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CD72, a new immune checkpoint molecule, 
is a novel prognostic biomarker for kidney renal 
clear cell carcinoma
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Abstract 

Background  The incidence and mortality of clear cell carcinoma of the kidney increases yearly. There are limited 
screening methods and advances in treating kidney renal clear cell carcinoma (KIRC). It is important to find new 
biomarkers to screen, diagnose and predict the prognosis of KIRC. Some studies have shown that CD72 influences 
the development and progression of colorectal cancer, nasopharyngeal cancer, and acute lymphoid leukemia. 
However, there is a lack of research on the role of CD72 in the pathogenesis of KIRC. This study aimed to determine 
whether CD72 is associated with the prognosis and immune infiltration of KIRC, providing an essential molecular basis 
for the early non-invasive diagnosis and immunotherapy of KIRC.

Methods  Using TCGA, GTE, GEO, and ImmPort databases, we obtained the differentially expressed mRNA (DEmRNA) 
associated with the prognosis and immunity of KIRC patients. We used the Kruskal–Wallis test to identify clinicopatho-
logical parameters associated with target gene expression. We performed univariate and multivariate COX regression 
analyses to determine the effect of target gene expression and clinicopathological parameters on survival. We ana-
lyzed the target genes’ relevant functions and signaling pathways through enrichment analysis. Finally, the correlation 
of target genes with tumor immune infiltration was explored by ssGSEA and Spearman correlation analysis.

Results  The results revealed that patients with KIRC with higher expression of CD72 have a poorer prognosis. CD72 
was associated with the Pathologic T stage, Pathologic stage, Pathologic M stage, Pathologic N stage, Histologic grade 
in KIRC patients, Laterality, and OS event. It was an independent predictor of the overall survival of KIRC patients. Func-
tional enrichment analysis showed that CD72 was significantly enriched in oncogenic and immune-related pathways. 
According to ssGSEA and Spearman correlation analysis, CD72 expression was significantly associated with tumor 
immune cells and immune checkpoints.

Conclusion  Our study suggests that CD72 is associated with tumor immunity and may be a biomarker relevant 
to the diagnosis and prognosis of KIRC patients.
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Introduction
Renal cell carcinoma (RCC) is one of the ten most com-
mon cancers; 73,750 new cases of RCC and 14,830 
RCC deaths were reported in the U.S. in 2020 [1]. Kid-
ney clear cell carcinoma (KIRC) is the main pathologic 
subtype of RCC [2]. Despite our great advances in diag-
nosis, screening, surgery, and treatment, the clinical 
outcomes of KIRC are still unsatisfactory [3]. The prog-
nosis for advanced KIRC is extremely poor due to its 
inherent resistance to radiotherapy and chemotherapy, 
and the challenge for clinical management lies in treat-
ing the poor prognosis caused by radiotherapy and 
chemotherapy resistance [4]. KIRC has an immunogenic 
tumor microenvironment (TME) that contains a variety 
of tumor-infiltrating T lymphocytes [5]. Features of the 
tumor microenvironment heavily affect disease biology 
and may affect responses to systemic therapy [6–9]. In 
recent years, advances in immunotherapy, particularly 
immune checkpoint blockade (ICB) and engineered T 
cells have revolutionized cancer treatment [10]. ICB or 
ICB plus TKIs targeting programmed cell death 1 (PD-1), 
programmed cell death ligand 1 (PD-L1), and cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA4) are now 
the standard of care for RCC [11, 12]. In the era of ICB, 
understanding immunogenic TME will help to find new 
therapeutic strategies in KIRC management.

CD72 is a type II membrane protein expressed mainly 
in B cells and is a member of the C-type lectin superfam-
ily [13]. CD72 contains a C-type lectin-like structural 
domain (CTLD) and an immunoreceptor tyrosine-based 
inhibitory motif (ITIM) [14, 15]. CD72 overexpression 
can negatively regulate BCR signaling in B cell lines 
by recruiting phosphatase 1 (SHP-1) of the SH2 struc-
tural domain to phosphorylated ITIM [16]. CD72 func-
tions similarly to the inhibitory co-receptor CD22 in 
down-regulating B-cell receptor (BCR) signaling and 
functioning as a molecular switch determining whether 
apoptosis or proliferation occurs in antigen-stimulated 
B cells [14]. Furthermore, CD72 and SEMA4D (CD100) 
interaction enhances the activation of B cells and den-
dritic cells (DCs) [17]. Recent studies have shown that 
CD72 is closely associated with developing various 
immune-related diseases. For example, CD72 is strongly 
associated with developing systemic lupus erythemato-
sus (SLE) [18–20] in autoimmune diseases. CD72 is also 
closely associated with the tumor microenvironment 
[21]. Several studies have shown that CD72 is a marker 
for progenitor cell B-cell leukemia and a new marker for 
detecting microscopic residual disease in acute lympho-
blastic leukemia [22, 23]. In addition, CD72 has been 
identified as a prognostic gene in the tumor microenvi-
ronment of colorectal cancer [24, 25]. CD72 may be an 
independent predictor of prognosis in nasopharyngeal 

carcinoma patients [26]. However, there are no stud-
ies on the role of CD72 in immune infiltration in KIRC. 
Therefore, this study aimed to investigate the relationship 
between CD72 and immune infiltration and prognosis of 
KIRC and to provide an important molecular basis for 
the early non-invasive diagnosis and immunotherapy of 
KRIC.

