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Abstract 

Early diagnosis and pharmacological treatment of central nervous system (CNS) diseases has been a long‑standing 
challenge for clinical research due to the presence of the blood–brain barrier. Specific proteins and RNAs in brain‑
derived extracellular vesicles (EVs) usually reflect the corresponding state of brain disease, and therefore, EVs can 
be used as diagnostic biomarkers for CNS diseases. In addition, EVs can be engineered and fused to target cells 
for delivery of cargo, demonstrating the great potential of EVs as a nanocarrier platform. We review the progress of EVs 
as markers and drug carriers in the diagnosis and treatment of neurological diseases. The main areas include visual 
imaging, biomarker diagnosis and drug loading therapy for different types of CNS diseases. It is hoped that increased 
knowledge of EVs will facilitate their clinical translation in CNS diseases.
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Introduction
Extracellular vesicles (EVs) constitute one of the com-
munication pathways between cells, ranging in size from 
40 to 10,000 nm. They are classified into three subtypes: 
microvesicles, exosomes, and apoptotic bodies [1]. As 
messengers facilitating signal transmission between cells, 

EVs participate in various molecular responses by pro-
moting the transport of proteins, lipids, mRNA, miRNA, 
and DNA. They play a crucial role in promoting neural 
development, regulating the progression of inflamma-
tion, and altering tumor characteristics [2–4] Alterations 
in EVs signaling, especially changes in miRNA expres-
sion, can indicate variations in the physiological micro-
environment, closely associated with the degree of 
central nervous system (CNS) injury [5]. EVs associated 
with CNS diseases can traverse the blood–brain barrier 
(BBB) and participate in peripheral blood circulation [6, 
7]. Extracting EVs from peripheral blood for early diag-
nosis, progression monitoring, and prognosis assessment 
of CNS diseases is considered a safer and more sensitive 
non-invasive method compared to “cerebrospinal fluid 
biopsy” [8–10]. Therefore, EVs, serving as biomarkers, 
reflect changes in the CNS microenvironment, offering 
new insights for the diagnosis and treatment of CNS dis-
eases [11].
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In addition, they can serve as carriers to protect their 
contents from immune system engulfment and enhance 
the accumulation of substances of interest within spe-
cific regions, such as contrast agents and drugs [12–14]. 
The BBB relies on the neurovascular unit, composed 
of endothelial cells, pericytes, perivascular fibro-
blasts, astrocytes, microglia, and nerve terminals, to 
maintain and develop [15, 16]. It can protect the CNS 
from harmful substances of blood. Furthermore, ATP-
binding cassette transporters are extensively present 
in the BBB, facilitating the reverse transport of vari-
ous substances into the bloodstream outside the CNS. 
This results in the low bioavailability of drugs in CNS 
diseases [17]. Therefore, the BBB restricts the imaging 
monitoring or drug efficacy in CNS diseases [18, 19]. 
Although other exogenous nanomaterials can also cross 
the BBB for drug transport, the uncontrollable risks 
posed by their in vivo accumulation and blood toxicity 
have yet to be effectively addressed.

EVs with a diameter of approximately 30–150 nm are 
also referred to as exosomes [20]. These EVs are a group 
of multivesicular bodies mediating intercellular com-
munication. They are formed by invagination of lysoso-
mal particles and released into the extracellular matrix 
by fusion of the multivesicular bodies outer membrane 
with the cell membrane [21, 22]. The tetrapeptides 
(CD9, CD63 and CD81), lectins, integrins, intracellular 
adhesion molecules and proteoglycans in EVs synergis-
tically enhance endocytosis of recipient cells to facili-
tate cell signaling [23–27]. Small nanoscale EVs not 
only achieve targeted drug transport across the BBB by 
specific binding to brain microvascular endothelial cells 
through surface ligands but also possess advantages 
of low toxicity, low immunogenicity, high biocompat-
ibility, and high stability. EVs have the inherent ability 
to stably transport cargos to target cells and perform 
functions [28]. After engineering modification of the 
EVs surface, EVs can be induced to target specific tis-
sues [29, 30], offering great advantages for imaging and 
treatment of CNS diseases [31].

In this review, we provide an overview of the appli-
cations of EVs as biomarkers and nanocarriers in the 
field of CNS diseases, covering three aspects: diagno-
sis, imaging, and treatment. Particularly in the realm 
of therapeutic research, we have conducted a compre-
hensive review of five different types of CNS diseases: 
cerebral ischemia, glioma, Parkinson’s disease (PD), 
depression, and Huntington’s disease (HD). These dis-
eases were chosen, because they represent common 
and challenging vascular diseases, malignant tumors, 
neurodegenerative diseases, psychiatric disorders, and 
genetic disorders of the CNS, respectively. We aim to 
enhance awareness of EVs research in CNS diseases, 

thereby driving further exploration and advancement of 
EVs in this field.

