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Abstract

ment strategy.

Background Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and a nonnegligible
health concern on a worldwide scale. Disulfidptosis is a novel mode of cell death, which is mainly caused by the col-
lapse of the actin skeleton. Although many studies have demonstrated that various types of cell death are associated
with cancer treatment, the relationship between disulfidptosis and HCC has not been elucidated.

Methods Here, we mainly applied bioinformatics methods to construct a disulfidptosis related risk model in HCC
patients. Specifically, transcriptome data and clinical information were downloaded from the Gene Expression
Omnibus (GEOQ), International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) database.

A total of 45 co-expressed genes were extracted between the disulfidptosis-related genes (DRGs) and the dif-
ferential expression genes (DEGs) of liver hepatocellular carcinoma (LIHC) in the TCGA database. The LIHC cohort

was divided into two subgroups with different prognosis by k-mean consensus clustering and functional enrichment
analysis was performed. Subsequently, three hub genes (CDCAS, SPP2 and RDH16) were screened by Cox regres-

sion and LASSO regression analysis. In addition, a risk signature was constructed and the HCC cohort was divided

into high risk score and low risk score subgroups to compare the prognosis, clinical features and immune landscape
between the two subgroups. Finally, the prognostic model of independent risk factors was constructed and verified.

Conclusions High DRGs-related risk score in HCC individuals predict poor prognosis and are associated with poor
immunotherapy response, which indicates that risk score assessment model can be utilized to guide clinical treat-
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Introduction

Hepatocellular carcinoma (HCC) is one of the most
prevalent malignancies with poor prognosis in the
world and a significant global health care concern [1,
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2]. In 2020, there were approximately 906,000 new
cases of primary cancer of the liver and 830,000 deaths
globally, with HCC accounting for the majority of cases
[3]. Many opportunities for early intervention, such as
microwave radiofrequency ablation and surgical resec-
tion, are missed due to the difficulty of making an early
diagnosis of HCC [4]. Conversion therapy, which is
aim to convert unresectable or potentially resectable
advanced liver cancer lesions into resectable lesions,
has been a key topic in the treatment of advanced
HCC in recent years [5]. Atezolizumab-bevacizumab
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combination therapy has become first-line therapy in
some Asian countries for patients who are not candi-
dates for radical therapy or transarterial chemoembo-
lization [6]. Despite this, the overall survival of patients
with advanced HCC has only marginally improved [7].
Early intervention and detection of HCC are critical
measures in determining the patient’s prognosis [8].
Therefore, biomarkers for early diagnosis, risk assess-
ment, prognostic prediction, and the development
of immunotherapy reactivity models are crucial for
improving the prognosis of HCC patients and guiding
clinical treatment.

Cell death plays a crucial role in the development of
tumors and is inextricably linked to cancer treatment [9,
10]. Based on functional differences, cell death can be
classified into accidental cell death (ACD) and regulated
cell death (RCD). In recent years, various RCD mecha-
nisms have been discovered by scientists, including but
not limited to cuproptosis, ferroptosis, and reticulocyte
death [11]. Recently, a novel form of cell death has been
proposed: disulfidptosis. This study has revealed that
excessive intracellular disulfide stress, resulting from
cystine accumulation, can lead to rapid cell death. In
glucose-deficient cancer cells with high SLC7A11 expres-
sion, the accumulation of disulfide material disrupts the
normal bonding of disulfide bridges between cytoskel-
etal proteins, resulting in the collapse of the histone scaf-
fold and cell death [12]. The elucidation of this cell death
mechanism will aid in further understanding of cellular
homeostasis and may provide novel avenue for treatment
of human malignancies [13].

Therefore, we sought to further explore the association
between disulfidptosis-related genes (DRGs) and HCC.
At present, there are few reports on the mechanism of
disulfidptosis in various cancers, and the hub genes and
signaling pathways associated with disulfidptosis have
not been elucidated. In our study, we applied bioinfor-
matics approach to collect DRGs from previously pub-
lished literature and extract 45 co-expressed genes with
HCC-specific DEGs. K-mean clustering was performed
(C1, C2). Hub genes were screened out by LASSO regres-
sion and Cox regression analysis, and then the risk score
prognostic model was constructed. Additionally, we ana-
lyzed the overall survival, tumor immune, somatic muta-
tion and clinical characteristics between high-risk score
and low-risk score groups. Moreover, we developed a
hub gene-related prognostic prediction model and used
Tumor Immune Dysfunction and Exclusion (TIDE)
database to predict the response to immunotherapy in
different risk score subgroups in HCC. Ultimately, we
estimated the prospective treatment agent for HCC
patients with high risk scores based on the "pRRophetic”
package in R.
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Taken together, our risk assessment model offers novel
concepts for the clinical evaluation of HCC and impor-
tant information and help for the clinical choice of the
appropriate treatment.

