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Abstract 

Background  umor cells, immune cells and stromal cells jointly modify tumor development and progression. We aim 
to explore the potential effects of tumor purity on the immune microenvironment, genetic landscape and prognosis 
in prostate cancer (PCa).

Methods  Tumor purity of prostate cancer patients was extracted from The cancer genome atlas (TCGA). Immune 
cellular proportions were calculated by the CIBERSORT. To identify critical modules related to tumor purity, we used 
weighted gene co-expression network analysis (WGCNA). Using STRING and Cytoscape, protein–protein interaction 
(PPI) networks were constructed and analyzed. A Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway, Disease Ontology (DO), and Gene Set Enrichment Analysis (GSEA) enrichment analysis of identified 
modules was conducted. To identify the expression of key genes at protein levels, we used the Human Protein Atlas 
(HPA) platform.

Results  A model of tumor purity score (TPS) was constructed in the gene expression omnibus series (GSE) 116,918 
cohort. TCGA cohort served as a validation set and was employed to validate the TPS. TPS model, as an independ-
ent prognostic factor of distant metastasis‐free survival (DMFS) in PCa. Patients had higher tumor purity and better 
prognosis in the low-TPS group. Tumor purity was related to the infiltration of mast cells and macrophage cells posi-
tively, whereas related to the infiltration of dendritic cells, T cells and B cells negatively in PCa. The nomogram based 
on TPS, Age, Gleason score and T stage had a good predictive value and could evaluate the prognosis of PCa metas-
tasis. GO and KEGG enrichment analyses showed that hub genes mainly participate in T cell activation and T-helper 
lymphocytes (TH) differentiation. Hub genes were mainly enriched in primary immunodeficiency disease, according 
to DO analysis. SLAMF8 was identified as the most critical gene by Cytoscape and HPA analysis.

Conclusions  Dynamic changes in the immune microenvironment associated with tumor purity could correlate 
with a poor DMFS of low-purity PCa. The TPS can predict the DMFS of PCa. In addition, prostate cancer metastases 
may be related to immunosuppression caused by a disorder of the immune microenvironment.
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Introduction
Prostate cancer (PCa) is the primary malignancy among 
men, responsible for 14.1% of new cases, and ranks 5th 
in terms of cancer-related deaths (with a mortality rate of 
6.8%) worldwide [1]. In China, prostate cancer accounts 
for 8.16% of new cancers in men (ranking as the 6th most 
common malignancy), with a mortality rate of 13.61 (ranks 
7th in terms of cancer-related deaths) [2]. The leading 
cause of death is metastasis in PCa. The outcome of meta-
static PCa is inferior, as only 30% of patients could survive 
for 5  years [3]. Gleason score and tumor, node, metasta-
sis (TNM) stage are prognostic factors. Unfortunately, 
there may be vast differences in clinical outcomes between 
patients with the same Gleason score, making it essential 
to identify critical factors influencing prognosis.

It has been found that tumor purity is significantly 
related to the clinical characteristics and genetic features 
of patients with tumors. It is possible to develop system-
atic biases in recurrence risk, tumor genotyping and effi-
cacy prediction by ignoring the influence of tumor purity 
[4]. A low-purity tumor sample has a higher mutational 
burden and more immune cells. Immune cells’ inflamma-
tory response may result in tumor cells mutating more 
rapidly, which may improve the effectiveness of immu-
notherapy [4]. Previous studies have indicated that tumor 
purity is one way of determining the efficacy of immu-
notherapy. Gastric and colon cancer prognosis has been 
demonstrated to positively correlate with tumor purity [5, 
6]. However, few studies have considered the influence of 
tumor purity in the prognosis of PCa.

A tumor purity calculation was performed using the 
ESTIMATE algorithm in this study [7]. The CIBERSORT 
algorithm was used to verify further whether low- and 
high-purity tumors had significantly different immune 
cell infiltration levels. After that, the tumor purity co-
expression network was constructed using weighted 
gene co-expression network analysis (WGCNA) [8]. The 
co-expression modules contained genes that were most 
related to tumor purity. Gene signatures associated with 
distant metastasis-free survival (DMFS) of prostate can-
cer were identified using the least absolute shrinkage 
and selection operator (LASSO)–COX regression analy-
sis. Then, tumor purity score (TPS) was constructed. 
Kaplan–Meier and receiver operating characteristics 
curve (ROC) analyses indicated that PCa patients with 
higher TPS had worse prognoses. A nomogram was 
created using TPS and clinical parameters. In addition, 
all hub genes underwent Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and Dis-
ease Ontology (DO) enrichment analysis. Our study 
has revealed a relationship between tumor purity and 
immune cell infiltration in PCa and built a robust predic-
tive model for clinical application.