Imaging
In the past, researchers used fluorescent dyes or radio-
active elements to label EVs, and observed the circula-
tion pathway of EVs through imaging [32–34]. Recent 
studies have demonstrated [35–38], that EVs can also be 
loaded with contrast agents to enable molecular imaging 
and visualize lesions, including: superparamagnetic iron 
oxide nanoparticle (SPION) and reporter genes. SPION 
of approximately 5  nm to 150  nm, consists of magnetic 
iron oxide in crystalline form [39]. Based on stability con-
siderations, a sufficiently small contrast agent needs to be 
selected for binding to EVs, and SPION of 5 nm to 7 nm 
is considered to be the best choice for EVs labeling [35, 
40]. Busato et  al. [35] labeled adipose stem cell-derived 
EVs through co-culture with cells using superparamag-
netic iron oxide nanoparticles (SPION). In their study, 
they observed a low limit of detection for magnetic reso-
nance imaging (MRI) to be 3  μg and 5  μg, respectively, 
through in  vitro cellular imaging and in  vivo injection 
imaging under mouse muscle.. The labeling principle may 
be that SPION undergoes a series of cellular physiologi-
cal processes of endocytosis and release before being 
excreted by EVs encapsulation [41]. Meanwhile, Hu et al. 
[39] loaded SPION by disrupting the pore formation of 
the stable bilayer of EVs through electroporation. They 
then applied this technique to lymph node imaging in a 
mouse model of melanoma. However, during co-incuba-
tion, the number of SPION decreases with cell division 
thus reducing the efficacy of SPION labeling of EVs, and 
the damage to the EVs membrane caused by electropo-
ration may also affect EVs function. Ferritin heavy chain 
(FTH1) bridges this gap as a reliable reporter gene for 
MRI molecular imaging. After lentiviral transfection 
of cells with the FTH1 gene, the transgene can be con-
tinuously expressed in daughter cells [42]. This provides 
a theoretical basis for the sustainability of daughter cell 
secretion of rich FTH1-EVs. However, the low content of 
FTH1 leads to unsatisfactory imaging results, and FTH1-
EVs may become a favorable tool for molecular imaging 
in MRI if methods to enhance FTH1 expression in EVs 
can be explored.

Studies in  vitro have shown [43–45], that EVs iso-
lated from bone-marrow-derived mesenchymal stem 
cells(BMSCs) can accumulate in prostate cancer cell 
lines, breast cancer cell lines, sarcoma cell lines, and gas-
tric cancer cell lines. However, compared to stem-cell-
derived EVs, tumor-cell-derived EVs showed significantly 
higher accumulation in colon cancer tumors at 18  h by 
single-photon emission computed tomography [46]. 
Tumor-cell-derived EVs has a high affinity to tumors and 
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the potential mechanism of this homing phenomenon 
may be related to the different integrin expression pat-
terns [47]. Besides tumor homing properties, pluripotent 
stem-cell-derived EVs labeled with SPION, monitored by 
MRI were found to accumulate in damaged and ischemic 
tissues [48]. Most studies take advantage of the specific 
targeting of EVs to certain lesions for imaging. To expand 
the medical applications of EVs, most EVs are gifted with 
stronger targeting effects mainly through engineering 
modifications. In particular, bioorthogonal chemistry, as 
a strategy for rapid modification of EVs’ surfaces, allows 
the conjugation of various ligands within 24 h [49–51]. By 
this method, the targeting peptide can bind to all EVs iso-
lated from the culture medium or body fluids. Previous 
research [52–55] demonstrated a substantial increase in 
EVs signals in intracranial lesions following targeted pep-
tide engineering modifications. Notably, no observable 
morphological or functional tissue damage was reported 
in the liver and lung, despite being the primary target 
organs enriched for EVs. Jia et al. [56], adhered neuroci-
lin-1 to the surface of EVs by click chemistry, the primary 
technique of bioorthogonal chemistry, and then SPION 
and curcumin (Cur) were integrated into the EVs to tar-
get gliomas. In addition to tumor imaging, it can produce 
the dual therapeutic effects of magnetic fluid hyperther-
mia and chemotherapy. Glucose-coated encapsulated 
gold nanoparticle(GNP) can also be absorbed into EVs 
via glucose transporter type 1-mediated energy-depend-
ent mechanisms, and then applied to CT(Computed 
Tomography)CT imaging in a focal cerebral ischemia 
model [57]. The ability of EVs to track infarct tissue via 
CT scanning has significantly advanced translation of 
EVs in imaging, facilitating high-resolution, sensitive and 
non-invasive tracking of nanomedicines [58]. The strat-
egy for EV imaging is shown in Fig. 1.

Unfortunately, research based on EVs imaging has pri-
marily focused on animal models, such as near-infrared 
fluorescence imaging. However, this imaging method 
is not practical for clinical applications. Therefore, this 

paper primarily discusses materials, such as SPION, 
FTH1, and GNP that have either been clinically applied 
or show potential for clinical use. In addition, despite 
numerous studies on EVs for treating CNS diseases in 
recent years, research on imaging the CNS is relatively 
scarce. However, monitoring the progression of CNS dis-
eases by loading imaging materials is also a very promis-
ing research avenue, If EVs can carry drugs to treat CNS 
diseases.

