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Abstract 

Objective Sepsis-induced coagulopathy (SIC) is extremely common in individuals with sepsis, significantly associ-
ated with poor outcomes. This study attempted to develop an interpretable and generalizable machine learning (ML) 
model for early predicting the risk of 28-day death in patients with SIC.

Methods In this retrospective cohort study, we extracted SIC patients from the Medical Information Mart for Inten-
sive Care III (MIMIC-III), MIMIC-IV, and eICU-CRD database according to Toshiaki Iba’s scale. And the overlapping 
in the MIMIC-IV was excluded for this study. Afterward, only the MIMIC-III cohort was randomly divided into the train-
ing set, and the internal validation set according to the ratio of 7:3, while the MIMIC-IV and eICU-CRD databases were 
considered the external validation sets. The predictive factors for 28-day mortality of SIC patients were determined 
using recursive feature elimination combined with tenfold cross-validation (RFECV). Then, we constructed models 
using ML algorithms. Multiple metrics were used for evaluation of performance of the models, including the area 
under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), accuracy, 
sensitivity, specificity, negative predictive value, positive predictive value, recall, and F1 score. Finally, Shapley Additive 
Explanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME) were employed to provide a reasonable 
interpretation for the prediction results.

Results A total of 3280, 2798, and 1668 SIC patients were screened from MIMIC-III, MIMIC-IV, and eICU-CRD data-
bases, respectively. Seventeen features were selected to construct ML prediction models. XGBoost had the best per-
formance in predicting the 28-day mortality of SIC patients, with AUC of 0.828, 0.913 and 0.923, the AUPRC of 0.807, 
0.796 and 0.921, the accuracy of 0.785, 0.885 and 0.891, the  F1 scores were 0.63, 0.69 and 0.70 in MIMIC-III (internal vali-
dation set), MIMIC-IV, and eICU-CRD databases. The importance ranking and SHAP analyses showed that initial SOFA 
score, red blood cell distribution width (RDW), and age were the top three critical features in the XGBoost model.

†Shu Zhou and Zongqing Lu have contributed equally to this work.

*Correspondence:
Huaqing Zhu
aydzhq@126.com
Min Yang
yangmin@ahmu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40001-023-01593-7&domain=pdf


Page 2 of 14Zhou et al. European Journal of Medical Research           (2024) 29:14 

Conclusions We developed an optimal and explainable ML model to predict the risk of 28-day death of SIC patients 
28-day death risk. Compared with conventional scoring systems, the XGBoost model performed better. The model 
established will have the potential to improve the level of clinical practice for SIC patients.

Keywords Sepsis induced coagulopathy, Gradient boosting decision tree, Machine learning, Shapley additive 
explanations, Local interpretable model-agnostic explanations

Graphical Abstract

Introduction
Sepsis is life-threatening organ dysfunction caused by a 
dysregulated host response to infection [1]. The global 
incidence is approximately 50 million person-years, 
which poses severe challenges to the public health sys-
tems of the countries [2]. Although research on the 
pathogenesis and treatment of sepsis has been carried 
out for decades, no specific treatment has been found so 
far. Currently, the hospital mortality of adults with sep-
sis is about 189/100,000 person-years, while the intensive 
care unit (ICU) mortality is as high as over 42% [3]. It is 
well known that coagulation abnormalities usually occur 
in sepsis patients. According to the International Society 
On thrombosis and Haemostasis Guideline, its incidence 

is maintained at roughly 50–70% [4]. The primary patho-
genesis of coagulopathy in patients with sepsis is excep-
tionally complex, including massive activation of platelets 
and other inflammation cells (such as neutrophils and 
lymphocytes) and vascular endothelial damage. These 
mechanisms are manifested in the body’s dysregulated 
response to inflammation, the platelet count decrease, 
the coagulation reaction enhancement and the antico-
agulation mechanism injury, and large immune-micro 
thrombus formation, which in turn affects the perfusion 
of organs [5, 6].

Although the definition of sepsis-induced coagulopathy 
(SIC) is still controversial, it is generally considered that 
this stage is from the initial compensated period to the 
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decompensated disseminated intravascular coagulation 
period. The gold standard for SIC is still unclear, and the 
Toshiaki Iba scale is mainly used for diagnosis, which is 
comprehensively judged from three aspects: the degree 
of thrombocytopenia, the international normalized ratio 
(INR) level, and the SOFA score [7]. A single-center ret-
rospective observational trial with large samples has 
reported a strong association between SIC and poor 
outcomes in hospitalized patients [8], and any delayed 
or omitted interventions may be detrimental to such 
patients [9]. Thus, it is of utmost importance to identify 
the high-risk group of SIC patients and implement timely 
intervention therapy, which is essential to reduce mortal-
ity. To date, no single recognized evaluation criteria have 
been found to predict the prognosis of patients with SIC 
accurately.

Therefore, this present study aimed to establish a 
machine learning (ML) model for early prediction of 
28-day death in SIC patients based on the Medical Infor-
mation Mart for Intensive Care III (MIMIC-III) database 
and further validated in MIMIC-IV and eICU-CRD data-
bases. In addition, we adopted the Shapley additive expla-
nation (SHAP) and Local Interpretable Model-Agnostic 
Explanations (LIME) methods to provide a reasonable 
interpretation for the prediction results and assisted the 
clinical practice of intensivists and relevant researchers.

