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Abstract 

Background Lung adenocarcinoma (LUAD) is a common cancer with a poor prognosis. Pyroptosis is an important 
process in the development and progression of LUAD. We analyzed the risk factors affecting the prognosis of patients 
and constructed a nomogram to predict the overall survival of patients based on different pyroptosis-related genes 
(PRGs) subtypes.

Methods The genomic data of LUAD were downloaded from the TCGA and GEO databases, and all data were filtered 
and divided into TCGA and GEO cohorts. The process of data analysis and visualization was performed via R software. 
The data were classified based on different PRGs subtypes using the K-means clustering method. Then, the differ-
entially expressed genes were identified between two different subtypes, and risk factors analysis, survival analysis, 
functional enrichment analysis, and immune cells infiltration landscape analysis were conducted. The COX regression 
analysis was used to construct the prediction model.

Results Based on the PRGs of LUAD, the patients were divided into two subtypes. We found the survival probabil-
ity of patients in subtype 1 is higher than that in subtype 2. The results of the logistics analysis showed that gene 
risk score was closely associated with the prognosis of LUAD patients. The results of GO analysis and KEGG analysis 
revealed important biological processes and signaling pathways involved in the differentially expressed proteins 
between the two subtypes. Then we constructed a prediction model of patients’ prognosis based on 13 genes, 
including IL-1A, P2RX1, GSTM2, ESYT3, ZNF682, KCNF1, STK32A, HHIPL2, GDF10, NDC80, GSTA1, BCL2L10, and CCR2. 
This model was strongly related to the overall survival (OS) and also reflects the immune status in patients with LUAD.

Conclusion In our study, we examined LUAD heterogeneity with reference to pyroptosis and found different prog-
noses between the two subtypes. And a novel prediction model was constructed to predict the OS of LUAD patients 
based on different PRGs signatures. The model has shown excellent predictive efficiency through validation.
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Introduction
Lung cancer (LC), the most common cancer worldwide, 
is a significant cause of cancer death [1]. Non-small cell 
lung cancer (NSCLC) accounts for the majority of LC, 
and lung adenocarcinoma (LUAD) accounts for more 
than half of NSCLC [2]. Despite the excellent surgical 
outcome and prognosis of early-stage LUAD, the overall 
prognosis of LUAD is still poor. Comprehensive therapy, 
represented by chemotherapy such as platinum drugs 
and immune checkpoint blockade therapy such as PD-1 
and PD-L1 inhibitors, has shown promising benefits in 
advanced LUAD [3, 4]. Unfortunately, due to the wide-
spread tumor heterogeneity, a large number of patients 
are resistant to the medication, leading to cancer death 
[5, 6]. Therefore, it is necessary to discover novel sub-
types of LUAD to predict the overall survival and provide 
more appropriate therapy options for the patients.

Pyroptosis is a type of programmed cell death that 
can promote inflammation. It is characterized by two 
major features, cell swelling and rupture, and the release 
of a range of inflammatory factors [7, 8]. Pyroptosis is 
strongly associated with various cancer, such as gastric 
cancer, esophageal cancer, and lung cancer [9–13].

Activation of pyroptosis has been found to have an 
impressive inhibitory effect on lung cancer. Cucurbita-
cin B can inhibit NSCLC through activation of TLR4/
NLRP3/GSDMD-dependent pyroptosis [14]. Polyphyl-
lin VI exerts anti-tumor effects by regulating the ROS/
NF-κB/NLRP3/GSDMD signaling axis [15].

In our study, we constructed a model based on different 
PRGs signatures to predict the overall survival rate using 
the gene expression datasets from the TCGA and GEO 
databases. Our findings can guide individualized treat-
ment and prognosis prediction of LUAD patients.

Methods
Data collection
The TCGA data of LUAD samples were collected from 
Genomic Data Commons. The Gene Expression Omni-
bus (GEO) data of LUAD sample were also downloaded 
(GSE31210). Both TCGA and GEO databases were used 
to obtain normalized gene expression data and clinical 
information for further analysis. R software was used for 
validation and visualization of the data.