Biomarkers and therapy
EVs play a crucial role in the pathophysiology of CNS dis-
eases. In the occurrence of intracranial lesions, the lev-
els of proteins and RNA in EVs secreted by relevant cells, 
including neurons and microglia, undergo corresponding 
changes. Since these EVs secreted by cells can freely cross 
the BBB, their isolation from peripheral blood allows for 
batch detection and analysis through methods, such as 
western blotting, enzyme linked immunosorbent assay, 
flow cytometry, quantitative real-time polymerase chain 
reaction, or nanoparticle tracking analysis [59]. As shown 
in Fig.  2, EVs are protected by a lipid bilayer, making it 
difficult for the enzymes to degrade. EVs are superior to 
unprotected circulating DNA or RNA, providing real-
time information for early diagnosis and disease pro-
gression. They serve as sensitive biomarkers, responding 
promptly to CNS diseases [60–62].

In addition, due to their small size, low immunogenic-
ity, high delivery efficiency, and strong biocompatibility, 
EVs can enter brain endothelial cells through the fol-
lowing pathways: membrane fusion with target cells, 
receptor–ligand interaction-driven internalization, and 
endocytosis [63]. Evs, carrying cargo, cross the BBB, 
modulating and alleviating CNS diseases. Evs serve as 
ideal nano-carriers for various small-molecule drugs, 
especially miRNA. To enhance targeting ability of Evs, 
they are typically subjected to engineering modification 
before use, representing a crucial research approach in 
the field of EV therapy for CNS diseases. The following 

Fig. 1 Strategies for EVs imaging. EVs are electroporated or transfected to carry contrast agents, and then chemically modified 
with the corresponding targeting peptide. Region of interest is imaged by crossing BBB via blood circulation
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information of Evs in the application of CNS is provided 
in Table 1.

Cerebral ischemia
In trauma or other pathological conditions, brain tissue 
is susceptible to damage due to ischemia and hypoxia, 
accounting for the second highest mortality rate from 
disease [64]. The miR-124 and miR-223, are significantly 
related to stroke occurrence, infarct volume and prog-
nosis, and miR-199b-3p, miR-27b-3p, miR-130a-3p, 
miR-221-3p and miR-24-3p in EVs also respond to the 
development of stroke caused by asymptomatic carotid 
stenosis [65–69]. The detection of the ischemic penum-
bra is a critical factor whether reperfusion treatment is 
decided in acute ischemic stroke (AIS). Compared with 
the control group, CircOGDH in EVs of AIS mice were 
highly expressed in plasma and ischemic penumbra, 
increasing 54-fold and positively reflecting the size of 
ischemic penumbra [70]. The expression of these EVs 
biomarkers provides multiparametric information for 
the diagnosis and monitoring of ischemic encephalopa-
thy and can also provide valuable clues to the cause of 
ischemia. The miRNAs in these Evs serve not only as reli-
able biomarkers but also as potential therapeutic drugs.
Enriched with miR-132, Evs serve as potential therapeu-
tic tools, aiming to enhance endothelial cell survival in 
cerebral ischemia or improve the efficiency of endothelial 
cell transplantation therapy for restoring blood oxygen 
circulation [71]. Despite these efforts, cerebral ischemia–
reperfusion injury remains an unavoidable challenge 
[72].By inhibiting reactive astrocyte proliferation and 
microglia activation to alleviate inflammation-induced 
neurodegeneration, Evs containing miR-21, miR-125b 

and miR-145 were isolated from human neural progeni-
tor cell lines to deal with inflammatory damage brought 
about by cerebral ischemia–reperfusion injury [73, 74]. 
Enrich miRNAs in neuron-derived Evs play a positive 
role in cerebral ischemia treatment, but the difficulty 
of neuronal cells to acquire large amounts of Evs by cell 
division may limit the clinical application of Evs therapy. 
BMSCs-derived Evs also have a positive effect on pro-
moting angiogenesis, anti-apoptosis and anti-inflamma-
tion in cerebral ischemia without such strict limitations 
as neuronal cells. BMSCs-derived Evs enriched with 
miR-150-5p can silence toll-like receptor 5 to ameliorate 
the neuronal apoptosis activated by ischemia–reperfu-
sion [75]. With the downregulation of toll-like receptor 
5, infarct foci and edema were reduced, and neurological 
function was significantly restored [76, 77]. Another study 
also showed [78] that BMSCs-derived Evs inhibit the p38 
mitogen-activated protein kinase/nuclear factor-kap-
paB p65 pathway to buffer polarize microglia toward M1 
type (pro-inflammatory) and regulate the expression of 
inflammation-related transcriptional genes such as IL-1β, 
IL-6 and TNF-α to treat neonatal hypoxic–ischemic 
brain injury. To improve therapeutic efficacy, many stud-
ies have focused more on Evs engineered to enhance 
targeting and load small molecules for the treatment 
of CNS diseases. Rabies virus glycoprotein (RVG), The 
cyclo(Arg–Gly–Asp–D-Tyr–Lys) peptide [c(RGDyK)], 
and monoclonal antibody against GAP43(mAb–GAP43) 
included in Table 2, are commonly targeted peptides for 
the treatment of cerebral ischemia. The neuron-specific 
RVG selectively targets neuronal cells and brain endothe-
lial cells by binding to nicotinic acetylcholine receptors 
[79]. Yang et al. [80], designed RVG to be localized on the 
surface of Evs and then loaded miR-124 within Evs can 
be delivered to the site of infarction to induce cortical 
neurogenesis. Similarly, Li et al. [81], constructed RVG–
circSCMH1–Evs that specifically deliver circSCMH1 to 
the brain to promote functional recovery after stroke in 
AIS models in mice and monkeys. For ischemic diseases, 
targeting peptides that bind to highly expressed factors 
in the region of the ischemic lesion, such as c(RGDyK) 
and mAb–GAP43, are more well-directed. Targeting of 
c(RGDyK)–Evs to the ischemic areas is associated with 
integrin αvβ3. The angiogenic response promotes inte-
grin avβ3 expression on reactive endothelial cells in the 
ischemic areas, while non-ischemic areas are normally 
expressed, resulting in an abundance of c(RGDyK)–Evs 
in the ischemic core and semidark areas [82–84]. System-
atic administration of c(RGDyK)–Evs containing Cur has 
been shown to target ischemia areas and be taken up by 
microglia, neurons, and astrocytes to inhibit inflamma-
tory responses and apoptosis [85]. Engineered Evs modi-
fied by mAb–GAP43 can be delivered to ischemic lesions 