Methods
Data sources
Data used in this present study were obtained from three 
large, open-access databases called MIMIC-III (v 1.4), 
MIMIC-IV (v 1.0) and eICU-CRD. The MIMIC-III (v 
1.4) contained comprehensive records of 46,520 patients 
admitted to the Beth Israel Deaconess Medical Center in 
Boston, Massachusetts, between June 2001 and October 
2012 [10]; while the MIMIC-IV (v 1.0) comprised almost 
300,000 patients at the same center who were admitted 
between 2008 and 2019 [11]. Furthermore, the eICU-
CRD database is a multicenter database of over 200,000 
ICU admissions in the United States. Considering the 
partially overlapping patients in MIMIC-III and MIMIC-
IV datasets, we extracted the patients from 2012 to 2019 
at the MIMIC-IV set using MIMIC-III Clinical Database 
CareVue subset (2001–2008) and the admission time 
[12]. The relevant clinical data included demographic 
characteristics, vital signs, laboratory results, imaging 
examinations, microbial culture results, medication and 
procedures records, survival information, and a data dic-
tionary. To achieve authorization, users must complete 
the collaborative institution training initiative program 
course by the US National Institutes of Health. Zhou and 
Lu have finished the online examination and obtained a 

certification number (Record ID: 53186220, 38455175). 
Since the MIMIC and eICU-CRD are both publicly avail-
able anonymized databases, approval from the ethical 
committee was exempted.

Study population
Septic patients diagnosed with SIC on the first day of 
ICU admission were eligible for inclusion in the study. 
Only the first stay was included for analysis if patients 
were admitted to ICU more than once. The definition of 
sepsis was based on the Third International Consensus 
Definitions for Sepsis and Septic Shock (Sepsis-3), that 
is, patients with confirmed or suspected infection and a 
total SOFA score ≧ 2 [1]. Suspected infection refers to 
antibiotics administered within three days of the date 
of culture collection. According to Toshiaki Iba’s rat-
ing scale, SIC was identified based on the PT-INR level, 
platelet count, and SOFA score [7]. The details about 
the SIC diagnostic criteria can be found in Additional 
file  3: Table  S3. The exclusion criteria were (1) minors 
(< 18  years old); (2) pregnant women; (3) patients with 
congenital coagulopathy; (4) patients with neoplasm 
were also excluded, taking into account the effect of 
tumors and related chemotherapy agents on the coagula-
tion function; (5) ICU stays less than 48 h.

Data extraction and feature engineering
PostgreSQL programming (v 4.21) and STATA soft-
ware (v 15.1) were used to extract data and concatenate 
each list based on the specific hadm_id or stay_id code. 
The following information was extracted, including age, 
gender, weight, ICU types, comorbidities, SOFA (which 
excluded the platelet), LODS, SAPS II, SIC score, vital 
signs, laboratory parameters, infection site, mechani-
cal ventilation use, norepinephrine use, and survival 
record. The average of each vital sign within the first 24 h 
after ICU entry was calculated and used for the analysis, 
including heart rate (HR), mean blood pressure (MBP), 
respiratory rate (RR), and temperature. The laboratory 
parameter value associated with the greatest severity 
of illness during the first 24  h after ICU admission was 
extracted (except for mean blood glucose concentration), 
including aniongap_max, bicarbonate_min, chloride_
max, hematocrit_min, hemoglobin_min, lactate_max, 
platelet count_min, potassium_max, partial prothrom-
bin time_max (PTT), INR, prothrombin time_max (PT), 
sodium_min, blood urea nitrogen_max (BUN), white 
blood cells_max (WBC),  PO2-min,  PCO2-max, PH-
min, mean corpuscular hemoglobin concentration_min 
(MCHC), red blood cell distribution width_max (RDW), 
mean corpuscular volume_min (MCV), alanine ami-
notransferase_max (ALT), aspartate aminotransferase_
max (AST), bilirubin, creatinine_max etc.. Comorbidities 
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were identified by the International Classification of Dis-
eases, Ninth Revision (ICD-9), combining with Tenth 
Revision (ICD-10) diagnosis codes when discharge, 
including hypertension, chronic obstructive pulmonary 
disease, diabetes, myocardial infarction, chronic heart 
failure, and liver disease. The outcome of this present 
study is the 28-day mortality following ICU admission. 
The patient was considered a survivor if there was no 
record of death_time within 28-day after ICU admission.

The feature engineering was completed in three steps. 
Firstly, missing value identifying and processing. In this 
study, we used the package “VIM” to recognize the dis-
tribution of missing values. Besides, features with more 
than 30% missing values were removed, such as ALT, 
AST, and bilirubin. Additional file 4: Figure S1 shows the 
percentage of missing values in each database. For the 
remaining features, missing values were imputed using 
the package “randomForest” of R. Secondly, outliers 
identifying and processing. Within normally distributed 
data, outliers were identified based on the 3σ principle. 
Furthermore, nonparametric data were tested for out-
liers using the interquartile range method. All outliers 
were eventually winsorized using the winsor2 command 
in STATA software. Thirdly, feature selection for model 
construction. Feature selection was performed by a ten-
fold Recursive Feature Elimination Cross-Validation 
(RFECV) based on a random forest regressor in the train-
ing set. RFE, as a greedy algorithm, ranked and selected 
features according to their importance by iterative train-
ing [13].

Statistical analysis
Normal distribution was assessed with Agostino tests. 
The continuous variables were presented as mean (stand-
ard deviation) or median (interquartile ranges, IQR) 
according to the type of data distribution and compared 
by unpaired Student’s test or Mann–Whitney U-test. 
Categorical variables were compared using the χ2 or 
Fisher exact test.