Construction of subtypes
According to the previous studies, we selected 52 pyrop-
tosis-related genes (PRGs) [16, 17]. We compared the dif-
ferential expression of PRGs in both normal and tumor 
tissues. K-means clustering method was used to classify 
the samples into distinct molecular subtypes based on 
different PRGs signatures via the “ConsensuClusterPlus” 
R package. The “Survival” R package was also used to 

perform a prognostic analysis on different subtypes of 
samples. The differentially expressed genes (DEGs) of dif-
ferent subtypes were found using the “limma” R package. 
A heatmap was constructed for comparison of differen-
tial expression of PRGs in normal and LUAD tissues.

Establishment and validation of prognostic signature
Based on P value and fold changes (FC), we used R soft-
ware to identify DEGs associated with PRGs from the 
TCGA cohort. The univariate Cox method was used to 
identify DEGs related to the prognosis from both TCGA 
and GEO cohorts. The least absolute shrinkage and selec-
tion operator (LASSO) logistic regression and the “glm-
net” package were used to perform feature selection of 
screening diagnostic biomarkers for different subtypes 
LUAD. The “survival” and “survminer” R packages were 
used to compare the OS between high-risk and low-risk 
groups in two cohorts. The ROC curves were plotted to 
access the predictive value of prognosis using the ‘‘tim-
eROC’’ R package. The PCA and t-SNE analyses were 
performed on all data in the TCGA and GEO cohorts 
using the “Rtsne” and “ggplot2” R packages.

Then, we used univariate and multivariate Cox regres-
sion analyses to assess the prognosis significance and 
identified the risk factors associated with prognosis based 
on the PRGs signature. Similarly, a nomogram was con-
structed to visualize the survival probability of patients 
based on the risk factors. A calibration curve was drawn 
to assess the accuracy of the nomogram we built.

Functional enrichment analysis
The “ClusterProfiler” and “EnrichPlot” R packages were 
used to perform GO and KEGG analyses on DEGs of two 
subtypes in TCGA cohort. The “GSVA” R package was 
used to identify the immune cell scores and the activities 
of immune-related pathways of patients in both TCGA 
and GEO cohorts.

Statistical analysis
R software (version 4.1.1) was used for all statisti-
cal analyses. P value < 0.05 was considered statistically 
significant.

Results
Identification of different pyroptosis‑related subtypes
The K-means clustering algorithm was used to classify 
all patients according to the differential expression of 
PRGs  (Additional file  1). The patients with LUAD were 
divided into two groups (Fig. 1A–C). Information on the 
clinical characteristics of patients in two groups is pre-
sented by a heatmap (Fig. 1E). Results of survival analysis 
revealed that cluster 1 (C1) had a higher overall survival 
rate than cluster 2 (C2) (Fig. 1D).
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Analysis of the novel prognostic signature 
and establishment of the prediction model
After grouping based on the differences in expression 
levels of 52 PRGs, we identified a total of 13 PRGs-
related genes associated with prognosis between the 
two groups. Then, a model of risk score was built based 
on 13 PRGs-related genes, including IL-1A, P2RX1, 
GSTM2, ESYT3, ZNF682, KCNF1, STK32A, HHIPL2, 
GDF10, NDC80, GSTA1, BCL2L10, and CCR2, to 
explore their prognostic value. The genes we identi-
fied were differentially expressed and had significant 
characteristic value for the classification of LUAD sub-
types, which we examined using the LASSO algorithm 
(Fig.  2A, B). A mathematical model on risk score was 
obtained using the multivariate COX regression method. 
The equation is as follows: Risk Score = 0.1077*IL-
1A + (− 0.0146* P2RX1) + (− 0.0630* GSTM2) + (− 
0.0344* ESYT3) + (− 0.1546* ZNF682) + 0.0292* 
KCNF1 + (− 0.0316* STK32A) + 0.0186* HHIPL2 + 
(− 0.0115* GDF10) + 0.0609* NDC80 + (−  0.0298* 
GSTA1) + 0.0571* BCL2L10 + (−  0.2199* CCR2). We 
calculated the risk score for all patients in the TCGA 
cohort. All patients were divided into high-risk and low-
risk groups using the median as the cut-off value. The 
result of prognostic analysis showed that patients in the 
low-risk group have a longer life expectancy (Fig.  2E). 
The area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) curve confirmed the reliability 

of predicting patient prognosis based on the risk score 
(Fig. 2C, AUC at 1 year = 0.729, AUC at 3 years = 0.711, 
AUC at 5 years = 0.655). Then, we verified the predictive 
value of the model with the GEO cohort. The association 
between risk score and life expectancy is consistent with 
the previous result (Fig.  2D, F, AUC at 1  year = 0.791, 
AUC at 3 years = 0.635, AUC at 5 years = 0.706).

