAM-1 in blood found a strong correlation [67]. This 
relationship between ICAM-1 gene and tissue expres-
sion was also demonstrated in an animal model, where 
 HBO2 treatment also reduced injury-induced ICAM-1 
expression [84]. BCL2A1 has also been described to be 
primarily transcriptionally regulated in human neu-
trophils isolated from peripheral blood [85], but for 
most of the described markers, various levels of post-
transcriptional regulation may occur. In this regard it 
is important to note that in the present study we dis-
covered a wide range of differentially expressed genes 
involved in immune functions, however all changes in 
gene expression level were of low fold change. This is 
to be expected given that the source of the differen-
tially expressed mRNA was many cell populations, and 
thus large fold changes in a subpopulation will have 
been toned down. Even so, we were able to identify the 
most common immunological changes in lymphocytes 
that may be caused by  HBO2 treatment intervention 
in this heterogeneous group of 85 highly dysregulated 
inflammatory patients by describing the larger cellular 
or physiological role carried out by the DEGs, coor-
dinated with other DEGs through data analysis with 
overrepresentation analysis. Furthermore, even small 
changes in transcription factor mRNA expression lev-
els can have dramatic biological effects, but effects 
on single effector proteins demonstrated in this study 
should be interpreted cautiously and in the context of 
the pathway in which they act. Another limitation of 
the study design is that the expression profile of all lym-
phoid cells is evaluated at the same time, which does 
not allow differentiation of which lymphoid subset a 
given gene is expressed in, nor does it allow evaluation 
of transitions of molecular components within the cell 
or transitions of lymphocyte subsets between periph-
eral blood and other lymphoid tissues or the injured 
target organ. A final challenge is related to the timing 
of sampling; while sampling close to the intervention is 
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advantageous in terms of causality, it may have prema-
turely interrupted the signaling pathway, resulting in a 
lack of change at the target gene level in T helper cells 
in the enrichment analysis of the upregulated genes.

Nonetheless, because interventions are well defined 
and kept to a bare minimum due to the short time 
between samples, this study contributes to our under-
standing of the immunological mechanisms of action of 
 HBO2 treatment. In the future, the findings of this paper 
should be confirmed by examining the presence of the 
highlighted DEGs post-transcriptionally, both in quantity 
and cellular location. This could be accomplished through 
single cell sequencing, or a multi-omics approach com-
bining current transcriptomic data with proteomics and 
metabolomics, or through targeted protein panels com-
bined with immunohistochemistry staining. The clinical 
relevance of the findings should be assessed by examin-
ing the relationship between  HBO2-mediated downregu-
lation of disease-induced elevated levels of inflammatory 
markers and clinical markers of disease severity.

Conclusions
In summary, we identified and discussed genes and sign-
aling pathways in whole blood that are regulated dur-
ing  HBO2 treatment in a cohort of 85 patients admitted 
to the intensive care unit with sepsis due to NSTI using 
enrichment analysis of bulk RNA sequencing data. When 
one or two sessions of  HBO2 treatment are adminis-
tered to these patients with a dysregulated immune 
response and systemic inflammation, we discovered 
that the important genes regulated during the interven-
tion are involved in T helper cells activation and down-
regulation of the disease-induced highly inflammatory 
pathway NF-κB, which was associated with a decrease in 
the mRNA levels of the pro-inflammatory factors IL-1ß, 
ICAM-1, CXCL-1, TNFSF13B, Arid5a, and the cell-death 
regulating BCL2A1. We also found a downregulation in 
the expression of the genes GADD45α and TNFAIP3, 
both of which are known to be involved in the mainte-
nance of cellular homeostasis in inflammatory condi-
tions. Based on the present literature, it is probable that 
the identified alterations in immune cell gene expression 
will be connected to symptom alleviation in this cohort 
of highly inflammatory sepsis patients. However, the lit-
erature review reveals ambiguous results about poten-
tially beneficial effect of TNFAIP3 downregulation in 
NSTI. Our review of the literature related to the affected 
target genes, also revealed that the NF-κB pathway, as 
well as four of the downregulated NF-κB target genes had 
previously been shown to be activated by high concentra-
tions of  H2O2, indicating that  HBO2 does not raise, but 
rather lower, the levels of this reactive oxygen species in 
this cohort of patients with severe systemic infection.
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