Materials and methods
Data acquisition
The gene expression omnibus (GEO) database was cre-
ated by the National Center for Biotechnology Infor-
mation (NCBI), which contains gene expression data 
submitted by research institutes around the world [9]. 
The cancer genome atlas (TCGA) was launched by the 
National Cancer Institute (NCI) and the National Human 
Genome Research Institute (NHGRI) in 2006. More than 
20.000 samples data from 33 types of cancer were con-
tained in the TCGA database, including transcriptome 
data, genomic variation data, methylation data, and clini-
cal data. The selection criteria for public data sets were as 
follows: (1) available transcriptome (microarray or RNA 
sequencing data; (2) available information on basic clin-
icopathological parameters and metastatic survival; (3) a 
sample size of greater than 200. Therefore, gene expres-
sion omnibus series (GSE) 116,918 array expression data 
and TCGA sequencing data of PCa were screened [10, 11]. 
Clinicopathological information was collected from dif-
ferent portals: TCGA (https://​portal.​gdc.​cancer.​gov/) and 
GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Clinicopatho-
logical characteristics of the enrolled patients in detail for 
both data sets were described in Table 1.

Immune infiltration and tumor purity calculation
The ESTIMATE package in R software was performed to 
calculate stromal, ESTIMATE and immune scores in malig-
nancy tissues [7]. To determine the tumor purity of each 
malignancy tissue in TCGA-Prostate Adenocarcinoma 
(PRAD), the ESTIMATE algorithm was used. According 
to the median tumor purity, we categorized prostate can-
cer patients into low- and high-tumor purity groups. The 
infiltration level of immune cells was evaluated by Single-
sample GSEA (ssGSEA) analysis, which was achieved using 
the Gene Set Variation Analysis (GSVA) package [12]. The 
difference in infiltration levels of LM22 human immune cell 
subtypes was evaluated with the CIBERSORT algorithm 
between low- and high-tumor purity groups [13].

Differential gene screening
In low- and high-tumor purity groups, TCGA-PRAD 
transcriptome files were subjected to differentially 
expressed genes (DEGs) analysis using the R package 
“Limma” [14]. Genes with a p value < 0.05 (false discovery 
rate (FDR) correction, empirical Bayesian modulation 
method in Limma R package) and log2 fold change ≥ 2 
were selected as DEGs.

WGCNA analysis
WGCNA was performed to identify a set of tumor 
purity-related co-expressed genes in prostate cancer [8]. 
In this study, we set an R square of 0.9, a soft threshold of 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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7, and a minimum gene module of 50, generating 15 non-
gray modules. The similarities and differences between 
all modules were calculated. The module can be used to 
construct a dendrogram, enabling the identification of 
key differential genes that exhibit the strongest correla-
tion with tumor purity.

Prognostic model based on LASSO‑COX
To screen characteristic variables related to the survival 
of patients with metastatic prostate cancer in the 
key differential genes, the LASSO-COX regression 
classification model was constructed in GSE116918 set 
using the “glmnet algorithm” package in R software [15, 
16]. Then, TPS was calculated using the sum of LASSO 
coefficients multiplied by the expression value of each 
gene in both sets.

ROC and survival analysis
According to the median TPS, patients were divided into 
low- and high-TPS groups in the GSE116918 data set. 
The "survival" R package was performed to analyze the 
DMFS of patients in two groups (https://​CRAN.R-​proje​

ct.​org/​packa​ge=​survi​val). To quantify an area under 
the curve (AUC), the R package "survival ROC" was 
performed to depict a time-dependent ROC plot [17]. 
The predictive ability of TPS was verified by predictive 
accuracy and survival difference in the TCGA data set.

Univariate and multivariate COX models
To screen independent risk elements for PCa, univariate 
and multivariate Cox regression analyses were 
implemented using the "survival" R package (https://​
CRAN.R-​proje​ct.​org/​packa​ge=​survi​val). Exclusion 
criteria were incomplete data, such as survival status and 
clinical variables. In the GSE116918 data set, 223 patients 
had complete information. Clinical variables included 
age, PSA, T stage, and Gleason. In the TCGA data set, 
391 patients had complete information. Clinical variables 
included PSA, T stage, N stage, and Gleason.