We assessed the predictive value of genetic signatures 
in the TCGA cohort (Fig.  3A–B, E–F) and the GEO 
cohort (Fig.  3C–D, G–H). The median was used as the 
cut-off value and all patients in both cohorts were divided 
into two groups (high-risk and low-risk group) (Fig. 3A, 
C). The patients at high risk of dying earlier than those at 
low risk (Fig. 3B, D). The results of PCA and t-SNE analy-
ses revealed that the patients with different risk levels 
were distributed in two different directions (Fig. 3E–H).

The univariate and multivariate COX regression analy-
ses were used to screen independent predictors of OS in 
the TCGA cohort. The result of univariate COX regres-
sion analysis showed that T-stage, N-stage, M-stage, and 
risk score were strongly related to OS (Fig. 4A). The result 
of multivariate COX regression analysis showed that risk 
score was a significant predictor of patients’ progno-
sis (hazard ratio = 5.221, 95%CI 3.076–8.862, P < 0.001) 
(Fig. 4B). Next, we constructed a heatmap and found sig-
nificant differences in the distribution of gender, T-stage, 
N-stage, and overall stage across high-risk and low-risk 
categories (Fig. 4C).

Fig. 1 Different pyroptosis-related gene (PRGs) subtypes and clinicopathological and biological characteristics of two distinct subtypes of lung 
adenocarcinoma (LUAD) samples divided by clustering. Grouping of LUAD patients according to different expression of PRGs. When k = 2, 
the samples were more likely to be clustered together (A−C); multivariate analysis demonstrated differences in survival probability between two 
subtypes (D). A heatmap of clinical characteristics for patients in two subtypes (E)
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Fig. 2 Predicting the prognosis of patients with two subtypes based on differential gene expression. Lasso regression model of lung 
adenocarcinoma (LUAD) patients in the TCGA cohort (A − B); the ROC curve showed the predictive efficacy of risk score to predict patient prognosis 
in the TCGA cohort (C); the ROC curve showed the predictive efficacy of risk score to predict patient prognosis in the GEO cohort (D); multivariate 
analysis demonstrated differences in survival probability between two subtypes in the TCGA cohort (E); multivariate analysis demonstrated 
differences in survival probability between two subtypes in the GEO cohort (F)

Fig. 3 Prognostic analysis of the prediction model based on 13 genetic signature in the TCGA (A − B, E − F) and the GEO (C − D, G − H) cohorts. 
Risk score of lung adenocarcinoma (LUAD) patients with different subtypes in the TCGA and the GEO cohorts (A,C); distribution of survival for lung 
adenocarcinoma (LUAD) patients with different subtypes in the TCGA and the GEO cohorts (B,D); plots of principal component analysis (PCA) 
for lung adenocarcinoma (LUAD) patients with different subtypes in the TCGA and the GEO cohorts (E,G); examination of the t-SNE coefficients 
for lung adenocarcinoma (LUAD) patients with different subtypes in the TCGA and the GEO cohorts (F,H)
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Construction and validation of a nomogram with clinical 
features
In order to visualize the prognosis of LUAD patients, 
we collected the information on clinical variables for all 
patients in the TCGA cohort and constructed a nomo-
gram (Fig. 5A). The predictors included T stage, N stage, 
total stage, age, gender, and risk score. Each of the prog-
nostic indicators in the nomogram has a corresponding 
point, which patients can evaluate the 1-, 3-, and 5 year 
survival rates according to their actual situation. Patients 
with higher overall points had worse clinical outcomes. 
The result of the calibration curve showed that the nom-
ogram had an impressive and reliable predictive perfor-
mance (Fig. 5B).