Materials and methods

Data collection and preprocessing

The flow diagram in Fig. 1 depicts the data collection
and analysis procedure. RNA-seq, somatic mutation
data, and clinical information data (TCGA-LIHC) were
downloaded from The Cancer Genome Atlas (TCGA)
database, which included in total 373 tumor tissue sam-
ples and 51 para-carcinoma tissue. Data lacking com-
plete clinical information or with zero overall survival
were excluded. The data from Level 3 HTSeq-FPKM
are translated to transcripts per million reads (TMP).
Additionally, a total of 358 HCC samples were collected
from the GEO (ID: GSE76427) and ICGC-HCC (LIRI-
JP) were considered as the validation set of this study.
Notably, patients with incomplete clinical information
or short overall survival time (<60 days) were excluded.
The complete clinical baseline data are summarized in
Additional file 2. The data were subjected to the same
processing. Gene Set Enrichment Analysis (GSEA) path-
way data were obtained from MSigDB Collections (c2.
cp.v7.2.symbols.gmt [Curated]). The false discovery rate
(FDR) of 0.25 and the p<0.05 were used as enrichment
cut-offs. “ClusterProfiler” and “ggplot2” packages were
applied to GSEA analysis and visualization of different
cluster subgroups, respectively. Furthermore, hub genes
promoter methylation and total protein data were down-
loaded from UALCAN database, and immunohistochem-
ical data were obtained from The Human Protein Atlas
(HPA) database.

Extraction of disulfidptosis-related genes

As the DRGs of this research, we extracted 2,774 genes
with a norm Z >1 of the relative change ratio of CRISPR-
Cas9 screening of SCL7A11-high 786-O cells under con-
ditions of glucose replete and hunger from the previously
published literature [12]. The complete gene list is sum-
marized in Additional file 2.

Differentially expressed genes in HCC

“limma” package was utilized for the analysis of DEGs
in tumor and non-tumor tissues in HCC. Additionally,
“ggplot2” and “ComplexHeatmap” packages were applied
for visualization of DEGs. Then, Venn diagram was gen-
erated to visualize the 45 co-expressed genes. Further-
more, “igraph” and “ggraph” packages were powered to
generate the network of 45 co-expressed genes.
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Fig. 1 Asimplified flow chart of the study

Consensus clustering

Based on the above 45 co-expressed genes, 373 patients
from the TCGA-LIHC cohort were used for consen-
sus clustering using the k-mean clustering algorithm
to obtain two different clustering subgroups (C1, C2).
Moreover, principal component analysis (PCA) was
utilized to determine the separation of two cluster
subgroups. In addition, heatmap and Kaplan—Meier
(KM) curve were generated to visually compare 45 co-
expressed genes as well as overall survival between the
two clustering subgroups.

Enrichment analysis of genes and signaling pathways

The DEGs of the two clustering subgroups were ana-
lyzed by “limma” package, and then the GO and KEGG
gene enrichment analysis were conducted. Bubble plots
were generated for visualization of GO and KEGG anal-
ysis’ results. In addition, GSEA analysis was powered to
study DEGs-related signaling pathways between C1 and
C2 subgroups.

e N L e
Clinical features comparison < ( Constructing prognosis-related > Prognostic ROC curve analysis
riskcore subgroups L
(. J
s N (
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Immunotherapy prediction < —> .
< prognostic model
\

Construction and identification of prognostic model
The LIHC cohort’s prognosis-related genes
extracted through LASSO Cox regression analysis.
In addition, univariate and multivariate Cox regres-
sion were utilized to further extract core genes, result-
ing in the identification of three hub genes (CDCAS,
SPP2 and RDH16) that were considerably associated
with prognosis. In addition, risk score was calculated
for each HCC patient, and the calculation formula was
risk score=32 Coef, x Exp;, The LIHC training cohort
was divided into high risk score and low risk score
subgroups according to the median of risk score. KM
survival analyses were performed for two different sub-
groups and receiver operating curves (ROC) were estab-
lished to assess the 1-, 3-, 5-year reliability of the model
predictions.