Fig. 2 EVs carry a variety of information, such as proteins and RNA, 
are protected by a phospholipid bilayer, and are not easily degraded 
in the circulation. It can effectively respond to CNS disease 
progression
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Table 1 Therapeutic application of Evs in CNS

MCAO: Middle Cerebral Artery Occlusion; MCAO/R: focal cerebral ischemia/reperfusion; TBI: Traumatic brain injuries; CCI: controlled cortical impact; PT: 
photothrombotic (PT) stroke; LNP: Lipid Nanoparticle; PTX: paclitaxel; Dox: doxorubicin; Cur: curcumin; ReN: ReNcell VM; ESCs: Embryonic stem cells; BQR: brequinar; 
PD: Parkinson disease; PMA: poly (methacrylate arginine); MSCs: mesenchymal stem cell; BMSCs: bone marrow mesenchymal stem cells; hMSCs: human mesenchymal 
stem cells

Representatives Study Object Model Sample 
size

Evs Source Targeting 
peptide

Active 
ingredient

Loading method Administration 
route

Cerebral ischemia Tian [85] C57BL/6 MCAO n ≥ 8 BMSCs c(RGDyK) Cur Sucrose gradient 
centrifugation

Tail vein injec‑
tion

Zhang [74] Wistar rats TBI/CCI n = 40 hMSCs – – – Tail vein injec‑
tion

Li [75] Sprague–
Dawley

MCAO n = 54 BMSCs – miR‑
150‑5p

LNP transfection Stereotactic 
injection

Yang [81] – PT n = 18 HEK293 RVG circSCMH1 Plasmid transfec‑
tion

Tail vein injec‑
tion

Tian [73] C57BL/6 MCAO n = 15 ReN Arg‑Gly‑
Asp (RGD)

– Lentivirus trans‑
fection

Tail vein injec‑
tion

Guo [88] SD rats MCAO/R n = 6 whole 
blood 
of SD

mAb 
GAP43

Quercetin Co‑incubation Tail vein injec‑
tion

Glioma Zhang 
[104]

C57BL/6 GL261 n = 40 endothelial 
cells

– Dox Emulsion method Tail vein injec‑
tion

Wang [105] Nude 
Mouse

C6 n = 30 Neutro‑
phils

– Dox Sonication Tail vein injec‑
tion

Zhu [107] Nude 
Mouse

U87 n = 20 ESCs c(RGDyK) PTX Co‐incubation Tail vein injec‑
tion

Li [108] Nude 
Mouse

LN‑229 n = 35 hMSCs iron oxide 
nano‑
particles 
(IONPs)

siGPX4/
BQR

Electroporation Tail vein injec‑
tion

Zhan [110] Nude 
Mouse

TBD0220 n = 35 Serum 
of healthy 
animals

– cPLA2 
siRNA/met‑
formin

Electroporation Tail vein injec‑
tion

Parkinson’s 
disease

Cai [127] C57BL/6 PD n = 24 BMSCs – Gli1 Plasmid transfec‑
tion

Tail vein injec‑
tion

Peng [128] C57BL/6 PD n = 35 MSCs RVG29 curcumin ultrasonically
Oscillated /extru‑
sion by mini‑
extruder

Intranasal 
administration

Kojima 
[129]

C57BL/6 PD n = 8 hMSCs RVG Nanoluc 
mRNA

Electroporation 
transfection

Subcutaneous 
injection

Wang [130] C57BL/6 PD n = 15 hMSCs – PMA Co‐incubation Tail vein injec‑
tion

Depression Li [159] BALB/c chronic 
mild stress

n = 30 Natural 
killer cells

– miR‑207 – Tail vein injec‑
tion

Guo [160] Sprague–
Dawley

the injury 
of hip‑
pocampal 
neurons

n = 100 hMSCs – microRNA‑
26a

Lipofectamine kit Tail vein injec‑
tion

Huntington’s 
disease

García 
[164]

XBP1 flox/
flox

YAC128 
and R6/2

n ≥ 77 Neuro2a 
cell

– Insulin‑like 
growth 
factor 2 
(IGF2)

Lipofectamine 
RNAiMAX kit

Stereotactic 
injection

Lee[166] HD R6/2 line 
of trans‑
genic

n = 22 HEK 293 
cells

– miR‑124 Plasmid transfec‑
tion

Stereotactic 
injection

Zhang 
[170]

C57BL/6 J N171‑82Q, 
BACHD, 
YAC128

n ≥ 40 Liver cells RVG mHTT 
siRNA

Naked DNA 
plasmids(genetic 
circuits)

Tail vein injec‑
tion
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by binding to GAP43 highly expressed in ischemic neu-
rons [86]. mAb–GAP43–Evs loaded with quercetin, 
enhance the scavenging of reactive oxygen species(ROS) 
by precisely targeting ischemic lesions and activating 
the nuclear factor-E2 related factor-2/heme oxygenase-1 
pathway to buffer nerve damage and promote neural 
recovery [87, 88].