Nomogram analysis
Based on clinical variables and TPS, a prediction model 
was developed and constructed as a nomogram. The 
nomogram was constructed using "foreign", "survival" 
and "rms" R packages (https://​CRAN.​Rproj​ect.​org/​packa​
ge=​forei​gn, https://​CRAN.R-​proje​ct.​org/​packa​ge=​survi​
val, https://​CRAN.R-​proje​ct.​org/​packa​ge=​rms). The 
calibration chart was implemented to assess the per-
formance characteristics of this nomogram. The train-
ing (GSE116918) data set was used to build a nomogram 
model for DMFS prediction. As a validation data set, the 
TCGA cohort was then used to validate the model.

Identification and validation of hub genes
According to the tumor purity, differential genes with 
a p value under 0.05 and a genetic significance greater 
than 0.8 in green module were selected as the hub genes. 
A heat map and box map of hub genes expression were 
drawn according to the tumor purity group through the 
package ggpubr (https://​CRAN.R-​proje​ct.​org/​packa​ge=​
ggpubr), and pheatmap (https://​CRAN.R-​proje​ct.​org/​
packa​ge=​pheat​map). Make a correlation graph for the 
hub genes and tumor purity using the corrplot package 
(http://​CRAN.R-​proje​ct.​org/​packa​ge=​corrp​lot).

Developing and analyzing protein–protein interaction 
(PPI) networks of hub genes
To estimate protein interactions between hub genes, the 
PPI network was constructed using the online database 
of the Search Tool for the Retrieval of Interacting Genes 
(STRING; http://​string-​db.​org/) and significant differ-
ences were determined by a combined-score greater than 
0.4 [18]. In addition, Cytoscape (version 3.8.2) was used 
to visualize the network [19].

Table 1  Clinical and pathological characteristics of TCGA and 
GEO data sets

PSA, prostate-specific antigen; MET, metastasis; NA, not applicable

Characteristics TCGA (n = 495) GSE116918 (n = 248)

Age, n (%)

 ≤ 60 222(44.8) 35(14.1)

 > 60 273(55.2) 213(85.9)

PSA, n (%)

 ≤ 10 – 50(20.2)

 > 10 – 198(79.8)

T stage, n (%)

 T1 – 51(20.6)

 T2 187(37.8) 76(30.6)

 T3 291(58.8) 92(37.1)

 T4 10(2.0) 4(1.6)

 NA 7(1.4) 25(10.1)

N stage, n (%)

 N0 344(69.5) –

 N1 78(15.8) –

 NA 73(14.7) –

Gleason score, n (%)

 < 7 45(9.1) 42(17.0)

 = 7 246(49.7) 99(39.9)

 > 7 204(41.2) 107(43.1)

MET, n (%)

 No 444(89.7) 226(91.1)

 Yes 17(3.4) 22(8.9)

 NA 34(6.9) –

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.Rproject.org/package=foreign
https://CRAN.Rproject.org/package=foreign
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
http://CRAN.R-project.org/package=corrplot
http://string-db.org/


Page 4 of 15Su et al. European Journal of Medical Research          (2023) 28:545 

Analyses of gene ontology (GO), kyoto encyclopedia 
of genes and genomes (KEGG), and disease ontology (DO) 
enrichment
Separate analyses were conducted on hub genes based 
on GO, KEGG, and DO enrichment. To perform an 
enrichment analysis, filter conditions were set as follows: 
p value < 0.05, q value < 0.05, and enrichment results with 
significance if both conditions were met. To visualize 
enrichment analysis results and map bubble charts, 
we use the ’clusterProfiler’ [20], the ’DOSE’ [21], the 
’enrichplot’ and ’ggplot2’ packages [22]. We visualized 
the first ten enrichment pathways created by GSEA 
enrichment analysis on hub genes.

Verification of hub and TPS genes
First, we compared the expression of the top 20 hub genes 
and TPS genes in tumor tissues and normal tissues in 
the TCGA database. Second, the differentially expressed 
genes were paired and compared between tumors and 
adjacent normal tissues. Lastly, the Human Protein Atlas 
(HPA) database (https://​www.​prote​inatl​as.​org/, accessed 
on 08 October 2023) was used to retrieve prostate tissue 
images of differentially expressed genes.