were

Clinical characteristics and prognosis of risk score-related
subgroups

The Wilcoxon rank sum test was utilized to assess the
variances in risk score between patients with distinct
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clinical stages (TMN) and grades. In addition, KM sur-
vival curves were used to examine the overall survival of
HCC patients with various clinical characteristics, and
the log-rank approach was employed to calculate the sta-
tistical difference between high risk score and low risk
score subgroups.

Evaluation of tumor-associated immune
microenvironment and drug reactivity

The Microenvironment Cell population-counter (MCP-
counter) method was powered to evaluate the infiltration
of immune cells in HCC tumor tissues. The bar chart was
generated to compare the enrichment degree of immune
cells in 10 tumors immune microenvironment among
different risk score subgroups. Meanwhile, we further
observed the expression differences of immune check-
point inhibitors and HLA-related genes. Scatter plots
were powered to determine the correlation between
the risk score and the level of tumor immune cell infil-
tration. Moreover, we also used the ESTIMATE algo-
rithm to evaluate the somatic score, immune score and
ESTIMATE score of the LIHC samples. Furthermore,
TIDE database was utilized to predict the responsive-
ness of HCC patients to immunotherapy. Lastly, we pre-
dicted the prospective treatment drug for high-risk HCC
patients using the R package "pRRophetic".

Establishment of predictive models for prognostic risk
factors

Based on univariate and multivariate Cox regression
analysis, a prognostic nomogram of risk factors was con-
structed. Decision curve analysis (DCA) and calibration
curve were generated to assess the accuracy of the prog-
nostic nomogram.

Statistics

All data in this study were implemented in R (v.4.2.1).
Spearman method is powered to determine the cor-
relation between two variables. Log-rank method was
utilized to compare the difference in overall survival
between the two subgroups. The Wilcoxon rank sum test
was applied to identify inter-group differences between
different variables. In all statistical methods, p <0.05 was
regarded as a significant statistical difference.

Results

Extraction of DEGs and DRGs co-expressed genes in HCC
To understand the DRGs set associated with HCC,
“limma” method was utilized to identify DEGs between
normal tissues and tumor tissues. | log2FC |>1.5 was
considered as significantly differentially expressed genes.
Finally, we get 229 downregulated genes and 161 upregu-
lated genes. Volcano maps and heat maps were generated
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to show the final results (Fig. 2A, B). In addition, our
previously collected 2774 DRGs were intersected with
the above 390 DEGs, resulting in 45 co-expressed genes.
Venn diagram was used to visualize the 45 co-expressed
genes (Fig. 2C). To further understand the interconnec-
tions between the 45 genes, the spherical network dia-
gram was generated to display the correlation between
each gene (Fig. 2D).

Consensus clustering associated with 45 co-expressed
genes

Aim to explore the relationship between co-expressed
genes and HCC subtypes, we applied k-mean algorithm
to divide HCC patients into two separate clusters (C1
and C2) (Fig. 3A). The cumulative distribution function
(CDF) and the relative change under the CDF curve sug-
gested that k=2 was the best clustering result (Fig. 3B,
C). Additionally, heat maps that display the expres-
sion of 45 co-expressed genes in the two subgroups
were created. Results indicate that some genes, such as
ANGPTL6, AGXT2, RDHI16, C8A, GYS2, ACSMS5, FBP1,
ALDHS8A1, BHMT and SPP2 are highly expressed in C2.
The expression of some genes, such as SEN, CDKN2C,
CENPW, RRM2, CDCAS8, E2F1, RNASEH2A, CDTI,
CENPM, ADAM 15, and others, is noticeably higher in C1
cluster (Fig. 3D). To further verify the mutual independ-
ence between the two clusters, PCA was powered to ver-
ify the two subgroups. The results suggested significant
separation between the two subgroups (Fig. 3E). Moreo-
ver, C1 subgroup indicated poor prognosis according to
the prognosis curve of overall survival in Fig. 3F.

