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Abstract 

Background  Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and a nonnegligible 
health concern on a worldwide scale. Disulfidptosis is a novel mode of cell death, which is mainly caused by the col-
lapse of the actin skeleton. Although many studies have demonstrated that various types of cell death are associated 
with cancer treatment, the relationship between disulfidptosis and HCC has not been elucidated.

Methods  Here, we mainly applied bioinformatics methods to construct a disulfidptosis related risk model in HCC 
patients. Specifically, transcriptome data and clinical information were downloaded from the Gene Expression 
Omnibus (GEO), International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) database. 
A total of 45 co-expressed genes were extracted between the disulfidptosis-related genes (DRGs)  and the dif-
ferential expression genes (DEGs) of liver hepatocellular carcinoma (LIHC) in the TCGA database. The LIHC cohort 
was divided into two subgroups with different prognosis by k-mean consensus clustering  and functional enrichment 
analysis was performed. Subsequently, three hub genes (CDCA8, SPP2 and RDH16) were screened by Cox regres-
sion and LASSO regression analysis. In addition, a risk signature was constructed and the HCC cohort was divided 
into high risk score and low risk score subgroups to compare the prognosis, clinical features and immune landscape 
between the two subgroups. Finally, the prognostic model of independent risk factors was constructed and verified.

Conclusions  High DRGs-related risk score in HCC individuals predict poor prognosis and are associated with poor 
immunotherapy response, which indicates that risk score assessment model can be utilized to guide clinical treat-
ment strategy.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most 
prevalent malignancies with poor prognosis in the 
world and a significant global health care concern [1, 

2]. In 2020, there were approximately 906,000 new 
cases of primary cancer of the liver and 830,000 deaths 
globally, with HCC accounting for the majority of cases 
[3]. Many opportunities for early intervention, such as 
microwave radiofrequency ablation and surgical resec-
tion, are missed due to the difficulty of making an early 
diagnosis of HCC [4]. Conversion therapy, which is 
aim to convert unresectable or potentially resectable 
advanced liver cancer lesions into resectable lesions, 
has been a key topic in the treatment of advanced 
HCC in recent years [5]. Atezolizumab–bevacizumab 
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combination therapy has become first-line therapy in 
some Asian countries for patients who are not candi-
dates for radical therapy or transarterial chemoembo-
lization [6]. Despite this, the overall survival of patients 
with advanced HCC has only marginally improved [7]. 
Early intervention and detection of HCC are critical 
measures in determining the patient’s prognosis [8]. 
Therefore, biomarkers for early diagnosis, risk assess-
ment, prognostic prediction, and the development 
of immunotherapy reactivity models are crucial for 
improving the prognosis of HCC patients and guiding 
clinical treatment.

Cell death plays a crucial role in the development of 
tumors and is inextricably linked to cancer treatment [9, 
10]. Based on functional differences, cell death can be 
classified into accidental cell death (ACD) and regulated 
cell death (RCD). In recent years, various RCD mecha-
nisms have been discovered by scientists, including but 
not limited to cuproptosis, ferroptosis, and reticulocyte 
death [11]. Recently, a novel form of cell death has been 
proposed: disulfidptosis. This study has revealed that 
excessive intracellular disulfide stress, resulting from 
cystine accumulation, can lead to rapid cell death. In 
glucose-deficient cancer cells with high SLC7A11 expres-
sion, the accumulation of disulfide material disrupts the 
normal bonding of disulfide bridges between cytoskel-
etal proteins, resulting in the collapse of the histone scaf-
fold and cell death [12]. The elucidation of this cell death 
mechanism will aid in further understanding of cellular 
homeostasis and may provide novel avenue for treatment 
of human malignancies [13].

Therefore, we sought to further explore the association 
between disulfidptosis-related genes (DRGs) and HCC. 
At present, there are few reports on the mechanism of 
disulfidptosis in various cancers, and the hub genes and 
signaling pathways associated with disulfidptosis have 
not been elucidated. In our study, we applied bioinfor-
matics approach to collect DRGs from previously pub-
lished literature and extract 45 co-expressed genes with 
HCC-specific DEGs. K-mean clustering was performed 
(C1, C2). Hub genes were screened out by LASSO regres-
sion and Cox regression analysis, and then the risk score 
prognostic model was constructed. Additionally, we ana-
lyzed the overall survival, tumor immune, somatic muta-
tion and clinical characteristics between high-risk score 
and low-risk score groups. Moreover, we developed a 
hub gene-related prognostic prediction model and used 
Tumor Immune Dysfunction and Exclusion (TIDE) 
database to predict the response to immunotherapy in 
different risk score subgroups in HCC. Ultimately, we 
estimated the prospective treatment agent for HCC 
patients with high risk scores based on the "pRRophetic" 
package in R.