Materials and methods
Data sources and preprocessing
We used the ImmPort (https://​www.​immpo​rt.​org/​
shared/​home) database to obtain immune-related genes 
[27]. The differential RNAseq expression data of CD72 in 
pan-cancer were obtained from UCSC XENA (https://​
xenab​rowser.​net/​datap​ages/) in the TPM format of the 
TCGA and GTEx processed uniformly by the Toil pro-
cess [28]. The differential RNAseq expression data of 
CD72 in unpaired and paired samples were in level 3 
HTSeq‐FPKM format from the TCGA (https://​portal.​
gdc.​cancer.​gov/) KIRC project. FPKM (Fragments Per 
Kilobase per Million) format RNAseq data were con-
verted to TPM (transcripts per million reads) format 
and log2 transformed. All final analyses were performed 
using data in TPM format. The differential analysis data 
for CD72 in dataset GSE40435, GSE53757 [29, 30] were 
downloaded from the GEO database using the GEOquery 
package (version 2.54.1) [31]. These data were obtained 
by removing probes corresponding to multiple mole-
cules. When probes corresponding to the same molecule 
were encountered, only the probe with the largest signal 
value was retained. Then the data were normalized again 
by the normalize Between Arrays function of the limma 
package (version 3.42.2) [32]. All statistical analyses and 
visualizations were performed using R (version 4.2.1).

Cell culture
HK-2 cells were cultured in a specialized medium (Pri-
cella, CM-0109). KIRC cell line (786-O, ACHN) was cul-
tured in high sugar DMEM (Sigma) with 10% FBS (ExCell 
Bio) and 1% P/S (Solarbio). Both cell lines were cultured 
at 37 °C in a humidified environment containing 5% CO2.

Real‑time PCR
After the cells were washed with PBS, Trizol and chloro-
form were added sequentially, and after repeated blowing 
and mixing, the cells were left to stand for 10  min and 
then centrifuged at 12,000 rpm for 15 min at 4°  C. The 
supernatant was transferred to a new EP tube. An equal 
volume of isopropanol was added to mix it well, and after 
centrifugation, the RNA precipitates were cleaned with 
75% ethanol and then lysed after air-drying, and the con-
centration was determined. The reaction system and pro-
cedures were constructed according to the instructions 

https://www.immport.org/shared/home
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of the reverse transcription kit from Beijing TransGen 
Biotech. Real-time fluorescence quantification was per-
formed by the SYBR Green method, and the reaction 
conditions were as follows: pre-denaturation at 94 ℃ for 
30s, 94 ℃ for 5s, and 60 ℃ for 30s, for a total of 40 cycles. 
The relative expression levels of target genes were calcu-
lated using the 2-ΔΔCt method [33]. The primers were 
synthesized by Shanghai Sangon Biological Company: 
β-actin Forward primer 5′-CCT​GGC​ACC​CAG​CAC​
AAT​-3′, reverse primer 5′-GGG​CCG​GAC​TCG​TCA​
TAC​-3′; CD72-3 forward primer 5′-TCC​GTC​GGG​GAT​
GGA​TAA​TGC-3′, reverse primer 5′-TGC​GTT​GTG​TAT​
CAT​CAG​TCAA-3′.

Differential expression analysis of CD72
The expression profiles of CD72 across cancers were 
analyzed for differences using the Mann–Whitney U 
test (Wilcoxon rank sum test). The Shapiro–Wilk nor-
mality test was used to test the normality of the CD72 
expression data in paired samples, unpaired samples, 
and GSE40435, GSE53757, and the independent samples 
t test was used to analyze the differences in the data in 
unpaired samples. The paired-samples t test was used 
to analyze the differences in the data in paired samples, 
and the Mann–Whitney U test (Wilcoxon rank sum 
test) was used to analyze the data variance in GSE40435, 
GSE53757. The results of all the above analyses were vis-
ualized using ggplot2 (version 3.3.3) and were considered 
statistically significant when P < 0.05.

Differential analysis of CD72 protein expression levels 
in KIRC
Immunohistochemical staining images of CD72 in KIRC 
and normal tissue sections were downloaded using the 
HPA database (https://​www.​prote​inatl​as.​org/).

Analysis of DEmRNA
We used the DESeq2 package [version 1.36.0] to per-
form gene differential analysis and CD72 single gene 
correlation analysis of KIRC in the TCGA database [34]. 
The results of the genetic difference analysis were used 
to generate volcano plots using ggplot2 software [ver-
sion 3.3.3] [35]. |(LogFC)|> 1 and p.adj < 0.05 were used 
as thresholds for differentially expressed genes (DEGs). 
CD72 single gene co-expression heatmaps were gener-
ated by the ggplot2 [version 3.3.6] package using genes in 
positively and negatively correlated top15.