Glioma
Glioma is a fatal brain tumor with a median survival of 
only about 14 months even with aggressive application of 
surgical resection, radiation therapy and chemotherapy 
[89, 90]. Recently, several techniques have been devel-
oped to allow multi-parameter characterization of indi-
vidual Evs, which can help isolate specific Evs subgroups 
for accurate disease identification. Multiparametric char-
acterization of extracellular vesicles secreted by brain 
malignancies can be detected and precisely quantified 
by imaging flow cytometry to differentiate intracranial 
tumors [91, 92]. Biosensors such as localized surface plas-
mon resonance and atomic force microscopy can enable 
quantitative detection of proteins in individual Evs and 
observe the progression of glioblastoma and hypoxia-
induced malignant gliomas at the molecular level [93, 
94]. CD44 was found to be upregulated in Evs to promote 
glioblastoma cell migration and vascular endothelial cell 
formation by these techniques [93].

Furthermore, tumor cells promote tumor progres-
sion by selectively regulating EVs’ miRNAs expression 
[95]. It retains tumor-promoting miRNAs in vivo, accel-
erating tumor proliferation. Simultaneously, tumor sup-
pressive miRNAs are isolated and delivered to immune 
cells in the form of Evs, reconstituting these cells into an 
immunosuppressive phenotype, including tumor sup-
pressive miR-1298-5p and tumor-promoting miR-9-5p 
[96–100]. The synergistic effect of abundant miRNAs in 
glioma-derived EVs is a key mechanism that promotes 
tumor progression. Blocking the production and uptake 
of tumor-associated miRNAs in Evs to halt tumor pro-
gression is an ideal therapeutic strategy. As an excellent 
vehicle, EVs loaded with small molecules are likewise 
considered as a promising therapeutic option [101–103]. 
Zhang et  al. [104], constructed endothelial cell-derived 
Evs to load doxorubicin(Dox), which were able to be 

taken up by endothelial cells after systematic administra-
tion of Evs–Dox, triggering apoptosis and immunogenic 
death in glioma cells through the following mechanisms: 
maturation of dendritic cells, activation of cytotoxic cells, 
altered cytokine production, glial glioblastoma cell pro-
liferation inhibition and increased apoptosis. neutrophil-
derived Evs has also been designed for rapid delivery of 
Dox drugs in a mouse model of hormonal glioma, which 
relies on the inherent inflammatory chemotactic prop-
erties of neutrophil-derived Evs. Studies in mice with 
glioma and brain inflammation [105] showed that neu-
trophil-derived Evs had a significant targeting effect on 
inflammatory stimuli induced by tumor cells, ultimately 
effectively inhibiting tumor growth and prolonging sur-
vival. Glioma-derived EVs loaded with temozolomide and 
dihydrotanshinone accumulate in tumors through tumor 
homologous effects and overcome resistance [106]. 
Various sources of Evs deliver drugs to tumors through 
distinct targeting mechanisms. This approach aims to 
maximize drug efficacy with the smallest effective dose 
while minimizing systemic damage caused by non-tar-
geted drugs. Enhancing the targeting performance of Evs 
through artificial means can overcome limitations in Evs 
sources, allowing for specific drug delivery and expand-
ing therapeutic options. Zhu et al. [107], found that spe-
cific reprogramming factors contained in EVs derived 
from embryonic stem cell reduced the clonogenicity and 
tumorigenicity of tumor cells, and loaded paclitaxel tar-
get tumor cell lines (U87 and U251) after modified with 
c(RGD) peptides. EVs modified with Angiopep-2 pep-
tides are loaded with iron nanoparticles, glutathione per-
oxidase 4 and dihydroorotic dehydrogenase inhibitors to 
target glioblastoma by local magnetic localization and 
lipoprotein receptor protein 1 recognition. The synergy 
of three actions, dihydroorotic dehydrogenase catabo-
lism, glutathione peroxidase 4 iron death defense axis and 
 Fe2+ release mediated by  Fe3O4 nanoparticles, promotes 
iron death in glioblastoma [108, 109]. The nanocompos-
ites are stable and  Fe2+ is released from EVs only in the 
tumor microenvironment under acidic conditions (pH 
5.5). According to the following mechanisms: 1. Polymer-
ase I and trans-release factor, promote Evs -uptaken by 
glioblastoma cells; 2. cPLA2–siRNA and metformin are 
highly detrimental to mitochondrial energy metabolism, 

Table 2 Targeted peptides commonly used in ischemic diseases

Targeted peptides Receptor cells Targeted receptors References

RVG Neuronal cells and endothelial cells Nicotinic acetylcholine receptors Lentz TL, J Mol Recognit, 1990 [79]

cRGD Ischemic endothelial cells Integrin αvβ3 Abumiya T, J Cereb Blood Flow Metab, 1999 [82]
Li L, Exp Neurol, 2012 [83]
Arosio D, Adv Drug Deliv Rev, 2015 [84]

mAb–GAP43 Ischemic neuronal cells GAP43 Liu W, J Nanobiotechnology, 2022 [86]
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personalized therapeutic regimens for polymerase I 
and tran release factor-EVs targeted delivery of cPLA2–
siRNA/metformin have also been shown to be feasible 
[110].

