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Abstract 

Sepsis is a major cause of death worldwide, with a mortality rate that has remained stubbornly high. The cur‑
rent gold standard of risk stratifying sepsis patients provides limited mechanistic insight for therapeutic targeting. 
An improved ability to predict sepsis mortality and to understand the risk factors would allow better treatment 
targeting. Sepsis causes metabolic dysregulation in patients; therefore, metabolomics offers a promising tool to study 
sepsis. It is also known that that in sepsis endothelial cells affecting their function regarding blood clotting and vas‑
cular permeability. We integrated metabolomics data from patients admitted to an intensive care unit for sepsis, 
with commonly collected clinical features of their cases and two measures of endothelial function relevant to blood 
vessel function, platelet endothelial cell adhesion molecule and soluble thrombomodulin concentrations in plasma. 
We used least absolute shrinkage and selection operator penalized regression, and pathway enrichment analysis 
to identify features most able to predict 30‑day survival. The features important to sepsis survival include carnitines, 
and amino acids. Endothelial proteins in plasma also predict 30‑day mortality and the levels of these proteins also cor‑
relate with a somewhat overlapping set of metabolites. Overall metabolic dysregulation, particularly in endothelial 
cells, may be a contributory factor to sepsis response. By exploring sepsis metabolomics data in conjunction with clin‑
ical features and endothelial proteins we have gained a better understanding of sepsis risk factors.

Introduction
Sepsis is a major cause of death worldwide, accounting 
for an estimated 11 million deaths in 2017 [1]. A large 
meta-analysis found that there has been no significant 
decrease since 2009 [2].

To improve sepsis outcomes consensus definitions 
have been proposed and updated. The two most recent 
iterations date from 2016 [3–6] (used in this study) and 
2021 [7]. The 2016 guidelines define sepsis as a sequen-
tial organ failure assessment (SOFA) score change of > 2, 
at bedside this can be made using quick (q) SOFA, and 
septic shock based on hypotension requiring vasopres-
sors and elevated serum lactate. This stratification was 
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primarily designed to guide the treatment plans of sep-
sis patients. However, it also correlates with the outcome 
of patients, it shows significant variability in predictive 
performance between studies [8, 9]. Therefore, further 
research to identify those patients at most risk of death is 
necessary to direct therapeutic interventions to improve 
patient outcomes. Moreover, septic shock diagnosis does 
not stratify patients in a mechanistic fashion. A more 
mechanistic stratification could better inform treatment 
strategies. To facilitate mechanistic patient stratification, 
it is necessary to define biomarkers with prognostic abil-
ity that will also improve understanding of the underlying 
biology defining different patient risk groups. This may 
also eventually lead to more targeted treatment options.

Endothelial dysfunction, and changes related to 
endothelial-linked proteins, including Soluble thrombo-
modulin (sTM) and Platelet and Endothelial Cell Adhe-
sion Molecule 1 (PECAM), have been linked to the 
development of multi-organ failure and death in sepsis 
patients [10–14]. This pro-apoptotic, pro-inflammatory, 
initially pro-coagulant and pro-adhesive response of vas-
cular endothelial cells, contributes to many of the circula-
tory and immunological pathologies leading to death in 
sepsis [15, 16].

Lactate and base excess are predictive of sepsis out-
come [17, 18], these indicate metabolic and respiratory 
dysfunction. However, lactate and base excess primarily 
indicate changes in central metabolism or patient respir-
atory function in general and do not offer more detailed 
insights into other aspects of metabolism. To identify 
more specific metabolic markers over the past decade an 
increasing number of metabolomic studies have eluci-
dated the changes seen in sepsis patient metabolite levels 
[19–23]. However, a consensus about a useful biomarker 
panel has not yet been reached and there has not been 
a clear linkage of identified metabolites to functional 
changes in the pathology of sepsis. This group and others, 
have previously shown that endothelial cell metabolism is 
linked to endothelial function after pathological stimula-
tion [24–26], in patients’ plasma metabolites will not only 
reflect the metabolism of endothelial cells but will likely 
partly reflect this. Therefore, we proposed that metabolic 
biomarkers that are linked to sepsis mortality will also 
be linked to biomarkers of endothelial health. We also 
believe that this will provide useful directions for future 
research into the complex mechanisms behind sepsis 
mortality.

To address the lack of prognostic and mechanistic bio-
markers in sepsis we have used a metabolomics data set 
collected from patients admitted to an intensive care 
unit (ICU) at a regional hospital who were diagnosed as 
suffering from either sepsis or septic shock on admis-
sion. We have then taken a least absolute shrinkage and 

selector operator (LASSO) regression approach [27], 
a form of penalised regression, to identify metabolites 
most strongly related to sepsis 30-day survival or to the 
endothelial health biomarkers, PECAM and sTM, and 
then examined the relationship between the two to iden-
tify functionally relevant biomarkers for sepsis survival.

Methods
Patient selection
Between November 2017 and September 2018 at the 
Copenhagen University Hospital North Zealand, in Hil-
lerod Denmark patients admitted to the intensive care 
unit (ICU) with sepsis were considered for inclusion in 
this study. The additional inclusion criteria were age ≥ 18, 
estimated survival above 24  h, and fulfilment of sepsis 
criteria according to the Surviving Sepsis Guidelines 3 
2016 [4]. Exclusion criteria were the existence of a do not 
resuscitate order and if the expected ICU stay was < 24 h. 
The patients were included in the study and samples 
taken at admission to the ICU, all patients, therefore, 
required intensive care level treatment, most often some 
sort of vital organ support. All patients in this study had 
sepsis or septic shock at the time of admission to the 
ICU, some had been admitted to another ward prior to 
admission to ICU, while others were admitted from the 
community. This resulted in a data set of 52 patients. 
The Ethics Committees in the Capital Region of Den-
mark approved this study (H-17027963 and Danish Data 
Protection Agency (I-suite nr.: 04673 and 04674)). Writ-
ten informed consent was obtained from all subjects. 
Patients were enrolled after informed consent, from next 
of kin, if available, and otherwise from the patient´s gen-
eral practitioner. In patients who regained conscious-
ness, informed consent was obtained as soon as possible 
thereafter.