Enrichment of biological functions and signaling pathways
To confirm whether consensus clustering result related to
disulfidptosis, “limma” method was measured to identi-
fied DEGs between two subgroups, then the DEGs with
| log2FC |>1 were used for GO and KEGG enrichment
analysis. Bubble maps were generated to visualize signal-
ing pathways, biological processes, cell composition, and
molecular functions, respectively (Fig. 4A-D). From the
results, different cluster subgroups were observed to be
involved in complement and coagulation system, metab-
olism of cytochrome P450, drug metabolism, bile secre-
tion and retinol metabolism, PPAR signaling pathway,
chemical carcinogens—DNA adducts. Meanwhile, the
cellular response to xenobiotic stimulation, iron ion bind-
ing, biological oxidative stress and lipoprotein particles,
endoplasmic reticulum lumen, and granular lumen were
also involved in two different subgroups. Complete GO
and KEGG analysis are summarized in Additional file 3.
To further investigate the relevant signaling pathways of
DEGs, we performed GSEA enrichment analysis of them.
The results showed that the DEGs between two cluster



Zhao et al. European Journal of Medical Research (2023) 28:571
A
© Up © Notsig @ Down
o | 1
120 A | |
° ®: | |
L |
4 | |
100 . | i
| |
© 80 ® e { :
= e °
] ° b |
Q ° P |
~ 60 o1 |
g B R
T 404 @ AR °
° .o |
o . $s °© "
20 o Y e
% ‘é )
o ———— TNy
3 0 3
Log, (Fold Change)
C
disulfidptosis LIHC_DEGs
2729 345

Page 5 of 18

e  group

I I \‘Il I I c9

MT1G

\ H ; MT1E

LKL MT1H

I \ | MT1M
\I |

H i) I\\\thiumlu i Fos

Fig. 2 Identification of co-expressed genes. A Volcanic plot of DEGs in tumor and normal tissues of HCC patients. B Heatmap of 30 top
representative DEGs in HCC patients. C A Venn diagram is generated to represent 45 co-expressed genes of DRGs and DEGs. D Protein interaction

network diagram of 45 co-expressed genes

subgroups were mainly involved in cell cycle and meta-
phase, oxidative stress and retinol metabolism. Mountain
map, bubble plot, GSEA classic plot and bar chart were
generated, respectively, for comprehensive visualization
of GSEA enrichment analysis results (Fig. 4E-H). The
full GSEA enrichment results are presented in Additional
file 4.

Establishment of prognostic risk factor model

In order to further screen genes related to prognosis,
we used LASSO Cox regression analysis for extraction.
Seven candidate genes that met the minimum lambda
value of 0.045532 were screened out. Partial likelihood
deviance plots and coefficients distribution curves were
generated to visualize the LASSO Cox regression results

(Fig. 5A, B). A volcano plot was utilized to show the loca-
tion of the seven candidate genes in the differential gene
ranking (Fig. 5C). In order to further ensure the reliabil-
ity of core genes, univariate and multivariate Cox regres-
sion analysis were used to further screen three hub genes
(RDH16, SPP2 and CDCAS). The forest plot is shown in
Fig. 5E, F. Heatmap of three hub genes related to progno-
sis is shown in Fig. 5D.

Risk score correlates with somatic mutations and overall
survival

To investigate the relationship between risk score and
prognosis, we divided the cohort into high and low risk
score subgroups based on the median risk score. KM
curves were generated to compare the differences in
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Fig. 3 Consensus clustering based on 45 co-expressed genes. A Clustering heatmap of co-expressed genes. B Cumulative distribution function
area of different clustering (k=2-10). C The relative change of area under the CDF curve. D An heatmap of 45 co-expressed genes in different
clustering groups. E PCA plot of two clustering subgroups. F Analysis of overall survival between different cluster subgroups

overall survival between the two risk score subgroups.
The results suggested that high risk score predicted
adverse prognosis (Fig. 6A). Additionally, we found
similar results in the LIRI-JP&GSE76427 verification
set and there was statistically significant difference
(P<0.001) (Fig. 6B). To further confirm the accuracy
of the risk assessment model, we used ROC curve and
line graph to evaluate the reliability of the risk progno-
sis model. The results indicate that the AUC values of
1-, 3-, and 5-year predictions of this model are, respec-
tively, 0.752, 0.695, and 0.691, indicating that this model
has a certain reliability (Fig. 6C, D). In order to observe
the somatic mutation difference between the high risk
score subgroup and the low risk score group, mutation
data of the TCGA-LIHC training set were collected
and a waterfall diagram was generated (Fig. 6E). The
results showed that missense mutation accounts for the
majority. In addition, TP53 (32.4%), TTN (28.6%) and
CTNNBI1 (27.6%) were the genes with the top three
largest number of mutations in all somatic mutation.