Parkinson’s disease
PD is one of the most common neurodegenerations 
with progressive degeneration of dopaminergic neurons 
[111, 112]. Pathological changes in nerve cells regulate 
substances level in EVs, reflecting PD progression. The 
diagnostic efficacy of α-synuclein(α-syn) in peripheral 
is equivalent to that of cerebrospinal fluid, and the level 
of α-syn in EVs isolated from peripheral blood is signifi-
cantly correlated with the disease diagnosis [113]. The 
concentration of α-syn in Evs isolated from blood through 
immunoprecipitation using neuronal and oligodendro-
glial markers, helps identify diseases with similar symp-
toms, such as PD and multiple system atrophy. According 
to the report of Dutta et al. [114], the ratio of the α-syn 
concentration in EVs isolated from oligodendrocytes and 
neurons, was considered as helpful biomarker to identify 
between PD and multiple system atrophy, with a high 
sensitivity (89.8%) and specificity (86.0%), and area under 
the ROC curve measure of 0.902 in multinomial logistic 
model. Other proteins such as clusterin, complement 
C1r subcomponent, apolipoprotein A1, and fibrinogen 
gamma chain in plasma-derived EVs decrease to vary-
ing degrees in Yahr stage II and III, and apolipoprotein 
A1 level was lower in stage III than in stage II [115]. 
Deposition of α-syn in neuronal cells is considered to be 
a pathological hallmark of PD [116]. Α-syn is secreted in 
a way of calcium-dependent and EVs-packaged to induce 
mitochondrial dysfunction as well as oxidative stress, 
leading to cognitive impairment [117–119]. Interest-
ingly, microglia have been shown to be involved in this 
process. EVs containing CD11b + secreted by microglia 
induce α-syn deposition in neurons [120]. Associated 
miRNAs and α-syn induce alterations in the genetic pro-
gram of target cells, leading to PD progression through 
the accumulation of α-syn [121]. Nonetheless, EVs have 
also shown potential for tissue repair and neural regen-
eration, and have been successfully loaded with various 
drugs to retard PD [8, 122]. BMSCs-derived EVs inhibit 
microglia activation, accelerate the elimination of α-syn, 
and increase neuronal activity [123, 124]. Xu et al. [125, 
126], suggested that Evs secreted during the differentia-
tion of BMSCs into dopaminergic neurons may regulate 
cholesterol metabolism in the hippocampus. This regula-
tion could potentially ameliorate PD through the Wnt5a–
lipoprotein receptor protein 1 cascade. Cai et  al. [127], 
also showed that glioma-associated oncogene homolog-1 
in BMSCs-EVs inhibits leucine-rich repeat kinase 2 acti-
vation mediated by the Sp1 transcription factor promoter 

so as to attenuate inflammatory damage and neuronal 
apoptosis in PD. Moreover, MSC-EVs integrate with Cur 
to directly target cells and release the drug into the cyto-
plasm to inhibit α-syn aggregation, neuroinflammation, 
and neuronal damage through intranasal administration 
[128]. However, due to poor targeting and limited thera-
peutic capacity, simple EVs-based therapies are difficult 
to meet the therapeutic requirements of PD. To improve 
the efficiency of cargo delivery in EVs, Kojima et  al. 
[129], constructed the EVs’ transfer into cells devices 
that promoted EVs secretion, specific miRNAs packag-
ing, and targeted delivery to constantly transfer mRNAs 
to the lesions. Delivering catalase miRNAs and produc-
ing sufficient EVs through implanting the devices to save 
neurotoxicity and neuroinflammation caused by PD, 
instead of repeatedly injecting concentrated EVs in vitro, 
opens a new way for EVs treatment. However, whether 
the devices can work long-term in  vivo or bring other 
unknown impact still needs further test and verify. The 
strategy of “Engineered EVs with Independent Module/
Cascading Function” was proposed by Wang et al. [130, 
131], guanidine groups in L-arginine derivative actively 
target ROS and inductible nitric oxide synthase highly 
expressed in the pathological microenvironment of PD, 
and then synthesize nitric oxide through chemical reac-
tion. ROS and inductible nitric oxide synthase in mito-
chondria of impaired neurons are more than those in 
other healthy cells. The natural tendency between reac-
tants is used to guide EVs into pathological cells [132, 
133]. Engineered EVs repair nerve injury of PD by con-
suming ROS and producing nitric oxide.