The MIMIC-III database was randomly assigned with 
70% for training and 30% for internal validation, while 
the MIMIC-IV and EICU database was used for exter-
nal validation. Four machine learning methods (logistic 
regression-LR, XGBoost, support vector machine-SVM, 
and naive bayesian-NB) and three severity scoring sys-
tems (SOFA, SAPS II and SIC score) were, respectively, 
used to develop models for the ICU 28-day death predic-
tion in SIC patients. We applied a tenfold cross-validated 
grid-search approach to the predefined models to achieve 
optimal parameters. The main parameters of XGBoost in 
this study were set as follows: n_estimators = 30, learn-
ing_rate = 0.23, max_depth = 3, gamma = 0. Areas under 
the receiver operating characteristic curve (AUROC), 

area under the precision-recall curve (AUPRC), accuracy, 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and  F1 score were all 
calculated to evaluate the prediction performance of each 
model. All comparisons of AUROCs were performed as 
two-sided DeLong Tests. While, the  F1 score is the har-
monic mean of precision and recall, that is defined as fol-
lows:  F1 = 2 × Precision x Recall/(Precision + Recall) [14]. 
SHAP and LIME algorithms were commonly applied 
in explaining the output of the machine learning model 
[15, 16]. The former applied a game-theoretic approach 
to evaluate feature contributions toward any model pre-
diction and identify the features most prominently influ-
enced by the provision of SHAP values [17]. In this study, 
both were used to explain the final prediction model with 
contributing risk factors resulting in ICU 28-day death 
in patients with SIC. In addition, the partial depend-
ence plot of each feature contained in the final model 
was drawn using the "dependence plot" function to assess 
the connection between each feature and the risk of ICU 
28-day death. All statistical analyses were performed 
using R software (v 3.6.2) and Python software (v 3.8.5). 
The framework of the prediction models is shown in 
Fig. 1.

Results
Baseline characteristic
After applying the inclusion and exclusion criteria, 3280 
SIC patients were identified from the MIMIC-III data-
base, while 2798 and 1668 SIC patients were from the 
MIMIC-IV and e-CIU database respectively. Subse-
quently, patients included in the MIMIC-III database 
were randomly assigned to training (N = 2296) and inter-
nal validation cohort (N = 984) with the ratio of 7:3. As 
shown in Table  1, the ICU 28  day mortality was 33.9% 
(779/2296) and 34.0% (335/984) in the training and inter-
nal validation cohort. SIC patients who died on the day 
28 after ICU entry had an older age (68.34 and 69.28 in 
the training and internal validation cohort), higher pro-
portion of liver disease (30% and 33%), and higher sever-
ity score (SOFA: 9 and 9; LODS: 8 and 8; SAPS II: 53 and 
54) compared with survivors. Regarding the SIC score, 
the percentage of elevated SIC sore in non-survivors was 
significantly higher than in survivors in the training and 
internal validation cohort (Table  1). Meanwhile, non-
survivors had faster mean HR (91.96 and 92.90  min−1 in 
training and internal validation cohort) and RR (20.6 and 
20.17   min−1), lower MBP (72.42 and 71.63  mmHg) and 
temperature (36.71 and 36.72 ℃) within 24  h after ICU 
admission. Significant abnormalities in blood coagulation 
indexes, such as prolonged PTT (45 and 43.1 s in train-
ing and internal validation cohort) and PT time (18.3 and 
18.9 s), higher INR (1.9 and 1.9), RDW (16.5 and 16.7%), 
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and MCV (92 and 92.79 fL), were noted in the non-
survivors group. The characteristics of the included SIC 
patients from the MIMIC-IV and eICU-CRD database 
were presented in Additional file  1: Table  S1 and Addi-
tional file 2: Table S2.

Prediction model building and evaluation
Before prediction model construction, 20 features were 
preliminarily screened out using RFECV, including age, 
SOFA score, LODS score, HR_mean, systolic pressure_
mean, MBP, RR_mean, temperature_min, lactate_max, 
platelet count_min, PTT_max, PT_max, INR_max, 
BUN_max, WBC_max count, PaO2_min, PH_min, 
MCHC_min, RDW_max, and MCV_min. However, sys-
tolic pressure, INR, PH, and LODS were deleted from 
the original features list, and gender was included based 
on expert consultations and clinical judgment results. 
Thus, 17 features were eventually included for further 
model building. Additional file  6: Figure S3 presents 
how the accuracy varies with the number of features in 
RFECV processing. Considering the potential bias results 
from the discrepancy of missing values, we further ana-
lyzed the differences between missing values for each of 

the 17 features between survivors and non-survivors in 
three databases. Moreover, Additional file  5: Figure S2 
indicates that there was no significantly different in the 
distribution of the missing values between survivors and 
non-survivors in each database.

We utilized four machine learning models, XGBoost, 
LR, SVM, and NB, with these 17 features mentioned 
above to predict the risk of ICU 28-day death in SIC 
patients. The results demonstrated that the XGBoost 
presented the largest AUROC compare with other 
models in internal validation cohort and external vali-
dation cohort [internal validation cohort: 0.828 95% con-
fidence interval (CI) 0.795, 0.861; MIMIC-IV: 0.913 95% 
CI 0.905, 0.932; eICU-CRD: 0.923 95% CI 0.913, 0.941] 
(Fig. 2A–C and Table 2), and these differences were sig-
nificant when compared by DeLong test (P < 0.001). 
However, the results of AUROC may be insensitive due 
to the imbalance distribution of data; hence, we analyzed 
the AUPRC value of each model. The results presented 
that the XGBoost also performed best in three cohorts 
[internal validation cohort: 0.807 95% confidence inter-
val (CI) 0.743, 0.864; MIMIC-IV: 0.796 95% CI 0.703, 
0.884; eICU-CRD: 0.921 95% CI 0.874, 0.955] (Fig. 2D, E 