Risk score is correlated with clinical characteristics

To visualize the risk score of HCC patients with differ-
ent pathological characteristics, violin plots were gen-
erated. The results showed that there was a positive
correlation between tumor diameter and risk score in
HCC patients (Fig. 7A). Similarly, we found that tumor
stage and tumor grade were also positively correlated
with risk score (Fig. 7B, C). However, there was no sig-
nificant difference in risk score between patients with
lymph node or distant metastasis in HCC, which may
be due to the small sample size (Fig. 7D, E). In addition,
we also generated the clinical prognosis of patients
with different pathological features in HCC. The results
suggested that the prognosis of HCC in the high risk
score subgroup was worse than that in the low-sub-
group group in different stages, grade and tumor vol-
ume (Fig. 8A-F). Similarly, high risk score indicated
unfavorable prognosis when there was no lymph node
metastasis or distant metastasis (Fig. 8G, H).
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Forest plots of univariate (E) and multivariate Cox regression (F)

Tumor immune analysis of different risk score subgroups
To observe the infiltration levels of tumor-associated
immune cells in different risk score subgroups, we
used the CMP counts algorithm to calculate 10 tumor-
associated immune cells. Stacked plot and bar graph
were generated for visualization of the various immune
cells (Fig. 9A, B). To verify the above results, we used
CIBERSORT algorithm to re-evaluate the differences
between different subgroups of immune cells (Addi-
tional file 1: Fig. S1). The results showed that regula-
tory T cells (Tregs) and CD4+T cells were significantly
enriched in the high-risk subgroup. Moreover, the ESTI-
MATE algorithm was applied to calculate somatic score,
immune score and ESTIMATE score of two subgroups.
The results showed that the stromal score of high risk
score group was lower than that of low risk score group,
but there was no significant difference between immu-
nological score and ESTIMATE score (Fig. 9C). Aim to
further investigate the association of immune cells with
risk score, we utilized scatter plots for visualization. The
results suggested that neutrophils, CD4 T cells, dendritic
cells, and B cells were positively correlated with the risk
score (Fig. 9D-QG).

Prediction of response to immunotherapy

and chemotherapeutic drug reactivity

To understand the responsiveness of HCC patients with
different risk score subgroups to immunotherapy, we
also generated violin plots to compare 8 immune check-
point inhibitor (ICIs) genes and 20 HLA-related genes
[14]. The results suggest that, most of the high risk
score group had ICIs-related genes (CDC274, CTLA4,
HAVCR2, TIGIT and PDCDI) and HLA-associated
genes (CEP112, CEP68, AASS, CENPE NUP210, ANOG6,
CLIP4, FBLNS, ATP6AP1, PRKAR2B, CHPE MYCBP2,
NAT14, SLCO9A3RI, TMEM97 and MFGES) were upregu-
lated, indicating that the high risk score group may have a
poor response to immunotherapy (Fig. 104, B).

To further explore whether the response of HCC
patients to immunotherapy can be predicted by the risk
score, we used the TIDE database to predict the sam-
ples of tumor patients in the TCGA-LIHC cohort. The
results dedicated that the response to immunotherapy
in the high risk score group is worse than low risk score
group (Fig. 10C). In addition, the result show that risk
score is positively correlated with TIDE score as well as
exclusion score (Fig. 10D, E), while negatively correlated
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with dysfunction score (Fig. 10F). "pRRophetic" package
was powered to predict the half maximal inhibitory con-
centration (IC50) of HCC-related anti-cancer drugs. The
result showed that HCC patients in the high risk score
subgroup were more sensitive to gemcitabine, vinorel-
bine and paclitaxel (Fig. 11A—C). The ROC curve showed
that the predictive value of IC50 of gemcitabine had a
certain accuracy (AUC=0.765), while the predictive
value of IC50 of vinorelbine and paclitaxel was uncertain
(AUC<0.7) (Fig. 11D-F). The above results suggest that
gemcitabine may be an effective therapeutic agent for the
treatment of HCC in the high risk score subgroup.