Taken together, our risk assessment model offers novel 
concepts for the clinical evaluation of HCC and impor-
tant information and help for the clinical choice of the 
appropriate treatment.

Materials and methods
Data collection and preprocessing
The flow diagram in Fig.  1 depicts the data collection 
and analysis procedure. RNA-seq, somatic mutation 
data, and clinical information data (TCGA-LIHC) were 
downloaded from The Cancer Genome Atlas (TCGA) 
database, which included in total 373 tumor tissue sam-
ples and 51 para-carcinoma tissue. Data lacking com-
plete clinical information or with zero overall survival 
were excluded. The data from Level 3 HTSeq-FPKM 
are translated to transcripts per million reads (TMP). 
Additionally, a total of 358 HCC samples were collected 
from the GEO (ID: GSE76427) and ICGC-HCC (LIRI-
JP) were considered as the validation set of this study. 
Notably, patients with incomplete clinical information 
or short overall survival time (< 60 days) were excluded. 
The complete clinical baseline data are summarized in 
Additional file  2. The data were subjected to the same 
processing. Gene Set Enrichment Analysis (GSEA) path-
way data were obtained from MSigDB Collections (c2.
cp.v7.2.symbols.gmt [Curated]). The false discovery rate 
(FDR) of 0.25 and the p < 0.05 were used as enrichment 
cut-offs. “ClusterProfiler” and “ggplot2” packages were 
applied to GSEA analysis and visualization of different 
cluster subgroups, respectively. Furthermore, hub genes 
promoter methylation and total protein data were down-
loaded from UALCAN database, and immunohistochem-
ical data were obtained from The Human Protein Atlas 
(HPA) database.

Extraction of disulfidptosis‑related genes
As the DRGs of this research, we extracted 2,774 genes 
with a norm Z > 1 of the relative change ratio of CRISPR-
Cas9 screening of SCL7A11-high 786-O cells under con-
ditions of glucose replete and hunger from the previously 
published literature [12]. The complete gene list is sum-
marized in Additional file 2.

Differentially expressed genes in HCC
“limma” package was utilized for the analysis of DEGs 
in tumor and non-tumor tissues in HCC. Additionally, 
“ggplot2” and “ComplexHeatmap” packages were applied 
for visualization of DEGs. Then, Venn diagram was gen-
erated to visualize the 45 co-expressed genes. Further-
more, “igraph” and “ggraph” packages were powered to 
generate the network of 45 co-expressed genes.
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Consensus clustering
Based on the above 45 co-expressed genes, 373 patients 
from the TCGA-LIHC cohort were used for consen-
sus clustering using the k-mean clustering algorithm 
to obtain two different clustering subgroups (C1, C2). 
Moreover, principal component analysis (PCA) was 
utilized to determine the separation of two cluster 
subgroups. In addition, heatmap and Kaplan–Meier 
(KM) curve were generated to visually compare 45 co-
expressed genes as well as overall survival between the 
two clustering subgroups.

Enrichment analysis of genes and signaling pathways
The DEGs of the two clustering subgroups were ana-
lyzed by “limma” package, and then the GO and KEGG 
gene enrichment analysis were conducted. Bubble plots 
were generated for visualization of GO and KEGG anal-
ysis’ results. In addition, GSEA analysis was powered to 
study DEGs-related signaling pathways between C1 and 
C2 subgroups.

Construction and identification of prognostic model
The LIHC cohort’s prognosis-related genes were 
extracted through LASSO Cox regression analysis. 
In addition, univariate and multivariate Cox regres-
sion were utilized to further extract core genes, result-
ing in the identification of three hub genes (CDCA8, 
SPP2 and RDH16) that were considerably associated 
with prognosis. In addition, risk score was calculated 
for each HCC patient, and the calculation formula was 
risk score = ∑Coefi x Expi. The LIHC training cohort 
was divided into high risk score and low risk score 
subgroups according to the median of risk score. KM 
survival analyses were performed for two different sub-
groups and receiver operating curves (ROC) were estab-
lished to assess the 1-, 3-, 5-year reliability of the model 
predictions.