Fig. 1 The flowchart and framework of the prediction models



Page 6 of 14Zhou et al. European Journal of Medical Research           (2024) 29:14 

Table 1 The comparison of baseline demographics and clinical characteristics between surviving patients and those that died in 
training and internal validation sets

Cohort Training set (n = 2296) Internal validation set (n = 984)

Variables Survival in ICU 28 day 
(n = 1517)

Death in ICU 28 day 
(n = 779)

P Survival in ICU 28 day 
(n = 649)

Death in ICU 28 day 
(n = 335)

P

Gender, n (%) 0.28 0.642

 Male 890 (59) 476 (61) 395 (61) 198 (59)

 Female 627 (41) 303 (39) 254 (39) 137 (41)

Age (Years) 66.14 (52.95, 78.42) 68.34 (55.70, 80.27) 0.004 66.47 (51.43, 78.49) 69.28 (54.85, 80.58) 0.028

Weight (kg) 79.95 (67.78, 94) 78.2 (65.32, 92.3) 0.114 80 (67.33, 95) 76 (63.3, 91) 0.011

ICU type  < 0.001  < 0.001

 CCU 136 ( 9) 83 (11) 60 (9) 36 (11)

 CSRU 246 (16) 37 (5) 96 (15) 15 (4)

 MICU 765 (50) 511 (66) 336 (52) 222 (66)

 SICU 210 (14) 95 (12) 96 (15) 37 (11)

 TSICU 160 (11) 53 (7) 61 (9) 25 (7)

Comorbidity, n (%)

 Hypertension, n (%) 518 (34) 234 (30) 0.053 211 (33) 77 (23) 0.002

 COPD, n (%) 32 (2) 25 (3) 0.144 8 (1) 5 (1) 0.772

 Diabetes, n (%) 424 (28) 183 (23) 0.025 184 (28) 79 (24) 0.127

 MI, n (%) 32 (2) 24 (3) 0.198 16 (2) 10 (3) 0.786

 CHF, n (%) 36 (2) 24 (3) 0.385 19 (3) 12 (4) 0.716

 Liver disease, n (%) 305 (20) 232 (30)  < 0.001 131 (20) 112 (33)  < 0.001

 Severity score

 SOFA 6.00 (5.00, 9.00) 9.00 (7.00, 13.00)  < 0.001 7.00 (5.00, 9.00) 9.00 (7.00, 13.00)  < 0.001

 LODS 5.00 (4.00, 7.00) 8.00 (6.00, 10.00)  < 0.001 5.00 (4.00, 7.00) 8.00 (6.00, 10.00)  < 0.001

 SAPS II 40.00 (32.00, 49.00) 53.00 (45.00, 64.00)  < 0.001 40.00 (33.00, 49.00) 54.00 (43.00, 66.00)  < 0.001

SIC score, n (%)  < 0.001  < 0.001

 4 441 (29) 129 (16) 171 (26) 54 (16)

 5 643 (42) 294 (38) 291 (45) 120 (36)

 6 429 (28) 360 (46) 191 (29) 157 (47)

Vital  signsa

 Mean heartrate, 
 (min−1)

87.70 (77.67, 98.29) 91.65 (81.06, 106.12)  < 0.001 87.98 (78.96, 100.13) 92.90 (82.24, 106.41)  < 0.001

 MAP, (mmHg) 75.23 (69.86, 81.60) 72.42 (66.33, 78.10)  < 0.001 74.33 (69.09, 80.00) 71.63 (64.35, 77.63)  < 0.001

 Mean resp. rate, 
 (min−1)

19.19 (16.45, 22.00) 20.60 (18.09, 24.00)  < 0.001 19.21 (16.75, 21.71) 20.17 (17.82, 24.84)  < 0.001

 Mean temperature, 
(℃)

36.88 (36.48, 37.30) 36.71 (36.13, 37.14)  < 0.001 36.88 (36.51, 37.28) 36.72 (36.26, 37.16)  < 0.001

Laboratory  testsb

 Mean glucose, (mg/
dl)

134.00 (114.50, 156.75) 135.89 (110.71, 163.63) 0.563 136.60 (111.82, 156.32) 137.40 (109.54, 161.92) 0.99

 Aniongap_max 16.00 (13.00, 19.00) 18.00 (14.88, 22.00)  < 0.001 15.00 (13.00, 18.00) 18.00 (14.50, 22.00)  < 0.001

 Bicarbonate_min, 
(mEq/L)

21.00 (18.00, 24.00) 19.00 (15.00, 23.00)  < 0.001 21.00 (18.00, 23.00) 19.00 (15.00, 23.00)  < 0.001

 Chloride_max, 
(mEq/L)

109.00 (105.00, 113.00) 107.00 (102.00, 113.00)  < 0.001 109.00 (105.00, 113.00) 107.00 (102.00, 113.00)  < 0.001

 Hematocrit_min, (%) 27.00 (23.00, 31.50) 26.60 (23.00, 30.80) 0.277 26.60 (22.70, 31.00) 26.60 (23.30, 30.45) 0.574

 Hemoglobin_min, 
(g/dL)

9.20 (7.90, 10.70) 9.00 (7.85, 10.40) 0.082 9.10 (7.80, 10.60) 9.20 (7.90, 10.45) 0.949

 Lactate_max, 
(mmol/L)

2.83 (2.10, 4.20) 3.49 (2.40, 6.50)  < 0.001 2.89 (2.00, 4.40) 3.60 (2.30, 6.77)  < 0.001

 Lowest platelet level, 
(K/uL)