Identification of target genes associated with immunity
We used the ImmPort (https://​www.​immpo​rt.​org/​
shared/​home) database to obtain immune-associated 
genes. Prognosis-related DEmRNA and immune-related 
genes were then derived using VennDiagram [version 

1.7.3] overlap analysis. Finally, we identified CD72 as the 
target gene.

Clinical correlation analysis, survival prognosis analysis
The survival data of KIRC patients were statistically ana-
lyzed using the survival package (version 3.2‐10), and the 
results were visualized using the survival package (ver-
sion 0.4.9) to plot KIRC patients’ overall survival (OS), 
disease‐specific survival (DSS), and progression‐free 
interval (PFI) of Kaplan–Meier survival curves. We then 
performed a subgroup analysis of Kaplan–Meier survival 
curves in KIRC patients, analyzing clinicopathological 
factors such as age, gender, Pathologic T stage, serum 
calcium, and hemoglobin. We used these clinicopatho-
logical factors to calculate their correlation with CD72 
expression and visualized the calculations using ggplot2 
(version 3.3.3). ROC analysis of the data was performed 
with the pROC software package (version 1.17.0.1) to 
determine the accuracy of CD72 in predicting progno-
sis. Finally, logistic analysis of different clinicopathologic 
factors and CD72 expression were performed using the 
Survival Package (version 3.2-10). All prognostic data for 
the above survival analyses were obtained from a paper 
in cell [36].

Functional enrichment analysis
The single gene differential analysis results were analyzed 
for GO, KEGG, and GSEA functional enrichment using 
the clusterProfiler software package (version 3.14.3) 
[37]. Gene ID conversion was performed using the org.
Hs.eg.db package (version 3.10.0), and the Z score was 
calculated using the GOplot package (version 1.0.2) [38], 
which scores the relevance of CD72 to the enrichment 
pathway. The reference gene set used for GSEA is c2.cp.
all.v2022.1.Hs.symbols.gmt (All Canonical Pathways) 
[39], and the results were significantly enriched if they 
met the conditions of false discovery rate (FDR) < 0.25 
and p.adjust < 0.05. All the above analyses were visualized 
using ggplot2 (version 3.3.3).

Immunocorrelation analysis of CD72
Relative infiltration levels of 24 immune cells were ana-
lyzed using the GSVA software package (version 24.1.34) 
[40]. For the immune infiltration algorithm, ssGSEA 
was employed, and Spearman correlation analysis was 
applied. Markers for 24 immune cells were obtained from 
an immunity study [41]. The samples were then divided 
into low and high-expression groups based on CD72 
expression, and enrichment scores for various immune 
cell infiltrates in different subgroups were calculated 
and analyzed using the GSVA software package (version 
1.34.0). Correlations between CD72 and immune cells 
and the expression of immune checkpoint-programmed 
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cell death protein 1 (PD-1)-PDCD1, cytotoxic T-lympho-
cyte-associated protein 4 (CTLA4), and programmed cell 
death ligand 1 (PD-L1) were assessed using Spearman 
analysis. Finally, the correlation between immune cell 
infiltration and CD72 expression was visualized by ana-
lyzing immune cells with statistically significant relative 
infiltration (P < 0.05). The analysis results were visualized 
with the ggplot2 package (version 3.3.3) [42].

Statistical analysis
Data are expressed as mean ± standard deviation 
(mean ± SD). Student’s t test analyzed differences in CD72 
expression in KIRC tumor tissues and adjacent tissues. 
One-way analysis of variance (ANOVA) was used for 
comparison between multiple groups. The Mann–Whit-
ney U test was used to analyze the correlation between 
CD72 expression and clinical data of KIRC patients. Sta-
tistical plots were completed using GraphPad Prism 8. 
P < 0.05 was considered statistically significant.

Results
Acquisition of immune‑related DEmRNAs
We found 19,596 DEmRNAs between 541 KIRC and 72 
kidney normal tissues. The volcano distribution is shown 
in Fig. 1A. We downloaded immune-related genes from 
the ImmPort database. We used Venn overlap analysis 
to get the overlapping target genes between immune-
related genes and DEmRNAs associated with the progno-
sis of KIRC patients. The results showed 333 overlapping 
target genes, such as CD72, TNFAIP3, CETP, IL18R1, 
HTR3A, DEFB124, and RBP7 (Fig.  1B). Through com-
prehensive comparison, we finally chose CD72 as the 
target gene. Figure 1C shows a heat map of CD72 and its 
co-expressed mRNAs. The first 15 genes had a positive 
correlation with the expression of CD72, and the last 15 
genes had a negative correlation with CD72.