Clinical characteristics and prognosis of risk score‑related 
subgroups
The Wilcoxon rank sum test was utilized to assess the 
variances in risk score between patients with distinct 

Fig. 1  A simplified flow chart of the study
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clinical stages (TMN) and grades. In addition, KM sur-
vival curves were used to examine the overall survival of 
HCC patients with various clinical characteristics, and 
the log-rank approach was employed to calculate the sta-
tistical difference between high risk score and low risk 
score subgroups.

Evaluation of tumor‑associated immune 
microenvironment and drug reactivity
The Microenvironment Cell population-counter (MCP-
counter) method was powered to evaluate the infiltration 
of immune cells in HCC tumor tissues. The bar chart was 
generated to compare the enrichment degree of immune 
cells in 10 tumors immune microenvironment among 
different risk score subgroups. Meanwhile, we further 
observed the expression differences of immune check-
point inhibitors and HLA-related genes. Scatter plots 
were powered to determine the correlation between 
the risk score and the level of tumor immune cell infil-
tration. Moreover, we also used the ESTIMATE algo-
rithm to evaluate the somatic score, immune score and 
ESTIMATE score of the LIHC samples. Furthermore, 
TIDE database was utilized to predict the responsive-
ness of HCC patients to immunotherapy. Lastly, we pre-
dicted the prospective treatment drug for high-risk HCC 
patients using the R package "pRRophetic".

Establishment of predictive models for prognostic risk 
factors
Based on univariate and multivariate Cox regression 
analysis, a prognostic nomogram of risk factors was con-
structed. Decision curve analysis (DCA) and calibration 
curve were generated to assess the accuracy of the prog-
nostic nomogram.

Statistics
All data in this study were implemented in R (v.4.2.1). 
Spearman method is powered to determine the cor-
relation between two variables. Log-rank method was 
utilized to compare the difference in overall survival 
between the two subgroups. The Wilcoxon rank sum test 
was applied to identify inter-group differences between 
different variables. In all statistical methods, p < 0.05 was 
regarded as a significant statistical difference.

Results
Extraction of DEGs and DRGs co‑expressed genes in HCC
To understand the DRGs set associated with HCC, 
“limma” method was utilized to identify DEGs between 
normal tissues and tumor tissues. | log2FC |> 1.5 was 
considered as significantly differentially expressed genes. 
Finally, we get 229 downregulated genes and 161 upregu-
lated genes. Volcano maps and heat maps were generated 

to show the final results (Fig.  2A, B). In addition, our 
previously collected 2774 DRGs were intersected with 
the above 390 DEGs, resulting in 45 co-expressed genes. 
Venn diagram was used to visualize the 45 co-expressed 
genes (Fig. 2C). To further understand the interconnec-
tions between the 45 genes, the spherical network dia-
gram was generated to display the correlation between 
each gene (Fig. 2D).

Consensus clustering associated with 45 co‑expressed 
genes
Aim to explore the relationship between co-expressed 
genes and HCC subtypes, we applied k-mean algorithm 
to divide HCC patients into two separate clusters (C1 
and C2) (Fig.  3A). The cumulative distribution function 
(CDF) and the relative change under the CDF curve sug-
gested that k = 2 was the best clustering result (Fig.  3B, 
C). Additionally, heat maps that display the expres-
sion of 45 co-expressed genes in the two subgroups 
were created. Results indicate that some genes, such as 
ANGPTL6, AGXT2, RDH16, C8A, GYS2, ACSM5, FBP1, 
ALDH8A1, BHMT and SPP2 are highly expressed in C2. 
The expression of some genes, such as SFN, CDKN2C, 
CENPW, RRM2, CDCA8, E2F1, RNASEH2A, CDT1, 
CENPM, ADAM15, and others, is noticeably higher in C1 
cluster (Fig. 3D). To further verify the mutual independ-
ence between the two clusters, PCA was powered to ver-
ify the two subgroups. The results suggested significant 
separation between the two subgroups (Fig. 3E). Moreo-
ver, C1 subgroup indicated poor prognosis according to 
the prognosis curve of overall survival in Fig. 3F.