100.00 (67.00, 124.00) 79.00 (46.00, 115.00)  < 0.001 99.00 (65.00, 123.00) 80.00 (47.00, 113.50)  < 0.001
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and Table 2). Besides, XGBoost outperformed the other 
algorithms, SOFA, SAPS II and SIC score on the aspect 
of accuracy (internal validation cohort: 0.785; MIMIC-IV 
cohort: 0.885; EICU cohort: 0.891) and F1score (internal 
validation cohort:0.63; MIMIC-IV cohort: 0.69; EICU 
cohort: 0.70). In addition, we drew the calibration plots 
using the bootstrap method and performed the decision 
curve analysis (DCA) of each model in three databases. 
As shown in Additional file 6: Figure S3D, E, F, the bias-
corrected line slightly deviated from the ideal line, indi-
cating a good agreement between the prediction and 
observation. And the DCA results demonstrated that 
the XGBoost model provided a greater net benefit when 
the threshold probability was within 0 and 1 in both 

databases (Additional file 6: Figure S3A, B, C). Therefore, 
we selected the XGBoost for all further analyses.

Explanation of risk factors
The importance score of 17 features used in the XGBoost 
model has been calculated to identify the critical features 
(Fig. 3A). The position on the Y-axis implied the impor-
tance ranking, and the X-axis reflected the association 
between each value of features and the corresponding 
SHAP value. For instance, the SHAP values for advanced 
age are generally greater than zero, indicating that with 
increasing age, the risk of death also increased in SIC 
patients. In addition, Fig. 3B displays the ranking of the 
features based on the average absolute SHAP value. 

Table 1 (continued)

Cohort Training set (n = 2296) Internal validation set (n = 984)

Variables Survival in ICU 28 day 
(n = 1517)

Death in ICU 28 day 
(n = 779)

P Survival in ICU 28 day 
(n = 649)

Death in ICU 28 day 
(n = 335)

P

 Potassium_max, (K/
uL)

4.60 (4.10, 5.20) 4.60 (4.10, 5.45) 0.018 4.50 (4.00, 5.20) 4.60 (4.10, 5.35) 0.164

 PTT_max, (s) 38.80 (32.10, 53.70) 45.00 (35.20, 69.85)  < 0.001 40.00 (32.80, 57.30) 43.10 (33.95, 69.08) 0.006

 INR_max, 1.60 (1.40, 1.97) 1.90 (1.50, 2.70)  < 0.001 1.60 (1.30, 2.00) 1.90 (1.40, 2.90)  < 0.001

 PT_max, (s) 16.50 (14.70, 19.50) 18.30 (15.50, 24.20)  < 0.001 16.50 (14.90, 19.70) 18.90 (15.60, 25.00)  < 0.001

 Sodium_min, (mEq/L) 136.00 (133.00, 139.00) 136.00 (132.00, 139.50) 0.077 136.00 (133.00, 139.00) 136.00 (132.00, 139.00) 0.102

 BUN_max, (mg/dL) 27.00 (17.00, 45.00) 38.00 (25.00, 60.00)  < 0.001 26.00 (17.00, 42.00) 38.00 (23.50, 62.00)  < 0.001

 WBC_max, (K/uL) 11.80 (8.00, 16.90) 12.40 (7.10, 18.85) 0.614 11.80 (7.80, 17.00) 11.40 (6.95, 18.10) 0.848

 Po2-min, (mmHg) 91.00 (70.00, 103.49) 78.00 (62.00, 98.46)  < 0.001 93.00 (70.00, 103.84) 77.00 (60.00, 99.59)  < 0.001

 Pco2-max, (mmHg) 46.00 (40.00, 50.00) 44.81 (37.00, 51.00) 0.031 46.43 (41.00, 50.00) 44.00 (37.00, 49.00)  < 0.001

 PH-min 7.31 (7.26, 7.36) 7.30 (7.18, 7.37)  < 0.001 7.31 (7.26, 7.35) 7.31 (7.18, 7.35) 0.006

 MCHC_min, (g/L) 33.70 (32.70, 34.70) 33.20 (32.00, 34.20)  < 0.001 33.62 ± 1.59 33.11 ± 1.57  < 0.001

 RDW_max, (%) 15.00 (14.00, 16.70) 16.50 (14.84, 18.35)  < 0.001 14.90 (14.00, 16.50) 16.70 (15.00, 18.80)  < 0.001

 MCV_min, (fL) 89.00 (85.00, 94.00) 92.00 (87.00, 97.00)  < 0.001 89.00 (85.00, 93.00) 92.79 (88.00, 98.00)  < 0.001

 Creatinine_max, 
(μmol/L)

1.40 (0.90, 2.20) 1.70 (1.10, 2.90)  < 0.001 1.30 (0.90, 2.10) 1.70 (1.10, 2.90)  < 0.001

Infection site, n (%)

 Pulmonary infection, 
n (%)

489 (32) 283 (36) 0.055 211 (33) 102 (30) 0.558

 Urinary tract, n (%) 458 (30) 158 (20)  < 0.001 193 (30) 75 (22) 0.017

 Catheter, n (%) 54 ( 4) 12 (2) 0.009 14 (2) 7 (2) 1

 Septicemic, n (%) 21 ( 1) 12 (2) 0.91 10 (2) 5 (1) 1

Treatment measures, 
n (%)

 MV, n (%) 373 (25) 222 (28) 0.048 168 (26) 91 (27) 0.723

 Norepinephrine, n (%) 279 (18) 296 (38)  < 0.001 143 (22) 139 (41)  < 0.001

Categorical data were presented as frequency (percentage), parametric continuous data were presented as mean ± (standard deviation), whereas non-parametric 
continuous data were presented as median (interquartile ranges)