Statistical analysis
Statistical analysis was implemented using R 3.6.3 
software (https://​www.r-​proje​ct.​org/). Using Spearman 

correlation analysis, the association between continuous 
variables was evaluated. The nearest neighbor estimation 
(NNE) method was performed to draw DMFS plots. To 
compare the difference in DMFS between the low-TPS 
and high-TPS groups, the log-rank test was used. For 
determining independent prognostic factors, univariate 
and multivariate Cox regressions were carried out, along 
with 95% confidence intervals (CI) and hazard ratios 
(HR). For comparison between the two groups, Wilcox 
tests were conducted. The p value < 0.05 was defined as 
statistically significant for all the analyses.

Results
Immune microenvironment and tumor purity
The tumor purity of each PCa sample was evaluated 
using the ESTIMATE algorithm. As shown in Additional 
file 1: Table S1, immunological scores and tumor purity 
were calculated for each patient in the TCGA-PRAD data 
set. The distribution of clinical features and immune cell 
infiltration in low- and high-tumor purity groups were 
visualized using heat maps (Fig.  1A). There was a sig-
nificant increase in immune cell infiltration in the low-
purity group. In low- and high-tumor purity groups, the 
CIBERSORT algorithm was performed to calculate the 
differences in the contents of immune cells (Fig.  1B). 
The contents of B cells, CD4+ T lymphocytes, neutro-
phils, dendritic and eosinophils cells were significantly 

Fig. 1  Tumor purity and immune cell infiltration in PCa. A Compared to the low-tumor purity group, there is a significantly different in immune 
cell infiltration and clinical features in the high-tumor purity group. B Comparing immune cells’ proportion between two tumor purity subgroups 
by CIBERSORT algorithm. *p value < 0.05; **p value < 0.01; ***p value < 0.001

https://www.proteinatlas.org/
https://www.r-project.org/
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increased in the low-purity group. This verified the 
robustness of the ESTIMATE algorithm.

Tumor purity and clinical features
Our study was conducted to examine the potential effects 
of tumor purity on clinicopathological features in PCa, as 
shown in Fig. 2. Tumor purity was significantly related to 
immune score, stromal score, ESTIMATE score, and clin-
ical characteristics (P < 0.001). With an increase in Glea-
son (p = 0.039), T stage (p = 0.014) or M stage (p = 0.018), 
tumor purity was decreased significantly. However, there 
was no considerable decrease in tumor purity among 
patients with lymphatic metastasis (P = 0.179).

Development of tumor purity score (TPS)
Scale-free R2 was defined as 0.9, with soft threshold 
power set to 7 (Fig.  3A). Sample dendrogram and trait 
heatmap was built (Fig.  3B). Using WGCNA analysis 
of 5379 differential genes, 15 co-expression networks 
were obtained (Fig.  3C), where each color represents a 
co-expression network. In addition, we identified 363 
genes in the green module that have the strongest asso-
ciation with tumor purity (r = − 0.9, FDR = 10−38) using 
co-expression networks (Fig.  3D). We have uploaded 
Additional file  2: Table  S2 with the WGCNA results. 
There were 282 genes shared between the TCGA and 
GSE116918 data sets for subsequent analysis. In the 
training set GSE116918, two genes (FCER1G and OLR1) 
were screened as signature genes by Lasso-COX (Fig. 3E, 
F). TPS was calculated according to the formula (TPS = F
CER1G × 0.32572 + OLR1 × 0.29642).

High TPS conferred a worse prognosis in PCa
To verify TPS’s prediction ability, a ROC curve was 
drawn to calculate an AUC value in both training and 
validation sets. TPS had an excellent prediction effect. 
The AUC values in the training set were 0.821 for 5 years 
DMFS and 0.771 for 3 years DMFS (Fig. 4A). The AUC 
values in the validation set were 0.808 for 5 years DMFS 
and 0.777 for 3 years DMFS (Fig. 4B). PCa patients with 
higher TPS had shorter DMFS (p = 2.103–04, Fig.  4C). 
Fortunately, this finding was confirmed in the validation 
set (p = 0.005, Fig. 4D). For both training and validation 
data sets, multivariate and univariate COX models indi-
cated that TPS was an independent prognostic factor, as 
shown in Tables 2 and 3.