Construction of prognostic models related to risk factors

In order to further elaborate the relationship between
independent risk factors and the prognosis of HCC
patients, a nomogram was generated to construct a prog-
nostic prediction model (Fig. 12A). Based on the clinical
characteristics and hub genes of each individual HCC
patient, the overall risk score was calculated, and then the
probability of survival after 1-, 3-, and 5 years was calcu-
lated. In addition, calibration plots were established to
test the reliability of the prediction model (Fig. 12B). The

results showed that the 1-, 3- and 5-year survival rates
predicted by the model were close to the ideal line, indi-
cating that the prediction model was reliable. Similarly,
DCA curves were generated to see the effectiveness of
each independent risk factor (Fig. 12C). Since each inde-
pendent factor does not intersect the two slash lines, it
indicates that the above independent factors are valid. To
further determine the association of different independ-
ent risk factors with prognosis, univariate Cox regression
and multivariate Cox regression analyses were used to
visualize clinical characteristics. The results showed that
different pathological features (TNM) and risk score were
significantly associated with prognosis (Fig. 12D, E).

Validation of hub genes at the methylation and total
protein levels

To further investigate the expression of hub genes in
HCC, we downloaded the immunohistochemical results
of the corresponding hub genes from the Human Pro-
tein Atlas (HPA) database. In addition, the total pro-
tein expression levels of hub genes were collected in
UALCAN database to validate the results. The results
showed that CDCAS8 was highly expressed and RDH16
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was lowly expressed in HCC tumor tissues (Additional
file 1: Fig. S2). Unfortunately, we did not find SPP2 results
in the HPA database. Furthermore, we downloaded the
methylation data of CDCAS8, SPP2 and RDH16 in the
UALCAN database. The results showed that CDCAS8
(Additional file 1: Fig. S3) and SPP2 methylation lev-
els were decreased in tumor tissues with worse clinical
stages (Additional file 1: Fig. S4). There was no significant
difference in the methylation level of RDH16 (Additional
file 1: Fig. S5).

Discussion

Hepatocellular carcinoma, accounting for about 75-85%
of primary liver cancer, has a high incidence, rapid pro-
gression and high mortality. Traditional treatment
includes radiotherapy, chemotherapy, surgery and tran-
scatheter arterial chemoembolization (TCEA). For those
advanced HCC that are not suitable for surgery, immu-
notherapy has attracted much attention in recent years.
Nevertheless, the prognosis for patients with advanced
HCC is not satisfactory. Early detection and diagnosis of

HCC are crucial [8, 15]. The search for efficient biomark-
ers, risk assessment, and the construction of independent
risk factor-related prognostic model are indispensable
in HCC diagnosis and prognostic prediction. With the
emergence of various novel RCDs, cell death has received
widespread attention in tumor progression and progno-
sis assessment. According to recent reports, proptosis,
apoptosis and ferroptosis can jointly participate in the
regulation of tumor immune microenvironment and pre-
dict prognosis of HCC [16, 17]. Additionally, autophagy
has been linked to the emergence and progression of sev-
eral malignant cancers, such as head and neck squamous
cell carcinoma, hepatocellular carcinoma, colorectal can-
cer and breast cancer [18-21]. It can be seen that vari-
ous types of cell death are crucial in cancer treatment and
prevention. Precisely inducing the death of cancer cells
is a major challenge for scientific researchers in recent
years.

As a new mode of cell death, disulfidptosis cannot
be elucidate by aforementioned cell death means [12].
Many studies have indicated that classifying HCC based
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(***p<0.0001)

on different features can also reveal clinical relevance
and prognostic assessment [22, 23]. Aim to investigate
the clinical relevance of HCC subtypes based on DRGs
features, we collected DRGs from previously published
articles and extracted co-expressed genes with DEGs
in HCC. Two clusters (C1 and C2) were generated by
k-mean cluster analysis of the 45 co-expressed genes.
Notably, we found that cluster C1 indicated unfavora-
ble prognosis. The results of GO and KEGG functional
enrichment indicate that the high-risk group is primar-
ily concentrated in the regulation of cell division and
the cell cycle. To further identify DRGs associated with
prognosis, we adopted LASSO Cox analysis, univariate
Cox regression analysis and multivariate Cox regression
analysis to screen out three hub genes (SPP2, CDCAS8
and RDH16). In addition to its association with HCC
prognosis, SPP2 is related to colorectal cancer, liver can-
cer, leukemia and pancreatic cancer [24-27]. RDH16 is
also associated with the prognosis of breast cancer and
cholangiocarcinoma [28, 29]. CDCAS, functions as a cell
cycle regulatory gene, has been reported to participate in