COPD Chronic Obstructive Pulmonary Disease, MI Myocardial Infarction, CHF Chronic Heart Failure, SOFA Sequential Organ Failure Assessment, LODS Logistic Organ 
Dysfunction System, SAPS II Simplified acute physiology II, PT Prothrombin Time, PTT Partial Thromboplastin Time, INR International Normalized Ratio, BUN Blood Urea 
Nitrogen, MCHC Mean Corpuscular Hemoglobin Concentration, RDW Red Blood Cell Distribution Widths, MCV Mean Corpuscular Volume, MV Mechanical Ventilation, 
MAP Mean arterial pressure
a Vital signs were calculated as mean value during the first 24 h since ICU admission of each included patients
b The laboratory tests recorded the worst value during the first 24 h since ICU admission of each included patients



Page 8 of 14Zhou et al. European Journal of Medical Research           (2024) 29:14 

The permutation importance results indicated that the 
top five risk features were SOFA score, RDW-max, age, 
MCV-min, and mean HR.

The partial dependence plot results showed the effect 
of a single feature on the output of the XGBoost model. 
As the SHAP value exceeds zero, it indicated a promoting 
effect on the outcome (Fig.  4). This study found a posi-
tive but no linear association between RDW-max, age, 
MCV-min, mean HR, mean RR, PT-max and death risk. 
Moreover, the risk elevated rapidly when BUN-max was 
above 24  mg/dL, lactate-max was above seven mmol/L, 
the mean temperature was below 36 ℃,  PO2 was below 
80  mmHg, MBP was below 70  mmHg, the minimum 
count of platelet was below 60 ×  109/L, and MCHC-min 
was below 310 g/L in the first 24 h after ICU admission. 
In gender, men were generally at higher risk for ICU 
28-day death than women.

Furthermore, this study assessed the potential inter-
actions between RDW-max and initial SOFA or age. As 
shown in Additional file 8: Figure S5A, the risk of 28-day 
death of SIC patients increased when their initial SOFA 
score was elevated. Patients with a higher level of RDW-
max had a lower risk of 28-day death when SOFA ≦ 7, 
yet, for patients with a SOFA ≧ 8, a higher level of RDW-
max appeared to provide more risk of death. In addition, 
the impact of RDW-max also appeared to vary with age 

(Additional file 8: Figure S5B). Even though an increased 
initial RDW-max value induced a higher risk of 28-day 
death for SIC patients with age ≦ 60, a trend in the oppo-
site direction was seen when age was greater than 60.

Interpretation of individual prediction
This present study explained the XGBoost prediction 
results of individual SIC patients using the SHAP and 
LIME, respectively. Additional file 9: Figure S6 provides 
two typical examples to illustrate the interpretability of 
SHAP. The features marked blue decreased the risk of 
death, while red features promoted death. Patient No.1, 
who belonged to the "true negative" group, was correctly 
predicted as a survivor (Additional file  9: Figure S6A). 
Patient No.2, who belonged to the "true positive" group, 
was correctly predicted as a non-survivor (Additional 
file 9: Figure S6B). The survivor was predicted to be alive 
due to higher mean HR (65.35   min−1), RDW (14.1%), 
BUN (16 mg/dL), platelet count (122 ×  109/L), MCV (89 
fL), PT(14.8 s), and mean RR (19.45  min−1). The non-sur-
vivor was predicted to die due to elevated initial SOFA 
score (15), mean HR (117.7   min−1), RDW (17%), PT 
(22.7  s), mean RR (22.12   min−1), and decreased platelet 
count (34 ×  109/L). Besides, we conducted explanations 
for the two cases mentioned above based on the LIME 
(Additional file 10: Figure S7). The blue box indicated that 

Fig. 2 Receiver operating characteristic curves and area under the precision recall curve showing 28-day death of SIC patients predictive 
performance of two severity scoring and four machine learning algorithms based on the selected features in the internal validation set (MIMIC-III) 
(A, D), MIMIC-IV (B, E), and eICU-CRD (C, F) database. LR logistic regression, NG naive bayes, SVM support vector machine, SOFA sequential organ 
failure assessment, SAPS II simplified acute physiology score II, SIC sepsis-induced coagulopathy, AUC  area under the receiver operating characteristic 
curve
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Table 2 The prediction performance of each model in internal validation and external validation sets

LR regression model, NB naive bayes, SVM support vector machine, SOFA sequential organ failure assessment, SAPS II simplified acute physiology score II, AUROC Area 
Under the Receiver Operating Characteristic Curve, AUPRC Area Under the Precision-Recall Curve

* indicates a statistical difference

Model AUROC AUPRC ACC SE SP PPV NPV F1 score DeLong test for AUC 

Internal validation set

 XGBoost 0.828 0.807 0.785 0.646 0.904 0.739 0.2 0.63 Reference

 LR 0.809 0.605 0.770 0.546 0.886 0.712 0.209 0.62 P < 0.001*

 NB 0.768 0.499 0.733 0.481 0.862 0.643 0.236 0.55 P < 0.001*

 SVM 0.808 0.610 0.774 0.504 0.914 0.751 0.219 0.60 P < 0.001*

 SOFA 0.715 0.507 0.713 0.310 0.921 0.671 0.279 0.42 P < 0.001*

 SAPS II 0.746 0.517 0.722 0.397 0.889 0.649 0.259 0.49 P < 0.001*

 SIC score 0.602 0.443 0.664 0.212 0.964 0.431 0.336 0.35 P < 0.001*

External validation set (MIMIC-IV)