Enrichment of biological functions and signaling pathways
To confirm whether consensus clustering result related to 
disulfidptosis, “limma” method was measured to identi-
fied DEGs between two subgroups, then the DEGs with 
| log2FC |> 1 were used for GO and KEGG enrichment 
analysis. Bubble maps were generated to visualize signal-
ing pathways, biological processes, cell composition, and 
molecular functions, respectively (Fig. 4A–D). From the 
results, different cluster subgroups were observed to be 
involved in complement and coagulation system, metab-
olism of cytochrome P450, drug metabolism, bile secre-
tion and retinol metabolism, PPAR signaling pathway, 
chemical carcinogens–DNA adducts. Meanwhile, the 
cellular response to xenobiotic stimulation, iron ion bind-
ing, biological oxidative stress and lipoprotein particles, 
endoplasmic reticulum lumen, and granular lumen were 
also involved in two different subgroups. Complete GO 
and KEGG analysis are summarized in Additional file 3. 
To further investigate the relevant signaling pathways of 
DEGs, we performed GSEA enrichment analysis of them. 
The results showed that the DEGs between two cluster 
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subgroups were mainly involved in cell cycle and meta-
phase, oxidative stress and retinol metabolism. Mountain 
map, bubble plot, GSEA classic plot and bar chart were 
generated, respectively, for comprehensive visualization 
of GSEA enrichment analysis results (Fig.  4E–H). The 
full GSEA enrichment results are presented in Additional 
file 4.

Establishment of prognostic risk factor model
In order to further screen genes related to prognosis, 
we used LASSO Cox regression analysis for extraction. 
Seven candidate genes that met the minimum lambda 
value of 0.045532 were screened out. Partial likelihood 
deviance plots and coefficients distribution curves were 
generated to visualize the LASSO Cox regression results 

(Fig. 5A, B). A volcano plot was utilized to show the loca-
tion of the seven candidate genes in the differential gene 
ranking (Fig. 5C). In order to further ensure the reliabil-
ity of core genes, univariate and multivariate Cox regres-
sion analysis were used to further screen three hub genes 
(RDH16, SPP2 and CDCA8). The forest plot is shown in 
Fig. 5E, F. Heatmap of three hub genes related to progno-
sis is shown in Fig. 5D.

Risk score correlates with somatic mutations and overall 
survival
To investigate the relationship between risk score and 
prognosis, we divided the cohort into high and low risk 
score subgroups based on the median risk score. KM 
curves were generated to compare the differences in 

Fig. 2  Identification of co-expressed genes. A Volcanic plot of DEGs in tumor and normal tissues of HCC patients. B Heatmap of 30 top 
representative DEGs in HCC patients. C A Venn diagram is generated to represent 45 co-expressed genes of DRGs and DEGs. D Protein interaction 
network diagram of 45 co-expressed genes
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overall survival between the two risk score subgroups. 
The results suggested that high risk score predicted 
adverse prognosis (Fig.  6A). Additionally, we found 
similar results in the LIRI-JP&GSE76427 verification 
set and there was statistically significant difference 
(P < 0.001) (Fig.  6B). To further confirm the accuracy 
of the risk assessment model, we used ROC curve and 
line graph to evaluate the reliability of the risk progno-
sis model. The results indicate that the AUC values of 
1-, 3-, and 5-year predictions of this model are, respec-
tively, 0.752, 0.695, and 0.691, indicating that this model 
has a certain reliability (Fig. 6C, D). In order to observe 
the somatic mutation difference between the high risk 
score subgroup and the low risk score group, mutation 
data of the TCGA-LIHC training set were collected 
and a waterfall diagram was generated (Fig.  6E). The 
results showed that missense mutation accounts for the 
majority. In addition, TP53 (32.4%), TTN (28.6%) and 
CTNNB1 (27.6%) were the genes with the top three 
largest number of mutations in all somatic mutation.

Risk score is correlated with clinical characteristics
To visualize the risk score of HCC patients with differ-
ent pathological characteristics, violin plots were gen-
erated. The results showed that there was a positive 
correlation between tumor diameter and risk score in 
HCC patients (Fig. 7A). Similarly, we found that tumor 
stage and tumor grade were also positively correlated 
with risk score (Fig. 7B, C). However, there was no sig-
nificant difference in risk score between patients with 
lymph node or distant metastasis in HCC, which may 
be due to the small sample size (Fig. 7D, E). In addition, 
we also generated the clinical prognosis of patients 
with different pathological features in HCC. The results 
suggested that the prognosis of HCC in the high risk 
score subgroup was worse than that in the low-sub-
group group in different stages, grade and tumor vol-
ume (Fig.  8A–F). Similarly, high risk score indicated 
unfavorable prognosis when there was no lymph node 
metastasis or distant metastasis (Fig. 8G, H).