Nomogram development and validation
Nomogram was constructed using clinical features (age, 
Gleason and T stage) and TPS for the training set. Con-
sidering clinical features and TPS scores, the total score 
was calculated. The nomogram can be predicted from 3 
to 5 years DMFS (Fig. 5A). In calibration plots, the pre-
dicted result was very close to the actual result. As for 
calibration plots, the nomogram was highly accurate in 
predicting the prognosis of PCa patients in both cohorts 
(Fig. 5B, C).

Expression and correlation of hub genes
The expression of 77 hub genes was significantly dif-
ferent between the high and low tumor purity groups 
(Fig.  6A, B). In addition, significant correlations were 
found between the expression of 77 hub genes. There 
was a negative correlation between tumor purity and 

Fig. 2  Tumor purity’s correlation with immune signatures and clinical features. A Stromal score. B Estimate score. C Immune Score. D Gleason. E 
Pathological T stage. F Clinical M stage. G Pathological N stage
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hub genes. The immune score, stromal score and ESTI-
MATE score were positively correlated with hub genes 
(Fig. 6C).

PPI network module analysis
To understand the biological meaning of the hub genes 
identified by the WGCNA analysis, a PPI network was 
constructed from 75 nodes and 1686 edges for these 
hub genes-encoding proteins, as shown in Fig.  7A. 
A PPI network graph was conducted by Cytoscape 

software using Clustering Coefficient Ranking method 
(Fig. 7B).

Hub genes enrichment analysis
GO (gene ontology) enrichment results show T cell acti-
vation, regulation of lymphocyte activation, and leuko-
cyte cell–cell adhesion are the major biological process 
(BP) involved by hub genes. Hub gene function results in 
a cellular component (CC) consisting mainly of the exter-
nal side of plasma membrane, plasma membrane recep-
tor complex, membrane raft, etc. Molecular functions 
(MF) of hub genes products include cytokine receptor 

Fig. 3  Tumor purity score model construction by WGCNA and Lasso COX analysis. A Analysis of soft thresholds. B Sample dendrogram and trait 
heatmap. C Merged dynamic gene cluster dendrogram. D Identification of tumor purity score-related gene clusters. E, F Construction of tumor 
purity score by Lasso Cox analysis
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activity, cytokine binding, and GTPase regulator activity, 
among others (Fig. 8A, B). According to the KEGG path-
way enrichment analysis, hub genes were mainly involved 
in the Th1 and Th2 cell differentiation, followed by other 
pathways such as Cell adhesion molecules and Human 
T-cell leukemia virus 1 infection (Fig.  8C, D). In addi-
tion, the DO analysis reveals that hub genes were mainly 
enriched in primary immunodeficiency disease, ldemy-
elinating disease and omultiple sclerosis (Fig. 8E, F).

Gene expression and immunohistochemistry stain in PCa
We validated the top 20 hub genes (SAMSN1, CD6, 
RUNX3, LAIR1, SLAMF7, BIN2, CD5, EVI2A, LSP1, 
MPEG1, MYO1F, ARHGAP9, CIITA, CXCR3, RASAL3, 
ARHGAP25, NCKAP1L, SIT1, ARHGAP30, SLAMF8) 
and TPS genes (FCER1G, OLR1) using clinical samples 
in TCGA database and representative immunohisto-
chemistry (IHC) images from the Human Protein Atlas 
(HPA, https://​www.​prote​inatl​as.​org/) database. Among 
these genes, CD6, RASAL3, ARHGAP25, NCKAP1L, 
SLAMF8, FCER1G and OLR1 were significantly differ-
ent in PCa tissues. In addition, between tumor tissues 
and their paired adjacent normal tissues, ARHGAP25, 
SLAMF8 and OLR1 expression differed significantly. 
Even though ARHGAP25 showed decreased trends 
in the TCGA analysis, protein levels did not change 
significantly. According to the HPA database, pros-
tate tissue was not immunohistochemically stained for 
OLR1. Finally, both protein and RNA levels of SLAMF8 
showed significant increases in prostate tumor tissues 
(Fig. 9A–G).

Discussion
Recently, with the development of precision therapy and 
immunotherapy for malignant tumors, an important 
role is played by the immune microenvironment 
in tumor metastasis, treatment response, and 
prognosis. In addition, tumor purity can reflect unique 
characteristics of the tumor microenvironment (TME) 
[4]. Meanwhile, the high morbidity and mortality of 
PCa make it a global public health problem [1, 2]. 
Therefore, our study focused on the tumor purity of 
PCa.