 XGBoost 0.913 0.796 0.885 0.523 0.974 0.828 0.107 0.69 Reference

 LR 0.841 0.589 0.847 0.403 0.956 0.692 0.133 0.58 P < 0.001*

 NB 0.814 0.479 0.807 0.511 0.879 0.510 0.200 0.51 P < 0.001*

 SVM 0.839 0.591 0.842 0.347 0.964 0.700 0.142 0.54 P < 0.001*

 SOFA 0.773 0.452 0.713 0.310 0.921 0.671 0.279 0.48 P < 0.001*

 SAPS II 0.763 0.446 0.816 0.192 0.970 0.606 0.170 0.47 P < 0.001*

 SIC score 0.599 0.437 0.803 0.121 0.982 0.478 0.197 0.35 P < 0.001*

External validation set (EICU)

 XGBoost 0.923 0.921 0.891 0.555 0.976 0.842 0.102 0.70 Reference

 LR 0.831 0.797 0.847 0.403 0.956 0.692 0.133 0.58 P < 0.001*

 NB 0.808 0.744 0.744 0.628 0.829 0.728 0.247 0.50 P < 0.001*

 SVM 0.831 0.799 0.770 0.645 0.861 0.772 0.231 0.58 P < 0.001*

 SOFA 0.724 0.628 0.665 0.518 0.772 0.624 0.313 0.43 P < 0.001*

 SAPS II 0.775 0.704 0.718 0.518 0.772 0.624 0.313 0.48 P < 0.001*

 SIC score 0.592 0.647 0.579 0.638 0.536 0.501 0.330 0.35 P < 0.001*

Fig. 3 The interpretation of the XGBoost model. A Feature importance ranking based on SHAP values. The position on the Y-axis implied 
the importance ranking, and the X-axis reflected the association between each value of features and the corresponding SHAP value. B The 
importance ranking of included features according to the mean (|SHAP value|). SOFA sequential organ failure assessment, RDW red blood cell 
distribution width, MCV mean corpuscular volume, BUN blood urea nitrogen, MBP mean blood pressure, WBC white blood cell, MCHC mean 
corpuscular hemoglobin concentration
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the features are risk factors for ICU 28-day death, while 
the orange box indicated that the features are protective 
factors. And the LIME was similar to SHAP results.

Discussion
In this study, we have developed and validated machine 
learning models using 17 selected features, including age, 
gender, maximum SOFA score, mean HR, MBP, mean 
RR, temperature, lactate-max, minimum platelet count, 
PTT-max, PT-max, BUN-max, maximum WBC count, 
 PO2-min, MCHC-min, RDW-max, and MCV-min to 
predict the ICU 28-day death risk. The above features 
could be easily collected within 24  h after ICU admis-
sion. The performance of each model was evaluated by 
AUROC, accuracy, sensitivity, specificity, PPV, NPV, and 
 F1 score. XGBoost achieved the best prediction results, 
while the RF model performed worst. In addition, the 

SHAP function was used to interpret the prediction 
results of XGBoost to help intensivists better understand 
the process of this model decision and provide the basis 
for early interventions in SIC patients with a high risk of 
death.

Nowadays, ML has played a crucial role in the early 
warning and prognosis prediction of diseases [15, 16, 18]. 
These algorithms can analyze complex and non-linear 
data and even make a real-time prediction based on time 
series, which cannot be completed by traditional regres-
sion analysis. However, with the continuous development 
of algorithms, models become increasingly complex, 
increasing the difficulty of interpretation. This phenom-
enon is often referred to as the "black box" which is not 
conducive to the promotion of ML in the medical and 
health field [19]. To illustrate how these included features 
affect the 28-day mortality of SIC patients, we employ 

Fig. 4 The partial dependence plots of the XGboost model based on SHAP. A-P show how the RDW_max, age, MCV_min, Heartrate_mean, 
Tempc_mean, Resprate_mean, Po2_min, PT_max, MAP, platelet_min, lactate_max, WBC_max, PTT_max, gender and MCHC_min affects the output 
of the XGBoost prediction model respectively. As the SHAP value exceeds zero, it indicated a promoting effect on the 28-day death risk. RDW=red 
blood cell distribution width; MCV=mean corpuscular volume; BUN=blood urea nitrogen; MBP=mean blood pressure; WBC=white blood cell; 
MCHC=mean corpuscular hemoglobin concentration
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the SHAP value to analyze each feature. The SHAP is 
different from traditional feature importance. The lat-
ter only reports the importance permutation of features 
but cannot identify how each feature affects the model 
prediction results. In comparison, the most significant 
advantage of SHAP is that it can reflect permutation of 
importance and illustrate the positive and negative effects 
of included features. Figure  3 showesthat the five most 
important factors include the patient’s initial SOFA score, 
RDW value, age, MCV, and mean heart rate, affecting 
SIC patients’ ICU survival for 28 days. Meanwhile, when 
the values of each feature are different, the impacts on 
the prognosis are different. In addition, the relationship 
between some special continuous variables and the risk 
of unfavorable outcomes may not always be linear. Thus, 
exploring these features’ risk threshold or trigger point in 
clinical practice has become even more critical. Unfor-
tunately, it was considerably tricky for traditional linear 
models, such as logistic regression or Cox regression, to 
accomplish this goal.