A strong correlation exists between high CD72 expression 
and poor prognosis in KIRC
Figure  2A and B shows the expression of CD72 in the 
unpaired sample database UCSC XENA versus the paired 
database TCGA pan-cancer, respectively. The CD72 
expression level of KIRC was higher than in kidney tis-
sues (Fig.  2C, D). We then validated the results in the 
TCGA database using the datasets GSE40435, GSE53757 
from the GEO database, and the results are shown 
in Fig. 2E, F.

Correlation of CD72 expression with clinicopathologic 
parameters
We analyzed the relationship between CD72 expression 
and various clinical characteristics of KIRC patients. 
Chisq test and Yates’ correction were used to correlate 

clinicopathologic factors and CD72 expression, as shown 
in Table 1. Chisq test showed that CD72 was associated 
with Pathologic T stage (P < 0.001), Pathologic M stage 
(P < 0.001), Pathologic stage (P < 0.001), Race (P = 0.024), 
Histologic grade (< 0.001), Laterality (P < 0.001) were 
associated. The results of the logistic analysis are shown 
in  Table  2. As shown in  Fig.  3A–G, according to the 
Kruskal–Wallis Test and Dunn’s test, CD72 expres-
sion correlated with KIRC patients’ Pathologic T stage, 
Pathologic stage, Pathologic M stage, Pathologic N stage, 
Histologic grade, Laterality, and OS event were corre-
lated (P < 0.05). According to survival analysis, as shown 
in Fig.  3H–J, high expression of CD72 was associated 
with poorer overall survival (OS), disease-specific sur-
vival (DSS), and progression-free interval (PFI) in KIRC 
patients. An AUC of 0.954 shows that KIRC may serve as 
a potential diagnostic biomarker (Fig. 3K).

Subgroup analysis of survival prognosis of UNC93B1 
expression
Figure 4A–I  shows the survival of patients with high or 
low CD72 expression in different KIRC subgroups.

The results showed that the subgroup of age not older 
than 60 (HR = 2.00 (1.20–3.32), P = 0.08), the subgroup 
of sex male (HR = 1.49 (1.02–2.17), P = 0.040, the sub-
group of T1 & T2 & T3 of T stage (HR = 1.44 (1.06–1.96), 
P = 0.021), Low & Normal subgroup of Serum calcium 
(HR = 1.75 (1.22–2.50), P = 0.040), Low & Normal sub-
group of Hemoglobin: (HR = 1.45 (1.05–1.99), P = 0.022), 
Stage IV subgroup of Pathologic stage (HR = 1.87 (1.13–
3.08), P = 0.015), M1 subgroup of M stage (HR = 1.73 
(1.03–2.88), P = 0.038) were associated with increased 
CD72 expression and poor overall survival.

Functional enrichment analysis of CD72 in KIRC
GO, KEGG, and GSEA enrichment analyses were per-
formed using the single gene differential analysis results 
shown in Fig.  5. GO analysis showed that CD72 was 
functionally associated with microtubule binding, 
cytoskeletal motor activity, histone kinase activity, G 
protein-coupled receptor binding, and long-chain fatty 
acid binding (Fig. 5A and Table 3). Figure 5B and Table 4 
show the results of KEGG analysis that CD72 is associ-
ated with signaling pathways such as the Cell cycle, PPAR 
signaling pathway, p53 signaling pathway, Chemokine 
signaling pathway, and Cytokine–cytokine receptor 
interaction. Z scores reflect, to some extent, the rele-
vance of CD72 to these pathways. Negative Z scores indi-
cate a negative correlation, and positive Z scores indicate 
a positive correlation. Figure  5C, D shows the enrich-
ment and grading results of GSEA, indicating that CD72 
is closely associated with signaling pathways such as the 
Pd 1 signaling pathway, the CTLA4 pathway, the Th17 



Page 5 of 18Tian et al. European Journal of Medical Research          (2023) 28:531 	

Fig. 1  Distributions of mRNA in KIRC and identification of DEmRNA association with immunity and prognostic of KIRC patients
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Fig. 2  Differential expression of CD72 in pan-cancer and KIRC
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cell differentiation pathway, the B-cell receptor signal-
ing pathway, costimulation of the CD28 family, primary 
immune deficiencies, cancer immunotherapies via Pd1 
blockade, regulators of TCR signaling, and T-cell activa-
tion, as well as other genes associated with tumorigen-
esis, invasion, and angiogenesis.