the occurrence and development of various cancers such
as thyroid and prostate cancer, liver cancer, ovarian can-
cer and bladder cancer [30—-33]. Based on the above hub
genes, we calculated the risk score for each HCC sample
and divided the LIHC training set into two distinct risk
subgroups. Moreover, we compared tumor immune,
somatic mutations, and clinical features between the two
subtypes. The results showed that the high risk score sub-
group had higher somatic mutation frequency, higher
immune score, and worse clinical prognosis. These
results suggest that disulfidptosis features can be used
as independent predictors of HCC prognosis like other
RCD. Moreover, compared to traditional clinical staging
based on clinical characteristics, the disulfidptosis risk
score feature demonstrates greater accuracy in prognos-
tic prediction.

In terms of immune infiltration, HCC represents
a typical example of the relationship between the
tumor microenvironment (TME) and tumor develop-
ment, the risk score was found to be positively corre-
lated with immune cell infiltration [34]. The immune
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microenvironment of HCC is a mixture of liver can-
cer cells, stromal cells, cytokines and various proteins,
which together contribute to the high incidence of
HCC metastasis. TAMs and Tregs in TME promote
tumor development and metastasis [35]. Tregs rep-
resent the predominant population of suppressive
cells within the TME, and their presence is intricately
linked to the progression, invasiveness, and metastasis
of tumors. Tregs are distinguished by the expression
of the transcription factor Foxp3, and their functional
repertoire encompasses a spectrum of mechanisms,
encompassing cell-cell interactions and the release of
inhibitory molecules [36]. In our study, we assessed the
enrichment level of two subgroups of immune cells and
observed a positive correlation between risk scores and
immune infiltration. Anti-CTLA-4 disruption leads to
cross-talk between Foxp3 Tregs and antigen-presenting
cells, thereby promoting autoimmune responses. Coin-
cidentally, we found that the high-risk group exhibited
higher CTLA-4 expression and immune score (Tregs)
compared to the low-risk group. These results align
with the perspectives presented by Alissafi et al. [37]. In
a recent Phase III randomized controlled trial (RCTs),

the combination of tyrokinase inhibitors (TKIs) and ICI
appears to be promising for the treatment of advanced
HCC. Combination of TKIs with single-dose ICls
reduces immune-related adverse events (irAEs), which
is particularly attractive in high-risk populations [38].
In our study, it is found that the expression of ICI-
related genes in the high-risk group is significantly
higher than that in the low-risk subtype, which means
that the high-risk group had better therapeutic effect
on ICI combined with immunomodulators. In line with
the previous results, the TIDE database similarly indi-
cates a diminished response to immunotherapy within
the high risk score group. This suggests that the emerg-
ing ICI/TKI combination therapy for HCC appears to
be a rational approach. In term of systemic therapy, the
oral multi-tyrosine kinase inhibitor sorafenib currently
stands as the sole evidence-based therapy for advanced
HCC in patients with intact liver function [39]. It is
important to note that the due to toxic or tumor pro-
gression and stop using sorafenib in HCC patients,
capecitabine may be an effective and safe second-line
treatment. In the assessment of drug sensitivity in the
two risk subgroups, we did not observe significant
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differences in sensitivity to sorafenib. However, in the
assessment of sensitivity to gemcitabine, the high-risk
group exhibited significantly higher sensitivity com-
pared to the low-risk group. This suggests that gemcit-
abine might be an effective second-line treatment when
sorafenib resistance occurs. In other prognostic models
of cell death, Li et al. similarly found that gemcitabine
showed high sensitivity in HCC with high necropto-
sis-related risk score and suggested adverse clinical
outcomes [40, 41]. Despite this, more evidence awaits
further validation through clinical trials.