Fig. 3  Consensus clustering based on 45 co-expressed genes. A Clustering heatmap of co-expressed genes. B Cumulative distribution function 
area of different clustering (k = 2–10). C The relative change of area under the CDF curve. D An heatmap of 45 co-expressed genes in different 
clustering groups. E PCA plot of two clustering subgroups. F Analysis of overall survival between different cluster subgroups
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Tumor immune analysis of different risk score subgroups
To observe the infiltration levels of tumor-associated 
immune cells in different risk score subgroups, we 
used the CMP counts algorithm to calculate 10 tumor-
associated immune cells. Stacked plot and bar graph 
were generated for visualization of the various immune 
cells (Fig.  9A, B). To verify the above results, we used 
CIBERSORT algorithm to re-evaluate the differences 
between different subgroups of immune cells (Addi-
tional file  1: Fig. S1). The results showed that regula-
tory T cells (Tregs) and CD4 + T cells were significantly 
enriched in the high-risk subgroup. Moreover, the ESTI-
MATE algorithm was applied to calculate somatic score, 
immune score and ESTIMATE score of two subgroups. 
The results showed that the stromal score of high risk 
score group was lower than that of low risk score group, 
but there was no significant difference between immu-
nological score and ESTIMATE score (Fig.  9C). Aim to 
further investigate the association of immune cells with 
risk score, we utilized scatter plots for visualization. The 
results suggested that neutrophils, CD4 T cells, dendritic 
cells, and B cells were positively correlated with the risk 
score (Fig. 9D–G).

Prediction of response to immunotherapy 
and chemotherapeutic drug reactivity
To understand the responsiveness of HCC patients with 
different risk score subgroups to immunotherapy, we 
also generated violin plots to compare 8 immune check-
point inhibitor (ICIs) genes and 20 HLA-related genes 
[14]. The results suggest that, most of the high risk 
score group had ICIs-related genes (CDC274, CTLA4, 
HAVCR2, TIGIT and PDCD1) and HLA-associated 
genes (CEP112, CEP68, AASS, CENPF, NUP210, ANO6, 
CLIP4, FBLN5, ATP6AP1, PRKAR2B, CHPF, MYCBP2, 
NAT14, SLC9A3R1, TMEM97 and MFGE8) were upregu-
lated, indicating that the high risk score group may have a 
poor response to immunotherapy (Fig. 10A, B).

To further explore whether the response of HCC 
patients to immunotherapy can be predicted by the risk 
score, we used the TIDE database to predict the sam-
ples of tumor patients in the TCGA-LIHC cohort. The 
results dedicated that the response to immunotherapy 
in the high risk score group is worse than low risk score 
group (Fig.  10C). In addition, the result show that risk 
score is positively correlated with TIDE score as well as 
exclusion score (Fig. 10D, E), while negatively correlated 

Fig. 5  Establishment of prognostic risk factor model. A, B) Partial likelihood deviation plot and coefficient curve of LASSO Cox analysis. C A DEGs 
sequenced heatmap of 7 genes extracted by LASSO Cox regression analysis. D A heatmap of prognosis-related risk factors and risk score model. E–F 
Forest plots of univariate (E) and multivariate Cox regression (F)
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with dysfunction score (Fig. 10F). "pRRophetic" package 
was powered to predict the half maximal inhibitory con-
centration (IC50) of HCC-related anti-cancer drugs. The 
result showed that HCC patients in the high risk score 
subgroup were more sensitive to gemcitabine, vinorel-
bine and paclitaxel (Fig. 11A–C). The ROC curve showed 
that the predictive value of IC50 of gemcitabine had a 
certain accuracy (AUC = 0.765), while the predictive 
value of IC50 of vinorelbine and paclitaxel was uncertain 
(AUC < 0.7) (Fig. 11D–F). The above results suggest that 
gemcitabine may be an effective therapeutic agent for the 
treatment of HCC in the high risk score subgroup.

Construction of prognostic models related to risk factors
In order to further elaborate the relationship between 
independent risk factors and the prognosis of HCC 
patients, a nomogram was generated to construct a prog-
nostic prediction model (Fig. 12A). Based on the clinical 
characteristics and hub genes of each individual HCC 
patient, the overall risk score was calculated, and then the 
probability of survival after 1-, 3-, and 5 years was calcu-
lated. In addition, calibration plots were established to 
test the reliability of the prediction model (Fig. 12B). The 

results showed that the 1-, 3- and 5-year survival rates 
predicted by the model were close to the ideal line, indi-
cating that the prediction model was reliable. Similarly, 
DCA curves were generated to see the effectiveness of 
each independent risk factor (Fig. 12C). Since each inde-
pendent factor does not intersect the two slash lines, it 
indicates that the above independent factors are valid. To 
further determine the association of different independ-
ent risk factors with prognosis, univariate Cox regression 
and multivariate Cox regression analyses were used to 
visualize clinical characteristics. The results showed that 
different pathological features (TNM) and risk score were 
significantly associated with prognosis (Fig. 12D, E).