A tumor purity calculation was performed first in 
this study. By the median value of tumor purity, we 
divided PCa into low and high groups. We screened 
out differential genes and obtained key genes with the 
highest relationship with tumor purity by the WGCNA. 
The ESTIMATE R package, ssGSEA algorithm and 
CIBERSORT were performed to uncover TME 
landscapes of different tumor purity subgroups in PCa. 
To establish a TPS model relating to DMFS in prostate 
cancer, LASSO-COX regression was used. Using this 
model, DMFS of PCa can be predicted independently. 
An excellent accuracy nomogram that can predict 
three- and five-year DMFS for PCa patients has been 
developed and validated.

There was a substantial correlation between tumor 
purity and immune cell infiltration in prostate cancers, 
as well as clinical features. With an increase in Gleason 
score, T stage or M stage, tumor purity was decreased 
significantly. These results indicate that high tumor 
purity is related to a favorable outcome of PCa. The 

Table 2  Univariate and multivariate Cox regression analyses of 
clinicopathologic features and TPS in the GSE116918 data set

PSA prostate-specific antigen, TPS tumor purity score, CI Confidence intervals, 
HR hazard ratio, NA not applicable, * p value < 0.05, ** p value < 0.01, *** p 
value < 0.001

Variables Univariate Cox analysis Multivariate Cox analysis

HR (95% CI) P HR (95% CI) P

Age (years)

 ≤ 60 1.000 (reference) NA 1.000 (reference) NA

 > 60 1.140(0.337 − 3.855) 0.832 1.713(0.478 − 6.139) 0.409

PSA

 ≤ 10 1.000 (reference) NA 1.000 (reference) NA

 > 10 1.159(0.392 − 3.427) 0.790 0.835(0.258 − 2.704) 0.763

 T stage 1.734(0.957 − 3.142) 0.070 1.182(0.614 − 2.276) 0.617

Gleason

 ≤ 7 1.000 (reference) NA 1.000 (reference)

 > 7 5.041(0.678 − 37.503) 0.114 2.186(0.269 − 17.761) 0.464

 TPS 19.391(5.274 − 71.292)  < 0.05* 16.281(3.781 − 70.104)  < 0.05*

Table 3  Univariate and multivariate Cox regression analysis of 
clinicopathologic features and TPS in the TCGA data set

TPS tumor purity score, CI confidence intervals, HR hazard ratio, NA: not 
applicable

*p value < 0.05; **p value < 0.01; ***p value < 0.001

Variables Univariate Cox analysis Multivariate Cox analysis

HR (95% CI) P HR (95% CI) P

Age (years)

 ≤ 60 1.000 (reference) NA 1.000 (reference) NA

 > 60 1.385(0.331–5.799) 0.656 1.088(0.230–5.139) 0.915

 T stage 5.929(1.434–
24.519)

0.014* 2.646(0.401–
17.433)

0.312

N stage

 No 1.000 (reference) NA 1.000 (reference) NA

 Yes 8.038(1.907–
33.877)

0.005** 7.486(1.179–
47.529)

0.033*

Gleason

 ≤ 7 1.000 (reference) NA 1.000 (reference) NA

 > 7 8.334(1.025–
67.752)

0.047* 3.176(0.332–
30.389)

0.316

 TPS 1.065(1.028–1.103)  < 0.001*** 1.082(1.033–1.134)  < 0.001***

https://www.proteinatlas.org/
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Fig. 6  Hub genes differential expression and correlation analysis. A Hub genes with their p values in two tumor purity groups. B Heatmap of hub 
genes expression. C Correlation maps of immune score, stromal score, ESTIMATE score and hub genes. *p value < 0.05, **p value < 0.01, ***p 
value < 0.001

Fig. 7  PPI Network Analysis of hub genes. A PPI network built using STRING database. In PPI network diagrams, nodes represent proteins and edges 
represent the interaction between proteins. B Visualization of PPI network by Cytoscape. Yellow to red represent increasing levels of Clustering 
Coefficient Ranking, i.e. yellow, low; orange, medium; red, high
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tumors with lower purity have a higher degree of malig-
nancy and a worse prognosis. This is consistent with 
previous findings in gastric cancer [5], glioma [23] or 
colon cancer [6]. Furthermore, our conclusions are in 
general agreement with previous results showing that a 
low Gleason score is a good prognostic factor [24].