Correlation of CD72 expression with tumor immunity
As shown in Fig. 6A, the relationship between the relative 
number of 24 immune cells and the expression of CD72 
in KIRC was evaluated using the ssGSEA algorithm. 
As shown in Fig. 6B–*I, different types of immune cells 
were correlated with CD72 expression, including T cells 
(R = 0.652, P < 0.001), T helper cells (= 0.605, P < 0.001), 
TReg (R = 0.509, P < 0.001), Th1 cells (R = 0.507, 
P < 0.001), Cytotoxic cells (R = 0.507, P < 0.001), Mast cells 
(R = − 0.125, P < 0.004), NK cells (R = − 0.149, P < 0.001), 
Th17 cells (R = 0.246, P < 0.001). Mann–Whitney U test 
(Wilcoxon rank sum test) was used to detect the enrich-
ment of immune cells in CD72 high- and low-expres-
sion groups. The results showed that compared with the 
CD72 low-expression group, in the CD72 high-expres-
sion group, T cells, T helper cells, Treg, Th1 cells, Cyto-
toxic cells, aDC, B cells, Macrophages, TFH, Tcm, CD8 
T cells, CD56bright cells, Tem, Eosinophils, and CD72 
bright cells were enriched. Cells, Tem, Eosinophils, DC, 
and Neutrophils were more enriched (Fig.  7A–C). In 
KIRC, the expression of CD72 was positively associ-
ated with the expression of PD-1 (PDCD1) (R = 0.741, 
P < 0.001), CTLA4 (R = 0.744, P < 0.001), and PD-L1 
(CD274) (R = 0.329, P < 0.001) using the spearman’s anal-
ysis (Fig. 8A–C).  

Evaluation of CD72 expression
Next, we evaluated the expression of CD72 in KIRC cells 
786-O, ACHN, and renal cells HK-2 in Real-time PCR. 
As shown in Fig.  9A, the expression of CD72 in renal 
cancer cells was higher than in normal renal cells. In 
addition, the immunohistochemical results in the HPA 
database confirmed this result (Fig. 9B, C).

Discussion
KIRC, as the most common renal cell carcinoma, is chal-
lenging to diagnose at an early stage, surgery has limita-
tions, and postoperative metastasis and recurrence are 
the main reasons for its high mortality rate. With the 

Table 1  CD72 expression associated with clinicopathological 
characteristics (baseline data sheet)

Characteristics Low 
expression 
of CD72

High 
expression 
of CD72

P value

n 270 271

Pathologic T stage, n (%) < 0.001

 T1 164 (30.3%) 115 (21.3%)

 T2 30 (5.5%) 41 (7.6%)

 T3 76 (14%) 104 (19.2%)

 T4 0 (0%) 11 (2%)

Pathologic N stage, n (%) 0.091

 N0 113 (43.8%) 129 (50%)

 N1 4 (1.6%) 12 (4.7%)

Pathologic M stage, n (%) < 0.001

 M0 227 (44.7%) 202 (39.8%)

 M1 25 (4.9%) 54 (10.6%)

Pathologic stage, n (%) < 0.001

 Stage I 161 (29.9%) 112 (20.8%)

 Stage II 26 (4.8%) 33 (6.1%)

 Stage III 57 (10.6%) 66 (12.3%)

 Stage IV 25 (4.6%) 58 (10.8%)

Primary therapy outcome, n (%) 0.163

 PD 4 (2.7%) 7 (4.8%)

 SD 5 (3.4%) 1 (0.7%)

 PR 2 (1.4%) 0 (0%)

 CR 71 (48.3%) 57 (38.8%)

Gender, n (%) 0.054

 Female 104 (19.2%) 83 (15.3%)

 Male 166 (30.7%) 188 (34.8%)

Race, n (%) 0.024

 Asian 1 (0.2%) 7 (1.3%)

 Black or African American 35 (6.6%) 22 (4.1%)

 White 233 (43.6%) 236 (44.2%)

Age, n (%) 0.764

 <  = 60 136 (25.1%) 133 (24.6%)

 > 60 134 (24.8%) 138 (25.5%)

Histologic grade, n (%) < 0.001

 G1 11 (2.1%) 3 (0.6%)

 G2 136 (25.5%) 100 (18.8%)

 G3 92 (17.3%) 115 (21.6%)

 G4 24 (4.5%) 52 (9.8%)

Serum calcium, n (%) 0.366

 Low 114 (31.1%) 90 (24.5%)

 Normal 74 (20.2%) 79 (21.5%)

 Elevated 5 (1.4%) 5 (1.4%)

Hemoglobin, n (%) 0.093

 Low 124 (26.9%) 140 (30.4%)

 Normal 106 (23%) 86 (18.7%)

 Elevated 4 (0.9%) 1 (0.2%)

Laterality, n (%) < 0.001

 Left 105 (19.4%) 148 (27.4%)

Table 1  (continued)

Characteristics Low 
expression 
of CD72

High 
expression 
of CD72

P value

 Right 164 (30.4%) 123 (22.8%)
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emergence of tyrosine kinase inhibitors targeting vas-
cular endothelial growth factor receptors, rapamycin-
targeted protein inhibitors, and immune checkpoint 
inhibitors, the choice of second-line treatment is expand-
ing, and renal cancer treatment has entered a new era 
[43]. However, KIRC has high intrinsic heterogeneity and 
lacks early diagnostic and prognostic biomarkers [44, 45]. 
In addition, KIRC is one of the most immune-infiltrated 
tumors [46, 47]. Therefore, searching for new diagnostic 
and prognostic biomarkers and therapeutic targets and 
developing new anti-tumor drugs and immunothera-
pies are essential ways to improve the survival of KIRC 
patients.