Depression
With the incidence rate increasing in adolescents, 
depression has received widespread attention [134, 135]. 
Depression is considered to be a common emotional dis-
order, and there is no particularly effective drug at pre-
sent [136, 137]. It is well-known that neuroinflammation 
is closely associated with the progression of depression-
like behaviors and that inflammatory drive underlies the 
progression of major depressive disorder(MDD) [138–
140]. miR-9-5p, an MDD-related miRNAs in EVs, exac-
erbates neuronal inflammation and stimulates MDD 
progression through translocation from neurons to 
microglia. MiR-9-5p is highly expressed in neuronal Evs 
of MDD patients. It induces M1 polarization in micro-
glia by inhibiting the expression of suppressor of cytokine 
signaling 2 and initiating the janus kinase/signal trans-
ducer and activator of transcription pathway. This leads 
to increased release of inflammatory factors, includ-
ing interleukin-1β (IL-1β), interleukin-6 (IL-6), and 
tumor necrosis factor-α (TNF-α) [141]. Serpin peptidase 
inhibitor, clade F, member 1 are able to block apoptosis 
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of immature cerebellar granule cell neurons induced by 
serum deprivation and K + , and glutamate-mediated 
degeneration of motor neurons [142, 143]. It was recently 
found that it is significantly reduced in EVs of MDD 
patients, which triggers aberrant Wnt signal and synap-
tic damage, thereby inducing depressive-like behavior 
[144, 145]. The ratio of brain-derived neurotrophic factor 
brain derived neurotrophic factor(BDNF) and pre-BDNF 
can monitor the therapeutic progression of psychiatric 
disorders. They are difficult to cross the BBB and have a 
low half-life in serum, but it can be avoided by BDNF and 
pre-BDNF on EVs [146–149]. Gelle et al. [150], demon-
strated an increase in BDNF and a decrease in pre-BDNF 
in EVs, during antidepressant treatment for MDD, but 
there was no significant correlation between changes in 
two of neurotrophic factors, clinical improvement and 
depression scales in this study. An expanded sample size 
and clinical parameters may be needed to further inves-
tigate the relationship between differential expression of 
those and depression. Nasca et al. [151], found that high 
levels of insulin receptor substrate-1 in EVs that rich in 
L1 cell adhesion molecular, are associated with psychi-
atric disorders, such as guilt and suicide, and their rela-
tionship may provide evidence for a metabolic subtype of 
depression. The main molecular mechanism may be the 
accumulation of insulin receptor substrate-1 in EVs lead-
ing to reduced insulin receptor binding sensitivity and 
disruption of insulin signaling [152, 153]. Schizophrenia 
always has lacked reliable biomarkers to detect an accu-
rate classification. The overabundance of miR-137 and 
little cytochrome c oxidase subunit VIa polypeptide2 
in EVs corresponds to the reduced gamma-band audi-
tory steady-state responses oscillations was found in the 
early schizophrenia patient model due to mitochondrial 
dysfunction–parvalbumin interneurons damage [154]. 
This implies that changes in the concentrations of miR-
137 and cytochrome c oxidase subunit VIa polypeptide2 
in EVs are associated with disruption of parvalbumin 
interneurons cortical microcircuits, which could help 
identify early schizophrenia patient caused by mitochon-
drial dysfunction.

In addition, microglia-derived EVs containing mir-
146a-5p regulate neuronal function in the dentate gyrus 
and inhibit neurogenesis and spontaneous firing via the 
mir-146 A-5p/krüppel-like factor 4 pathway [155, 156]. 
Reducing or blocking the secretion of miR-146a-5p in 
EVs improves neurogenesis deficits and depression-
like behavior in adults. Wei et  al. [157], found that EVs 
extracted from the blood of MDD patients contain miR-
139-5P that induces depression-like behavior in normal 
mice. miR-139-5p, a negative regulator of neural stem 
cell proliferation and neuronal differentiation, is upregu-
lated in a chronic unpredictable mild stress mouse model 

and leads to impaired neurogenesis [157]. Interestingly, 
EVs derived from the blood of patients with depression 
do not only have negative effects. Another study [158] 
suggests that in a lipopolysaccharide-induced inflamma-
tion model, the expression of Sigma-1 receptors is upreg-
ulated in EVs from the blood of patients with depression. 
This upregulation enhances the production of BDNF, 
alleviating depression-like behavior and neuroinflamma-
tion. In fact, the findings of Wang [158] is not contradic-
tory to Wei et al. [157], but rather indicates that EVs from 
the blood of patients with depression carry both patho-
genic and reparative factors. However, depending on the 
type of depression, there may be significant differences in 
the concentrations of functional factors carried by blood-
derived EVs, resulting in variations in the functions of 
EVs from patients with depression, such as miR-139-5p 
and Sigma-1.

In addition to blood-derived EVs, Other cell-derived 
EVs also can be used as potential drugs to treat depres-
sion. MiR-207 in NK cell-derived EVs interferes the sig-
nal conduction of nuclear factor kappa-B in astrocyte 
by acting on TLR4 and reduce the concentration of pro-
inflammatory cytokines containing IL-1β, IL-6 and TNFα 
[159]. BMSCs-EVs upregulate miR-26 and ameliorate 
damage of hippocampal neurons in depressed rats [160]. 
MiR-26a overexpression can increase the level of super-
oxide dismutase and reduce malondialdehyde, lactate 
dehydrogenase, TNF-α and IL-1 β levels to promote cells 
proliferation in hippocampus [160].