In recent years, computational tools have emerged in 
an endless stream, and tumor purity estimation meth-
ods based on different genetic data types have been 
proposed. The ESTIMATE algorithm and CIBER-
SORT algorithm adopted in this study can be used for 
RNA sequencing analysis [7, 13]. Our experiments are 
verified mutually in these two algorithms. The results 

generated by these two algorithms are in good con-
sistency. In our previous studies, bioinformatics could 
screen genes and construct features to predict the prog-
nosis of prostate cancer, as well as explore molecular 
mechanisms of prostate cancer development [25–27]. 
The radiomics-based survival analysis performed well 
in predicting the prognosis for PCa patients, with the 
potential to optimize treatment protocols [28]. Radi-
omics combined with bioinformatics can help explore 
immunotherapy shortly.

The infiltration level of B cells in PCa is relatively 
higher compared with normal prostate tissue, 
suggesting that B cells can serve as a therapeutic 

Fig. 8  Enrichment analyses of hub genes were based on GO, DO, and KEGG in high and low- tumor purity group. A In the bubble plots of GO 
analysis, there were three major categories. B To visualize the top 10 biological process GO terms, a chord plot was employed. C In the bubble plots 
of KEGG analysis, there were top 10 KEGG enrichment pathway. D To visualize all the KEGG terms, a chord plot was employed. E In the bubble plots 
of DO analysis, there were top 10 DO enrichment pathway. F Graph illustrating the connections between the top 10 illnesses and hub genes
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target [29]. There are dispersed T-cell populations 
in both myeloid and blastic prostate cancers [30]. In 
metastatic castration-resistant PCa patients, Treg 
cell aggregation presents in the peripheral blood 
[31]. In the process of prostate carcinogenesis, M1 
macrophages transform into the M2 phenotype, which 
promotes an immunosuppressive TME and thus tumor 
growth and metastasis [32]. It was proposed the higher 
the (M1 + M2)/M0 ratio, the worse the prognosis [33]. 
Consistently, in the low tumor purity group of our 
study, M0 cells were significantly decreased and Treg 
cells were increased considerably, who had a worse 
prognosis.

Two genes (FCER1G and OLR1) related to TPS 
were significantly associated with PCa progression 
and metastasis, as proposed in previous studies. For 
example, GLRX, SNAP23 and OLR1 are overexpressed, 
which is related to aggressive metastasis in breast 
cancer and prostate cancer tissues [34]. FCER1G is 
associated with TME in PCa, which may help to predict 
the prognosis of PCa [35]. It has been reported that 
metastasis-associated gene FCER1G was abundantly 
expressed in circulating tumor cells (CTCs) of a PCa 
patient who was sensitive to docetaxel, a chemotherapy 
agent [36]. There is a significant increase of SLAMF8 in 
PCa tissues, both at the RNA and protein levels. It is an 
important metastatic marker worthy of further study.

Significant variations in the immune 
microenvironment among various tumor purities were 
observed through the process of enrichment analysis. 
Low purity tumor exhibits increased infiltration of 
immune cells and a negative prognosis. Meanwhile, we 
discovered that hub genes were primarily concentrated 
in primary immunodeficiency disorder. Accordingly, 
metastasis of prostate cancer may be linked to 
immunosuppressive conditions caused by immune 
microenvironment disorders. Research findings in 
different types of malignancies strongly support this 
new perspective, such as non–small cell lung cancer 
(NSCLC) and melanoma patients with liver metastasis 
[37], renal cell carcinoma [38], lung cancer [39].

This study has several limitations. Firstly, tumor 
purity was calculated based on only one set of TCGA 
transcriptome data. Our finding needs to be validated 
using more data sets and multiple algorithms. Secondly, 
this is a retrospective study. A prospective evaluation 
would enhance the robustness of our findings.

Conclusions
This study revealed that TPS can predict DMFS in 
PCa patients. Low TPS may result in better outcomes 
for patients with PCa due to a potential relationship 
between tumor immunity and tumor purity. Notably, 

TPS and nomogram models could have potential 
value in the prognostic stratification of PCa. Immune 
suppression may be an important mechanism for 
prostate cancer metastasis. Our study provides an 
essential clue for the clinical therapeutics of PCa.
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