Validation of hub genes at the methylation and total 
protein levels
To further investigate the expression of hub genes in 
HCC, we downloaded the immunohistochemical results 
of the corresponding hub genes from the Human Pro-
tein Atlas (HPA) database. In addition, the total pro-
tein expression levels of hub genes were collected in 
UALCAN database to validate the results. The results 
showed that CDCA8 was highly expressed and RDH16 

Fig. 6  Somatic mutations and prognosis in different risk score subgroups. A, B KM curves of overall survival of different risk score subgroups 
in TCGA training set and LIRI-JP & GSE76427 verification set. C, D ROC curve (C) and broken line plot (D) of risk score related 1-, 3-, and 5-year overall 
survival prediction. E Waterfall plots of somatic mutations in different risk score subgroups
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was lowly expressed in HCC tumor tissues (Additional 
file 1: Fig. S2). Unfortunately, we did not find SPP2 results 
in the HPA database. Furthermore, we downloaded the 
methylation data of CDCA8, SPP2 and RDH16 in the 
UALCAN database. The results showed that CDCA8 
(Additional file  1: Fig. S3) and SPP2 methylation lev-
els were decreased in tumor tissues with worse clinical 
stages (Additional file 1: Fig. S4). There was no significant 
difference in the methylation level of RDH16 (Additional 
file 1: Fig. S5).

Discussion
Hepatocellular carcinoma, accounting for about 75–85% 
of primary liver cancer, has a high incidence, rapid pro-
gression and high mortality. Traditional treatment 
includes radiotherapy, chemotherapy, surgery and tran-
scatheter arterial chemoembolization (TCEA). For those 
advanced HCC that are not suitable for surgery, immu-
notherapy has attracted much attention in recent years. 
Nevertheless, the prognosis for patients with advanced 
HCC is not satisfactory. Early detection and diagnosis of 

HCC are crucial [8, 15]. The search for efficient biomark-
ers, risk assessment, and the construction of independent 
risk factor-related prognostic model are indispensable 
in HCC diagnosis and prognostic prediction. With the 
emergence of various novel RCDs, cell death has received 
widespread attention in tumor progression and progno-
sis assessment. According to recent reports, proptosis, 
apoptosis and ferroptosis can jointly participate in the 
regulation of tumor immune microenvironment and pre-
dict prognosis of HCC [16, 17]. Additionally, autophagy 
has been linked to the emergence and progression of sev-
eral malignant cancers, such as head and neck squamous 
cell carcinoma, hepatocellular carcinoma, colorectal can-
cer and breast cancer [18–21]. It can be seen that vari-
ous types of cell death are crucial in cancer treatment and 
prevention. Precisely inducing the death of cancer cells 
is a major challenge for scientific researchers in recent 
years.

As a new mode of cell death, disulfidptosis cannot 
be elucidate by aforementioned cell death means [12]. 
Many studies have indicated that classifying HCC based 

Fig. 7  Risk score is related to the clinical characteristics of HCC patients. A–E Violins of risks core and tumor size (A), clinical stage (B), clinical grade 
(C), distant metastasis (D), and lymph node metastasis (E)
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on different features can also reveal clinical relevance 
and prognostic assessment [22, 23]. Aim to investigate 
the clinical relevance of HCC subtypes based on DRGs 
features, we collected DRGs from previously published 
articles and extracted co-expressed genes with DEGs 
in HCC. Two clusters (C1 and C2) were generated by 
k-mean cluster analysis of the 45 co-expressed genes. 
Notably, we found that cluster C1 indicated unfavora-
ble prognosis. The results of GO and KEGG functional 
enrichment indicate that the high-risk group is primar-
ily concentrated in the regulation of cell division and 
the cell cycle. To further identify DRGs associated with 
prognosis, we adopted LASSO Cox analysis, univariate 
Cox regression analysis and multivariate Cox regression 
analysis to screen out three hub genes (SPP2, CDCA8 
and RDH16). In addition to its association with HCC 
prognosis, SPP2 is related to colorectal cancer, liver can-
cer, leukemia and pancreatic cancer [24–27]. RDH16 is 
also associated with the prognosis of breast cancer and 
cholangiocarcinoma [28, 29]. CDCA8, functions as a cell 
cycle regulatory gene, has been reported to participate in 