In this developed XGBoost model, we constructed each 
feature’s partial dependence plot to analyze further the 
correlation between each variable and the 28-day death 
risk. The stability of the urea generation rate is lower 
than that of serum creatinine and is susceptible to fac-
tors other than the kidney. BUN significantly increases 
when the glomerular filtration rate is reduced by 50% 
[20]. Meanwhile, Gaudry et al. demonstrated that a BUN 
level higher than 112 mg/dL is one of the major criteria 
for initiating restrictive renal replacement therapy [21]. 
In contrast, we found that the initial BUN level has lit-
tle impact on the 28-day mortality of SIC patients, and 
it only exhibits harmful effects when the level is greater 
than 24  mg/dL. SOFA score and platelet count were 
included in Toshiaki Iba’s scale. A single-center retro-
spective study by Lyons PG et  al. referred to the Toshi-
aki Iba scale classified SIC patients into three levels, 
and their results showed that the severity of SIC was 
positively correlated with the patient’s hospital mortal-
ity [8]. However, in this present study, Additional file 8: 
Figure S5 and Additional file 7: Figure S4K, respectively, 
presented that the significant contribution to mortal-
ity was not observed until the initial SOFA score was 
higher than eight or the platelet count was lower than 
60  K/uL. After that, the risk of 28-day death rapidly 
elevated as the SOFA score increased and platelet count 
decreased. Thus, it appeared that the initial SIC score is 
not an ideal indicator for predicting the 28-day death risk 
in SIC patients. Serum lactate was a common biomarker 
to achieve risk stratification in sepsis patients. Mikkelsen 
et al. categorized initial venous lactate of sepsis patients 
as mild (≦2 mmol/L), middle (2–3.9 mmol/L), or severe 

degree (≧ 4 mmol/L), and proved that middle and severe 
lactate degree were all significantly associated with the 
28-day mortality of sepsis patients whenever the pres-
ence (aOR5.14, 95% CI 1.74–15.18, p = 0.003) or absence 
( aOR 3.33, 95% CI 1.47–7.56, p = 0.004) of septic shock 
using multivariable logistic regression [22]. Neverthe-
less, Fig.  4L shows that the SHAP value of the majority 
of samples remains at approximately zero when lactate 
level is below seven mmol/L and increases rapidly when 
lactate level is over 7 mmol/L, except for a few deviation 
samples. The discrepancy maybe since the status hyper-
lactatemia was also affected by lactate clearance. A series 
of studies have confirmed strong correlations between 
lactate clearance and prognosis in septic shock patients, 
even though increased lactate concentration may indi-
rectly suggest tissue hypoxia [23, 24]. However, ongoing 
hyperlactatemia or a significant increase in lactate lev-
els may reflect the decreased clearance rather than an 
increased production in lactate metabolism [25]. This 
is typically seen in sepsis patients combined with liver 
dysfunction.

RDW level reflects the size heterogeneity of the eryth-
rocytes and indicates the body’s response to oxidative 
stress and inflammation [26]. In recent years, a growing 
number of researches have shown the potential value of 
RDW in predicting the prognosis of sepsis [27–30]. A 
meta-analysis that included 11 studies showed that ele-
vated RDW was positively associated with mortality of 
sepsis patients (HR 1.14, 95% CI 1.09–1.20, p < 0.001). 
Besides, the related subgroup and sensitivity analysis 
results based on quality, infection sites, and complica-
tions also supported this view [27]. However, few stud-
ies had assessed the connection between RDW level and 
adverse prognosis of sepsis patients in different severity 
and age. As shown in Additional file  10: Figure S7, we 
noted that the elderly patients (age greater than 60) with 
a higher RDW seemed to have a lower 28-day death risk. 
This phenomenon was opposite to Wang et  al.’s experi-
mental observation in which a total of 117 sepsis patients 
were included. They found that the in-hospital mortality 
increased 1.18 fold for each 1% increase in RDW [31]. 
This difference can result from baseline discordance. 
In addition, the physiologic rising of RDW may occur 
in some unique elderly patients [32]. Overall, the effect 
of increased RDW on elderly patients with sepsis is still 
controversial, which is worthy of follow-up studies.

Strengths and limitations
Compared with our previous study, this research project 
has several notable strengths. Firstly, the XGBoost has 
a good nonlinear fitting ability and improves prediction 
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accuracy. Secondly, the SHAP and LIME solve the "black 
box" problem well for ML models. Thirdly, based on the 
SHAP values, we ranked the risk factors and illustrated 
their positive and negative effects on the 28-day mor-
tality of SIC patients. Finally, and most importantly, we 
explored these features’ risk threshold or trigger point 
based on a partial dependence plot.

However, there were some potential limitations to this 
study. First, we may have missed the inclusion of the sick-
est patients because those who died within the first 48 h 
of ICU admission were excluded. This implied that there 
are likely to be significant differences in baseline variables 
between patients who were included and those who were 
not included. Second, the specificities of the XGBoost 
model were 0.904 and 0.974, respectively, in the inter-
nal validation and external validation set; in contrast, 
the sensitivities were only 0.646 and 0.523. It suggested 
the presence of a sizeable false-negative rate in the pre-
diction of 28-day mortality in SIC patients; thus, fur-
ther clinical experience and medical judgment should be 
recommended for those where the model yield negative 
results. Third, despite extensive data, we could not obtain 
key coagulation indexes, such as D2 polymers, fibrino-
gen, and thrombin-anti-thrombin III complexes. This 
study is only the first step to building a death risk pre-
diction model for SIC patients. In future studies, clinical 
ML models need to account for different domains (e.g., 
immunology, pathogenesis, and clinical phenotype) to 
identify SIC patients’ progressive trajectories and develop 
a more accurate and reliable prediction model.

Conclusion
In summary, our study developed an ML model based 
on MIMIC-III and MIMIC-IV databases to predict the 
risk of 28-day death of SIC patients early. The XGBoost 
performed better than LR, NB, SVM, SOFA, and SAPS 
II scores. SHAP and LIME are reliable methods to intui-
tively identify the related risk factors that affected the 
model making final predictions. The results can assist 
clinicians in screening SIC patients at high risk of 28-day 
death, contributing to the optimization of medical 
resources.
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