Functional enrichment analysis based on the prediction 
model
GO and KEGG analyses were conducted to investigate 
the biological functions and pathways of DEGs. |Log2Fold 
Change|> 1 and P-value < 0.05 are seen as criteria. Finally, 
in the TCGA cohort, 122 DEGs were found in two groups 
divided according to differences in expression levels of 13 

PRGs-related genes. Based on the DEGs, results of GO 
and KEGG analyses were carried out. The results showed 
that DEGs were mainly involved in a variety of signaling 
pathways related to immunology and cell differentiation, 
such as humoral immune response pathway, organelle 
fission pathway, nuclear division pathway, and mitotic 
nuclear division pathway (Fig. 6).

Results of immune cells infiltration landscape analysis
Patients in the TCGA and GEO cohorts were analyzed 
separately for immune cells infiltration landscape analy-
sis based on differences in risk score, including 16 dif-
ferent immune cells and 13 different immune-related 
pathways. The results showed that in the TCGA cohort, 
the amounts of ‘‘DCs’’, ‘‘B Cells’’, ‘‘CD8+ T Cells’’, ‘‘Mac-
rophages’’, ‘‘Mast Cells’’ ‘‘Neutrophils’’, ‘‘NK Cells’’, ‘‘T 
helper Cells’’, ‘‘Tfh’’, ‘‘Th1 Cells’’, ‘‘TIL’’, and ‘‘Treg’’ were 
significantly higher in the low-risk group than in the 
high-risk group (Fig.  7A). Similarly, in the GEO cohort, 
the amounts of ‘‘DCs’’, ‘‘Mast Cells’’, ‘‘Neutrophils’’, and 
‘‘TIL’’ were significantly higher in the low-risk group than 
in the high-risk group (Fig. 7C). Multiple immune-related 

Fig. 4 Risk factors analysis of the prediction model for lung adenocarcinoma (LUAD) patients. Univariate COX regression analysis was used 
to identify the variates related to the overall survival (OS) in LUAD patients (A); multivariate COX regression analysis was used to identify the variates 
related to the overall survival (OS) in LUAD patients (B); a heatmap of clinical characteristics for LUAD patients between the high-risk and the low-risk 
groups (C)
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pathways also showed more activity in the low-risk group 
than in the high-risk group, including APC co-inhibition, 
cytolytic activity, HLA, parainflammation, and type II 
IFN response (Fig.  7B, D). There is evidence that prog-
nostic differences between patients in the high-risk and 
low-risk groups are due to the differences in immune 
characteristics.

Discussion
Pyroptosis is a unique form of cell death executed by the 
GSDM protein family, involving multiple immune and 
inflammatory responses [8]. The classical pyroptosis is 
associated with NLRP3 inflammasome complex, which 
comprises NLRP3, ACS and caspase-1 [18]. Pyroptosis 
plays a dual role in cancer progression and therapeutic 

mechanisms [19]. Pyroptosis-derived cytokines can 
induce the transformation of normal cells into tumor 
cells. However, pyroptosis can also promote tumor cell 
death. Pyroptosis signature has been used to predict 
prognosis in a variety of malignancies, but the role in 
lung adenocarcinoma is unclear, and the aim of our study 
was to elucidate this role.

The current tumor-node-metastasis (TNM) staging 
system is important in assessing the prognosis of patients 
with malignancies [20]. Our results also revealed dif-
ferences in the prognosis of patients with different T 
stages, N stages, and total stages (Fig.  5). However, it is 
difficult to make accurate survival predictions and treat-
ment decisions for LUAD patients based on TNM stages. 
Therefore, we developed a risk scoring system (Risk 
Score) associated with DEGs of different PRGs subtypes 
in LUAD patients. In this study, assessing the expression 
levels of 13 PRGs-related genes in combination with tra-
ditional TNM classification can better guide survival pre-
dictions and treatment decisions for patients with LUAD 
(Fig. 5).

In this study, we established a prognosis prediction 
model for LUAD patients based on the pyroptosis-related 
genes (PRGs), and confirmed the validity and applicabil-
ity of the model. 13 PRGs-related genes (IL-1A, P2RX1, 
GSTM2, ESYT3, ZNF682, KCNF1, STK32A, HHIPL2, 
GDF10, NDC80, GSTA1, BCL2L10 and CCR2) were 
found for the prognostic signature. For further under-
standing of the model, we searched the information on 
key genes.