In this study, we obtained clinical and RNA data of 
KIRC patients from the TCGA database and downloaded 
immune-related genes from the ImmPort database. Then 
we used the "limma" package, "survival" package, and 
Venn overlaps analysis to obtain differentially expressed 
mRNAs (DEmRNAs) related to the prognosis and immu-
nity of KIRC patients, and we finally chose CD72 as the 
target gene.

Our study was analyzed using the UCSC XENA and 
TCGA database, and the results showed that in KIRC, 
compared with paracancerous tissues, the expression 
level of CD72 was significantly increased, which cor-
related with poor patient prognosis. KIRC patients with 
high expression of CD72 were less likely than those with 
low expression of CD72 in terms of either OS, DSS, or 
PFI. These results suggest that CD72 is associated with 
the occurrence and development of KIRC. In this study, 
CD72 expression was significantly correlated with the 
Pathologic T stage, Pathologic stage, Pathologic M 
stage, Pathologic N stage, Histologic grade, Laterality, 
and OS event, suggesting that CD72 may play an essen-
tial role in the biological function of tumor cells. Play an 

important role in the biological function of tumor cells. 
These results suggest that CD72 may be a useful diagnos-
tic molecular marker for KIRC and can predict the out-
come of KIRC patients. In addition, based on the ROC 
diagnostic curve (AUC = 0.954) and logistic analysis, it 
was further shown that CD72 could be used for KIRC 
diagnosis.CD72 is expected to be a potential biomarker 
for determining the prognosis, suggesting that patients 
with KIRC may benefit from using CD72 for diagnosis 
and prognosis.

To further understand the molecular mechanism of 
CD72 in tumorigenesis and development, functional 
enrichment analysis of GO, KEGG, and GSEA was 
performed using CD72 and its related differentially 
expressed genes. GO-based enrichment analysis showed 
that CD72 and its co-expressed mRNAs were enriched 
for several molecular functions (e.g., microtubule bind-
ing, cytoskeletal motor activity, histone kinase activity, G 
protein-coupled receptor binding, long-chain fatty acid 
binding), biological processes (mitotic nuclear division, 
mitotic sister chromatid segregation, organelle fission, 
chromosome segregation).

Abnormal expression of microtubule-binding proteins 
can cause cytoskeletal changes. Abnormal cytoskeletal 
motility activity may disrupt critical processes such as 
cell proliferation, migration, and metastasis [48, 49], lead-
ing to disorganization of cellular structure and abnormal 
proliferation of tumor cells [50]. Aberrant activation of 
histone kinases may lead to disrupted chromatin struc-
ture and aberrant gene expression, thereby affecting 
tumor cell proliferation and transcriptional regulation 
[51, 52]. Aberrant activity of G protein-coupled recep-
tors may trigger aberrant activation of cell signaling path-
ways, promoting the proliferation and survival of tumor 
cells [53, 54]. RCC is essentially a metabolic disease 

Table 2  The logistic analysis of clinicopathological parameters in patients with KIRC

Characteristics Total (N) OR (95% CI) P value

Pathologic T stage (T1 vs. T2 & T3 & T4) 541 0.476 (0.338–0.671) < 0.001
Pathologic N stage (N1 vs. N0) 258 2.628 (0.8248.378) 0.102

Pathologic M stage (M1 vs. M0) 508 2.427 (1.4574.045) < 0.001
Primary therapy outcome (CR vs. PD & SD & PR) 147 1.104 (0.4162.927) 0.843

Gender (male vs. female) 541 1.419 (0.9942.026) 0.054

Laterality (right vs. left) 540 0.532 (0.3780.749) < 0.001
Pathologic stage (Stage I & Stage II vs. Stage III & Stage IV) 538 0.513 (0.3600.730) < 0.001
Race (White vs. Asian & Black or African American) 534 1.257 (0.7462.118) 0.389

Age (< = 60 vs. > 60) 541 0.950 (0.6781.330) 0.764

Histologic grade (G1 & G2 vs. G3 & G4) 533 0.487 (0.3440.688) < 0.001
Serum calcium (Low vs. Normal & Elevated) 367 0.742 (0.4911.122) 0.158

Hemoglobin (Low vs. Normal & Elevated) 461 1.428 (0.9852.068) 0.060
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Fig. 3  Clinical correlation analysis of CD72 expression
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characterized by a reprogramming of energetic metabo-
lism [55–58]. In particular the metabolic flux through 
glycolysis is partitioned [59–61], and mitochondrial 
bioenergetics and OxPhox are impaired, as well as lipid 
metabolism [59, 62–64]. In addition, aberrant expression 
of long-chain fatty acid binding proteins may lead to dis-
turbances in intracellular energy metabolism and altera-
tions in tumor cell growth [65].