Although ICI combined with conventional cytotoxic
drugs or radiotherapy has shown promising results in
hepatobiliary and pancreatic system malignancies, in
addition to understanding combination therapy, it is
important to consider customized therapy with molecu-
lar/immune subtypes [35]. Independent of PD-1, PD-L1,
and CTLA4 expression, tumor mutation load (TMB) has
been shown in recent years to be a valuable biomarker
for predicting the response of PD-1/PD-L1 and CTLA4/
B7-1 axis inhibitors in cancer patients treated with ICIL.
TMB is defined as somatic gene coding errors and the
total number of base substitutions, gene insertion, or
deletion errors detected per million bases (MB) [42]. The
increase of mutation burden of certain malignant tumors
enhances the immunogenicity of tumor, which leads to
the weakening of its immune escape ability. Tumors with
higher TMB are more responsive to ICIs therapy and can
be applied to many metastatic malignancies, especially
cancers caused by strong mutagens and carcinogens (e.g.,
non-small cell lung cancer, small cell lung cancer and
melanomas) and colorectal cancer with high microsat-
ellite instability [43]. However, TMB is present at lower
levels in HCC than in other solid tumors, and its predic-
tive value remains controversial and has not been fully
demonstrated. There currently seems to be a consensus
that high TMB is associated with reduced survival [44].
TTN was considered to be the most frequently mutated
gene in the pan-cancer cohort, with the highest correla-
tion between the number of mutations and TMB [45].
TP53 gene mutation is closely related to tumor immunity
and can be used as an effective biomarker to predict the
response of different types of cancer to immunotherapy
[46]. In our study, TTN in the high-risk group was higher
than that in the low-risk group, which is consistent with
the fact that the high-risk group predicted poor out-
comes. From the perspective of TME, Xie et al. suggested
that TMB was positively correlated with Thelper (Th) 2,
Th17, and gamma-delta T (Tgd) cell infiltration [47]. In
another study, Gao et al. showed that high infiltration of
MO and M2 macrophages, naive CD4+T cells, and low
infiltration of CD8+T cells were associated with poor
prognosis, which is consistent with our findings [48].
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DNA hypermethylation is closely associated with the
initiation of cancer. Specifically, some copies of tumor
suppressor genes undergo hypermethylation or natural
mutations [49]. In order to fully understand the corre-
lation between the methylation level of hub gene and
clinical features, we analyzed the expression level of
hub gene under different clinical features. The results
showed that hypermethylation was associated with
poor clinical prognosis in HCC, which was consistent
with previous conclusions [46]. To verify the protein
expression of hub gene in HCC tissues, we used the
HPA database to perform immunohistochemical visu-
alization analysis of hub genes. The results suggest that
the expression of CDCAS8 is upregulated in HCC tis-
sues while the expression of RDH16 is downregulated
in HCC tissues. Unfortunately, we did not find data
related to SPP2, which may be the reason why SPP2, as
a secreted protein, is too low in HCC tissues.

Although a prognostic model based on the disulfidp-
tosis risk score showed good accuracy, our study still
had some limitations. First of all, the sample of this
study is limited, and further cohort studies are needed
to verify the risk assessment model. Secondly, we con-
ducted a complete bioinformatics study and did not
further study the mechanism of the target genes on
HCC, so it is necessary for future researchers to carry
out basic experiments to further explore the mecha-
nism. Additionally, clinical data related to viral infec-
tion between different subgroups are lacking in our
data, so bias in prognostic assessment may occur as
the etiology of underlying liver disease might have a
prognostic impact. Of note, most of the 2774 DRGs we
selected from the results of CRISPR-Cas9 screen, so the
specific relationship between hub gene and disulfidpto-
sis needs to be confirmed by further experiments.

Taken together, our study proposed a DRGs cluster-
ing method and developed a risk assessment model for
predicting prognosis and response to immunotherapy
and chemotherapy in HCC, which is beneficial to guid-
ing the clinical treatment strategies.

Conclusions

HCC patients were classified into subgroups by unsu-
pervised clustering based on different disulfidptosis
features. We discovered that patients with high risk
score had weaker response to immunotherapy and were
associated with an adverse prognosis of HCC, sug-
gesting that HCC patients with certain disulfidptosis
characteristics may benefit from immunotherapy. In
addition, gemcitabine maybe an effective therapeutic
agent for the treatment of HCC in the high risk score
subgroup.
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