the occurrence and development of various cancers such 
as thyroid and prostate cancer, liver cancer, ovarian can-
cer and bladder cancer [30–33]. Based on the above hub 
genes, we calculated the risk score for each HCC sample 
and divided the LIHC training set into two distinct risk 
subgroups. Moreover, we compared tumor immune, 
somatic mutations, and clinical features between the two 
subtypes. The results showed that the high risk score sub-
group had higher somatic mutation frequency, higher 
immune score, and worse clinical prognosis. These 
results suggest that disulfidptosis features can be used 
as independent predictors of HCC prognosis like other 
RCD. Moreover, compared to traditional clinical staging 
based on clinical characteristics, the disulfidptosis risk 
score feature demonstrates greater accuracy in prognos-
tic prediction.

In terms of immune infiltration, HCC represents 
a typical example of the relationship between the 
tumor microenvironment (TME) and tumor develop-
ment, the risk score was found to be positively corre-
lated with immune cell infiltration [34]. The immune 

Fig. 11  Prediction of response to chemotherapeutic drug reactivity. A-C IC50 bar plots of gemcitabine (A), vinorelbine (B) and paclitaxel 
(C) among different high-risk and low-risk subgroups. D–F IC50-related ROC curves of gemcitabine (D), vinorelbine (E), and paclitaxel (F). 
(****p < 0.0001)
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microenvironment of HCC is a mixture of liver can-
cer cells, stromal cells, cytokines and various proteins, 
which together contribute to the high incidence of 
HCC metastasis. TAMs and Tregs in TME promote 
tumor development and metastasis [35]. Tregs rep-
resent the predominant population of suppressive 
cells within the TME, and their presence is intricately 
linked to the progression, invasiveness, and metastasis 
of tumors. Tregs are distinguished by the expression 
of the transcription factor Foxp3, and their functional 
repertoire encompasses a spectrum of mechanisms, 
encompassing cell–cell interactions and the release of 
inhibitory molecules [36]. In our study, we assessed the 
enrichment level of two subgroups of immune cells and 
observed a positive correlation between risk scores and 
immune infiltration. Anti-CTLA-4 disruption leads to 
cross-talk between Foxp3 Tregs and antigen-presenting 
cells, thereby promoting autoimmune responses. Coin-
cidentally, we found that the high-risk group exhibited 
higher CTLA-4 expression and immune score (Tregs) 
compared to the low-risk group. These results align 
with the perspectives presented by Alissafi et al. [37]. In 
a recent Phase III randomized controlled trial (RCTs), 

the combination of tyrokinase inhibitors (TKIs) and ICI 
appears to be promising for the treatment of advanced 
HCC. Combination of TKIs with single-dose ICIs 
reduces immune-related adverse events (irAEs), which 
is particularly attractive in high-risk populations [38]. 
In our study, it is found that the expression of ICI-
related genes in the high-risk group is significantly 
higher than that in the low-risk subtype, which means 
that the high-risk group had better therapeutic effect 
on ICI combined with immunomodulators. In line with 
the previous results, the TIDE database similarly indi-
cates a diminished response to immunotherapy within 
the high risk score group. This suggests that the emerg-
ing ICI/TKI combination therapy for HCC appears to 
be a rational approach. In term of systemic therapy, the 
oral multi-tyrosine kinase inhibitor sorafenib currently 
stands as the sole evidence-based therapy for advanced 
HCC in patients with intact liver function [39]. It is 
important to note that the due to toxic or tumor pro-
gression and stop using sorafenib in HCC patients, 
capecitabine may be an effective and safe second-line 
treatment. In the assessment of drug sensitivity in the 
two risk subgroups, we did not observe significant 

Fig. 12  Construction of prognostic model related to risk factors. A A graph of independent risk factors associated with prognosis. B, C Calibration 
plot and DCA plot for risk score model correlation. D, E Univariate and multivariate Cox regression forest plots for prognosis-related risk factors
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differences in sensitivity to sorafenib. However, in the 
assessment of sensitivity to gemcitabine, the high-risk 
group exhibited significantly higher sensitivity com-
pared to the low-risk group. This suggests that gemcit-
abine might be an effective second-line treatment when 
sorafenib resistance occurs. In other prognostic models 
of cell death, Li et al. similarly found that gemcitabine 
showed high sensitivity in HCC with high necropto-
sis-related risk score and suggested adverse clinical 
outcomes [40, 41]. Despite this, more evidence awaits 
further validation through clinical trials.