Huntington’s disease
HD is an autosomal dominant disease of the cerebral 
cortex for mutant huntington (mHTT) accumulation 
in cells [161, 162]. Lee et  al. [163], shared circulation 
with young (mouse) blood via heterochronic parabio-
sis reduces mHTT aggregation, improves mitochondrial 
dysfunction, and restores cognition in a mouse model 
of HD. This study validates the ability of EVs in young 
blood to improve HD and also clearly indicates that 
EVs are the messenger units that deliver positive fac-
tors in the blood. Insulin-like growth factor 2 as one of 
the positive factors was found to increase the secretion 
of soluble mHTT protein through EVs’ transmission, 
which was able to reduce the accumulation of abnormal 
proteins [164]. This result provides indirect evidence for 
treating HD by genetic modification that engineering 
EVs with insulin-like growth factor 2. EVs from different 
sources carry different HD-related positive factors. EVs 
derived from adipose stem cells provide neuroprotec-
tion in HD by activating the p-CREB-PGC1a pathway 
[165]. EVs carrying miR-124 inhibit HD progression by 
supporting neurogenesis, upregulating neurotrophic fac-
tors, and promoting neuronal differentiation [166–168]. 
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Silencing mHTT by specifically delivering siRNAs so as 
to prevent the expression of proteins related to the dis-
ease phenotype, might be a greater ideal strategy. EVs 
loaded with hydrophobically modified siRNAs silence 
Huntington mRNAs, and decrease the accumulation 
of mHTT in a dose-dependent manner [169]. A recent 
synthetic biology strategy combines the EV-circulating 
system with artificial genetic circuits. A cytomegalovi-
rus promoter-directed genetic circuit was constructed 
to produce RVG tags and mHTT siRNAs upon uptake 
by the liver [170, 171]. The naked DNA plasmids, in the 
form of genetic circuits, were intravenously injected into 
the liver to express transgenes. These transgenes direct 
the self-assembly and secretion of EVs containing RVG 
and mHTT–siRNAs. Subsequently, the mHTT siRNAs 
loaded RVG–EVs are specifically targeted into the cortex 
and striatum through the EVs-circulating system [170]. 
The pathological protein levels in the cortex and striatum 
of the HD significantly reduced, thus buffering the lesion 
damage in brain and improving behavior score.

Conclusion
MRI and other large devices are costly, and spinal fluid 
punctures are invasive, making monitoring the progress 
and treatment of CNS diseases challenging. EVs, stable 
carriers of protein, mRNA, miRNA, and lipids in bod-
ily fluids, prove valuable for evaluating such diseases 
[172]. Brain-derived EVs effortlessly cross the BBB, pro-
moting intercellular communication to regulate CNS 
homeostasis or activate cytotoxic responses in recep-
tor cells [173]. Therefore, the quantity, properties, and 
composition of EVs can be utilized for the early diag-
nosis of CNS diseases. In addition, EVs can deliver 
bioactive substances through various pathways, safely 
and efficiently transferring these substances to partici-
pate in cellular metabolism. Leveraging the absorption 
mechanisms of EVs in cells enhances the efficiency of 
transporting nucleic acids, enzymes, and small-mole-
cule drugs [174]. EVs, ideal for transporting molecular 
drugs, have found widespread application in studying 
vascular diseases, malignant tumors, neurodegenera-
tive disorders, psychiatric conditions, and genetic dis-
eases, providing new strategies for treating neurological 
disorders. The EVs imaging opens up a new frontier for 
understanding CNS diseases, presenting an opportu-
nity for combining imaging and drug therapy in diag-
nosis and treatment. However, clinical research on EVs 
for the diagnosis of CNS diseases is still in the experi-
mental stage. There is a lack of uniform standards for 
EVs in assessing CNS diseases, and there is insufficient 
support from large multicenter samples. Many practical 
challenges need to be overcome for the clinical trans-
lation of EVs as effective biomarkers for neurological 

diseases. Despite these challenges, their potent advan-
tages as diagnostic tools remain significant. As larger 
scale studies on EVs from clinical samples are con-
ducted, standards based on EVs as biomarkers for CNS 
diseases are expected to become more detailed and 
reliable.

Furthermore, the clinical application of EVs still faces 
numerous limitations, such as low production yield, low 
drug dosage, and precise targeting. These challenges are 
the primary obstacles to the clinical use of EVs. Recent 
studies have shown a significant increase in EVs derived 
from three-dimensional culture compared to conven-
tional two-dimensional culture [175]. Current research 
efforts focus on enhancing EVs production, drug loading 
capacity, and improving targeting. Future studies on EVs 
are likely to prioritize increasing drug delivery efficiency 
and EVs yield. The application of EVs in the CNS requires 
more evidence, including optimal dosage, measurement 
standards, and the best administration routes for EVs 
therapy [176]. Dosing strategies and efficacy in small 
rodent models and large primates cannot be lumped 
together, posing a long-term challenge to the clinical 
translation of EVs research. Collaborative efforts from 
the academic community, clinical medicine, and various 
institutions are essential for overcoming these challenges 
[177]. Nonetheless, with the continued development of 
EVs nanotechnology, The early diagnosis and treatment 
techniques for CNS diseases are poised to enter a new 
era.Nerve.
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