Interleukin-1 (IL-1) is a symbol of systemic inflam-
mation and cancer in humans. IL-1A is a member of 
the IL-1 family, which is widely involved in the genesis, 
progression, and metastasis of tumors. The expression 
level of IL-1A was found to be significantly increased in 
a variety of cancers, including non-small cell lung can-
cer, colon cancer, and squamous cell carcinoma [21]. 
Similarly, IL-1A can also promote macrophage aggrega-
tion to stimulate angiogenesis, leading to the progression 
and metastasis of tumor [22, 23]. Glutathione S-trans-
ferase Mu 2 (GSTM2) and Glutathione S-transferase A1 
(GSTA1) are enzymes belonging to the GST family that 
are significant in carcinogen detoxification. GSTM2 plays 
an important role in the development and metastasis 
of lung cancer. The results of previous studies showed 
that GSTM2 mRNA levels were significantly lower in 
the tumor tissues of NSCLC patients compared to the 
paired adjacent normal tissues [24]. The high expres-
sion of GSTM2 is also correlated with the favorable 
survival of patients with lung cancer [25]. Our finding 
reveals that the expression level of GSTM2 is higher in 
patients of cluster 1 (C1), which have better clinical out-
comes. GSTA1 is closely associated with metastasis in 

Fig. 5 A nomogram to predict the overall survival (OS) of lung 
adenocarcinoma (LUAD) patients. A nomogram to predict the survival 
of LUAD patients in the TCGA cohort (A); a calibration curve 
for the prediction of patients’ 1, 3, 5 years OS in the TCGA cohort (B)
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lung cancer. Overexpression of GSTA1 can mediate lung 
cancer cells metastasis by promoting epithelial–mes-
enchymal transition (EMT) [26]. The expression level 
of GSTA1 is also an important predictive factor associ-
ated with postoperative recurrence in NSCLC patients 
[27]. The expression level of GSTA1 is higher in patients 
of cluster 2 (C2), which have worse clinical outcomes. 
Serine/threonine kinase 32A (STK32A) has been con-
firmed by epidemiological investigations as a susceptibil-
ity gene for lung cancer [28]. Overexpression of STK32A 
enhances migration and proliferation of lung cancer cells 
while inhibiting apoptosis, which is essential for lung 
cancer progression [29]. However, miR-130a-5p can 
inhibit the expression of STK32A by regulating RUNX2 
to suppress the above process. C–C motif chemokine 
receptor 2 (CCR2) encoded protein is a chemokine that 
specifically mediates monocyte chemotaxis. It is involved 
in monocyte infiltration in inflammatory diseases and 
as well as in the inflammatory response against tumors. 
The inflammatory microenvironment is a key factor 

contributing to lung cancer progression. Tumor-associ-
ated macrophages (TAMs) are important components 
of the inflammatory microenvironment [30]. Evidence 
reveals that M2-polarized TAMs play an important role 
in the progression and metastasis of lung cancer [31]. It 
has been found that estrogen receptor α (Erα) can acti-
vate the CCL2/CCR2 axis to promote macrophage infil-
tration, M2 polarization, and MMP9 production, which 
can then increase NSCLC cell invasion [32]. Significant 
correlations were found among the higher expression of 
CCR2 and the worse pathological stage and the shorter 
OS of LUAD patients [33]. Therefore, interventions of 
CCR2 expression and M2 polarization TAMs may be 
potential options for the treatment of lung cancer.

Our research categorizes the LUAD patients based on 
differential expression levels of PRGs, discovers the DEGs 
between different subtypes, and establishes a nomo-
gram to identify the relationship between pyroptosis and 
patients’ prognosis. The significance of pyroptosis-medi-
ated immunophenotype in the occurrence, development, 

Fig. 6 The results of GO and KEGG analyses of differentially expressed genes (DEGs) in the TCGA cohort (A−B)
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and prognosis of LUAD was also systematically revealed. 
The prediction model we have developed can be a power-
ful tool for predicting the prognosis of different subtypes 
of LUAD. However, this study remains some limitations. 
First, we only used the datasets from the TCGA and 
GEO databases for the analysis, more data from differ-
ent regions are needed for validation. Furthermore, due 
to the limited information contained in the databases, 
the predictive model cannot be well used to guide the 
clinical treatment of patients with different subtypes of 
LUAD. Finally, further in  vivo and in  vitro experiments 
are needed to validate the results.
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