Although ICI combined with conventional cytotoxic 
drugs or radiotherapy has shown promising results in 
hepatobiliary and pancreatic system malignancies, in 
addition to understanding combination therapy, it is 
important to consider customized therapy with molecu-
lar/immune subtypes [35]. Independent of PD-1, PD-L1, 
and CTLA4 expression, tumor mutation load (TMB) has 
been shown in recent years to be a valuable biomarker 
for predicting the response of PD-1/PD-L1 and CTLA4/
B7-1 axis inhibitors in cancer patients treated with ICI. 
TMB is defined as somatic gene coding errors and the 
total number of base substitutions, gene insertion, or 
deletion errors detected per million bases (MB) [42]. The 
increase of mutation burden of certain malignant tumors 
enhances the immunogenicity of tumor, which leads to 
the weakening of its immune escape ability. Tumors with 
higher TMB are more responsive to ICIs therapy and can 
be applied to many metastatic malignancies, especially 
cancers caused by strong mutagens and carcinogens (e.g., 
non-small cell lung cancer, small cell lung cancer and 
melanomas) and colorectal cancer with high microsat-
ellite instability [43]. However, TMB is present at lower 
levels in HCC than in other solid tumors, and its predic-
tive value remains controversial and has not been fully 
demonstrated. There currently seems to be a consensus 
that high TMB is associated with reduced survival [44]. 
TTN was considered to be the most frequently mutated 
gene in the pan-cancer cohort, with the highest correla-
tion between the number of mutations and TMB [45]. 
TP53 gene mutation is closely related to tumor immunity 
and can be used as an effective biomarker to predict the 
response of different types of cancer to immunotherapy 
[46]. In our study, TTN in the high-risk group was higher 
than that in the low-risk group, which is consistent with 
the fact that the high-risk group predicted poor out-
comes. From the perspective of TME, Xie et al. suggested 
that TMB was positively correlated with Thelper (Th) 2, 
Th17, and gamma-delta T (Tgd) cell infiltration [47]. In 
another study, Gao et al. showed that high infiltration of 
M0 and M2 macrophages, naive CD4 + T cells, and low 
infiltration of CD8 + T cells were associated with poor 
prognosis, which is consistent with our findings [48].

DNA hypermethylation is closely associated with the 
initiation of cancer. Specifically, some copies of tumor 
suppressor genes undergo hypermethylation or natural 
mutations [49]. In order to fully understand the corre-
lation between the methylation level of hub gene and 
clinical features, we analyzed the expression level of 
hub gene under different clinical features. The results 
showed that hypermethylation was associated with 
poor clinical prognosis in HCC, which was consistent 
with previous conclusions [46]. To verify the protein 
expression of hub gene in HCC tissues, we used the 
HPA database to perform immunohistochemical visu-
alization analysis of hub genes. The results suggest that 
the expression of CDCA8 is upregulated in HCC tis-
sues while the expression of RDH16 is downregulated 
in HCC tissues. Unfortunately, we did not find data 
related to SPP2, which may be the reason why SPP2, as 
a secreted protein, is too low in HCC tissues.

Although a prognostic model based on the disulfidp-
tosis risk score showed good accuracy, our study still 
had some limitations. First of all, the sample of this 
study is limited, and further cohort studies are needed 
to verify the risk assessment model. Secondly, we con-
ducted a complete bioinformatics study and did not 
further study the mechanism of the target genes on 
HCC, so it is necessary for future researchers to carry 
out basic experiments to further explore the mecha-
nism. Additionally, clinical data related to viral infec-
tion between different subgroups are lacking in our 
data, so bias in prognostic assessment may occur as 
the etiology of underlying liver disease might have a 
prognostic impact. Of note, most of the 2774 DRGs we 
selected from the results of CRISPR-Cas9 screen, so the 
specific relationship between hub gene and disulfidpto-
sis needs to be confirmed by further experiments.

Taken together, our study proposed a DRGs cluster-
ing method and developed a risk assessment model for 
predicting prognosis and response to immunotherapy 
and chemotherapy in HCC, which is beneficial to guid-
ing the clinical treatment strategies.

Conclusions
HCC patients were classified into subgroups by unsu-
pervised clustering based on different disulfidptosis 
features. We discovered that patients with high risk 
score had weaker response to immunotherapy and were 
associated with an adverse prognosis of HCC, sug-
gesting that HCC patients with certain disulfidptosis 
characteristics may benefit from immunotherapy. In 
addition, gemcitabine maybe an effective therapeutic 
agent for the treatment of HCC in the high risk score 
subgroup.
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