In tumor development, mitotic nuclear division, sis-
ter chromatid segregation, and abnormal chromosome 

segregation lead to genomic instability, increase the risk 
of chromosomal abnormalities and mutations, and pro-
mote tumor formation and development [66, 67]. The 
correct alignment of the mitotic spindle during cell divi-
sion is critical for cell fate determination, tissue organi-
zation, and development. Changes in the dynamics and 
control of microtubules that impair the mitotic spindle 
lead to chromosomal instability, leading to the genera-
tion of tumor cells [68, 69]. The molecular mechanism 
of CD72 in the development of KIRC may be related 

Fig. 4  Subgroup prognostic analysis of survival and CD72 expression
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to its role in cell cycle regulation, cell growth, and cell 
migration.

KEGG analysis also showed that CD72 function is asso-
ciated with signaling pathways such as cell cycle, PPAR 
signaling pathway, p53 signaling pathway, coagulation 
factor signaling pathway, and cytokine–cytokine receptor 
interactions. Abnormal cell cycle regulation is essential 

in tumorigenesis and progression, leading to unlimited 
cell proliferation [70]. Abnormalities in PPAR and p53 
signaling pathways are associated with the progression 
of multiple tumors [71–75]. Abnormalities in chemokine 
pathways are associated with tumor infiltration, metas-
tasis, and neovascularization [76–78]. Cytokine-recep-
tor interactions are critical for regulating cell growth, 

Fig. 5  Functional enrichment analysis of CD72 in KIRC
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differentiation, and immunity, and abnormalities can lead 
to tumor immune escape phenomena [79, 80].

Based on GSEA enrichment analysis, CD72 and its co-
expressed mRNAs are enriched in signaling pathways 
such as Pd 1 Signaling, CTLA4 Pathway, Th17 Cell Dif-
ferentiation Pathway, B Cell Receptor Signaling Pathway, 
Costimulation By the CD28 Family, Primary Immu-
nodeficiency, Cancer Immunotherapy By Pd1 Block-
ade, Modulators of Tcr Signaling and T Cell Activation, 
Costimulation By the CD28 Family, Primary Immunode-
ficiency, Cancer Immunotherapy By Pd1 Blockade, Mod-
ulators of Tcr Signaling and T Cell Activation, and other 
Signaling Pathways associated with tumor immunity and 
tumorigenesis.

Correlation analysis showed a significant association 
between CD72 and PD-L1 (CD274) and CTLA4. Pd 1 and 
CTLA4 are two key immune checkpoint molecules with 
essential roles in regulating T-cell function and activating 
[81, 82]. When Pd-L1 (ligand for Pd 1) and CTLA4 are 
upregulated, tumor cells can evade the immune response 
and promote tumor growth. Activated T cells express 
PD-1 encoded by the PDCD1 gene, while PD-L1 encoded 
by the CD274 gene is overexpressed on the membrane 

surface of tumor cells. PD-1 binds to PD-L1, inhibits 
T-cell activation and causes their death, and then assists 
in the immune escape of tumor cells [83]. Abnormal 
B-cell receptor (BCR) signaling pathway activation may 
also lead to malignant transformation of B cells, which 
drives tumorigenesis and progression [84]. In addition, 
through activation of the Th17 cell differentiation path-
way, increased numbers of tumor-infiltrating immune 
cells, promotion of neovascularization, and alterations in 
the tumor microenvironment can promote tumorigen-
esis and progression [85]. Co-stimulatory pathways of the 
CD28 family impact tumor growth and immune surveil-
lance by influencing T-cell activation, proliferation, and 
anti-tumor immune responses, as well as modulating 
immune cell function [86]. The above results suggest that 
CD72 is essential in tumorigenesis and progression.

The results of immune infiltration showed that the 
degree of infiltration of T cells, T helper cells, Treg, 
Th1 cells, cytotoxic cells, aDC, B cells, macrophages, 
TFH, Tcm, CD8 T cells, CD56bright cells, Tem, eosino-
phils, DC, and neutrophils showed a significant posi-
tive correlation with CD72 expression. Mast cells, NK 
cells, and Th17 infiltration degree were significantly 

Table 3  GO analysis

Ontology ID Description Gene ratio Bg ratio P value p.adjust Z score

BP GO:0140014 Mitotic nuclear division 31/197 293/18800 2.61e−22 7.82e−19 −0.5388159

BP GO:0000070 Mitotic sister chromatid segregation 24/197 171/18800 2.26e−20 1.83e−17 − 0.8164966

BP GO:0048285 Organelle fission 36/197 493/18800 2.44e−20 1.83e−17 − 1.0000000

BP GO:0007059 Chromosome segregation 28/197 348/18800 4.75e−17 2.37e−14 − 1.5118579

BP GO:0051304 Chromosome separation 14/197 97/18800 1.58e−12 4.3e−10 0.5345225

CC GO:0005819 Spindle 26/203 402/19594 9.72e−14 2.88e−11 − 1.1766968

CC GO:0072686 Mitotic spindle 17/203 160/19594 8.73e−13 1.29e−10 − 0.7276069

CC GO:0000775 Chromosome, centromeric region 19/203 227/19594 2.81e−12 2.77e−10 − 1.1470787

CC GO:0005875 Microtubule-associated complex 11/203 160/19594 9.09e−07 1.92e−05 − 0.9045340

CC GO:0062023 Collagen-containing extracellular matrix 17/203 429/19594 2.56e−06 5.05e−05 − 0.2425356

MF GO:0008017 Microtubule binding 19/192 272/18410 7.14e−11 3.28e−08 − 2.0647416

MF GO:0003774 Cytoskeletal motor activity 9/192 111/18410 2.45e−06 0.0002 − 0.3333333

MF GO:0035173 Histone kinase activity 4/192 16/18410 1.89e−05 0.0012 1.0000000

MF GO:0001664 G protein-coupled receptor binding 11/192 288/18410 0.0002 0.0080 − 0.3015113

MF GO:0036041 Long-chain fatty acid binding 3/192 15/18410 0.0005 0.0152 − 0.5773503

Table 4  KEGG analysis

Ontology ID Description Gene ratio Bg ratio P value p.adjust Z score

KEGG hsa04110 Cell cycle 11/95 126/8164 1.99e−07 4.18e−05 2.1105794

KEGG hsa03320 PPAR signaling pathway 7/95 75/8164 2.41e−05 0.0010 − 0.3779645

KEGG hsa04115 p53 signaling pathway 5/95 73/8164 0.0015 0.0400 1.3416408

KEGG hsa04062 Chemokine signaling pathway 8/95 192/8164 0.0017 0.0400 0.0000000

KEGG hsa04060 Cytokine–cytokine receptor interaction 10/95 295/8164 0.0022 0.0457 0.0000000
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Fig. 6  CD72 expression and tumor immunity
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Fig. 7  The relationship between CD72 expression and immune cells
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negatively correlated with CD72 expression. The tran-
sition from Th1/Th2 balance to Th2 dominance is criti-
cal during tumor progression. Th2 cells are detrimental 
to cellular immune anti-tumor effects. Restoration of 
Th1/Th2 balance is vital in tumor therapy [87]. Tregs 
are usually enriched in the tumor microenvironment, 
and many Tregs have a poor prognosis [88]. Lack of NK 

cell numbers and defective NK cell function promote 
the escape of tumor cells from immune surveillance 
[89]. Tumor-Associated Macrophages (TAMs) Promote 
Tumor Growth and Metastasis by Suppressing Tumor 
Immunosurveillance [90]. In addition, immunomodu-
latory interactions may be altered between lympho-
cytes and non-lymphocytes, leading to immune escape, 

Fig. 8  Tumor immune checkpoints and CD72 expression

Fig. 9  Evaluation of the expression of CD72 in renal clear cell carcinoma cell line
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immunosuppression, tumor growth and progression pro-
motion, and concomitant suppression of tumor immu-
notherapy in KIRC [90]. All these results suggest that 
up-regulation of CD72 expression can suppress the anti-
tumor immune response in KIRC patients.

In this study, correlation analysis showed a significant 
association between CD72 and PD-L1 (CD274), CTLA4, 
PD-1 (PDCD1), and immune cells (e.g., T cells, T helper 
cells, TReg, Th1 cells, Cytotoxic cells, Mast cells, NK 
cells, Th17 cells, etc.) were significantly associated with 
each other. In addition, in KIRC patients, compared with 
the CD72 low-expression group, the CD72 high-expres-
sion group showed a significant correlation between 
immune cells (T cells, T helper cells, Treg, Th1 cells, 
Cytotoxic cells, aDC, B cells, Macrophages, TFH, Tcm, 
CD8 T cells, CD56bright cells, Tem, Eosinophils, DC, 
Neutrophils, etc.) were more enriched. Our results sug-
gest that CD72 is closely associated with immune infiltra-
tion and immunosuppression in the microenvironment 
of KIRC tumors.

Conclusion
In conclusion, we found that CD72 was overexpressed in 
KIRC and correlated with the clinical stage of patients, 
and it may be a marker for early diagnosis of KIRC 
patients. In addition, CD72 was associated with poor 
patient prognosis and could be an independent prognos-
tic factor for KIRC.CD72 may promote tumor develop-
ment by regulating the cell cycle and immune-related 
signaling pathways and facilitating immune cell infiltra-
tion.CD72 also showed a significant positive correla-
tion with PD-L1 (CD274), CTLA4, and PD-1 (PDCD1) 
immunotherapeutic targets. Therefore, CD72 is expected 
to be a potential diagnostic and prognostic biomarker 
for KIRC and a new target for anti-tumor drug develop-
ment. However, the results obtained in this study require 
additional experiments, such as animal and cellular 
experiments, to further validate the mechanism by which 
CD72 promotes KIRC. Since this study was a retrospec-
tive study based on the available RNA sequencing data in 
the TCGA and GEO databases, prospective studies are 
needed in the future to minimize the bias caused by ret-
rospective studies.
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