Data collection and electronic health record processing
Blood samples were obtained as soon as possible after 
an ICU admission that met the criteria described above 
for enrolment. These samples were used for metabo-
lomics measurements by MSOmics and measurement 
of endothelial health markers by ELISA. Clinical and 
biochemical data for this study was obtained from a 
dedicated study database (REDCap) extracted from the 
patients’ electronic health records (Sundhedsplatfor-
men, provided by EPIC [28]), data found in supplemen-
tary data. Included in this were data about the initial ICU 
admission, standard biochemical laboratory measure-
ments and information about the patients’ characteristics 
and health history. Patients were characterised as having 
sepsis or septic shock according to the 2016 criteria from 
the sepsis 3 guidelines [4]. The SOFA score—arterial/
inspired oxygen pressure ratio, mechanical ventilation, 
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platelet count, cognitive function, bilirubin concentra-
tion, creatinine concentration and mean arterial pres-
sure—was also calculated and included in the data set.

Endothelial biomarker analysis
The soluble biomarkers of endothelial damage sTM 
(CD141) and PECAM (CD31) were measured by immu-
noassays according to the manufacturer’s recommenda-
tion (Co. KG, Nordhorn, Germany and Diaclone Nordic 
Biosite, Copenhagen, Denmark & R&D systems). These 
biomarkers were selected as representing two different 
aspects of endothelial health, and their significance to 
the recovery from sepsis as measured by release from 
mechanical ventilation in a previous study by this group 
[29]. sTM levels indicates primarily direct damage to 
the endothelial cells, while PECAM level indicates more 
specifically disruption of the tight junctions between the 
endothelial cells.

Metabolomics mass‑spectrometry analysis
Ultra-high-performance liquid chromatography–mass 
spectrometry (UHPLC–MS) analysis and gas chroma-
tography–mass spectrometry (GCMS) analysis were per-
formed by MSOmics (Vedbæk, Denmark). Peaks were 
identified and quantified for 63 metabolites (listed in 
Additional file 1: Data S1, including a list of which metab-
olites were measured by UHPLC–MS or GCMS, while 
an untargeted multiple reaction monitoring method 
was used these 63 metabolites of interest were quanti-
fied by comparison to known standards and it was these 
metabolites that were included in this study). To reduce 
systematic variations introduced during sample prepara-
tion and analysis, MSOmics processed samples in a ran-
domised order. Furthermore, for quality control, a mixed 
pooled sample, consisting of a small aliquot from each 
sample, was analysed at regular intervals throughout the 
sequence.

The UPLC–MS analysis was performed using a slightly 
modified version of the protocol described by Catalin 
et  al. (UPLC/MS Monitoring of Water-Soluble Vitamin 
Bs in Cell Culture Media in Minutes, Water Application 
note 2011, 720004042en) [30]. Plasma (90μL), internal 
standard (10μL) and acetonitrile with 1% formic acid 
(400μL) were added to the Phree phospholipid removal 
filters. The filters were centrifuged (10 min at 4  °C and 
1000g). The filtrate was diluted (1:1) in 10mM ammo-
nium formate with 0.1% formic acid. Mobile phase A was 
10 mM ammonium formate, 0.1% formic acid in water 
(pH 3.1), mobile phase b was 10 mM ammonium for-
mate, 0.1% formic acid in methanol. A 15-min gradient 
method, at 300 μL/min was used. Beginning with 100% 
mobile phase A, reaching 90% mobile phase B after 13 
min and ending in 100% mobile phase A. The MS analysis 

was carried out using a Thermo Scientific Vanquish 
LC coupled to Thermo Q Exactive HF MS. An electro-
spray ionization interface was used as ionization source. 
Analysis was performed in negative and positive ioniza-
tion mode and the mass spectrometry settings shown in 
Table 1. Peak areas were extracted using Compound Dis-
coverer 2.0 (Thermo Scientific).

GC–MS analysis was carried out by MS-Omics as fol-
lows. First 150μL filtrate were dried under nitrogen flow 
and reconstituted in 37μL ultra-pure water. The recon-
stituted samples were derivatized with methyl chloro-
formate using a slightly modified version of the protocol 
described by Smart et al. [31]. All samples were analysed 
in a randomized order. Analysis was performed using gas 
chromatography (7890B, Agilent) coupled with a quad-
ropole mass spectrometry detector (5977B, Agilent). The 
system was controlled by ChemStation (Agilent). Raw 
data were converted to netCDF format using Chemsta-
tion (Agilent), before the data were imported and pro-
cessed in Matlab R2018b (Mathworks, Inc.) using the 
PARADISe software [32].

All quantifications were performed using external 
calibration rows. Compounds quantified using the 
GC–MS platform were normalised to alanine-4d, while 
selected compounds quantified using the UHPLC–MS 
platform (both positive and negative mode) were nor-
malised using one of five internal standards (Carnitine-
d9, Glucose-13C6, Glutamic acid-d5, Phenylalanine-d8, 
or TMAO-d9). The selection of which internal stand-
ard to use (if any) was based on an evaluation of which 

Table 1 Tuning settings used for the mass spectrometer for the 
liquid chromatography mass spectrometry method. HESI (Heated 
Electrospray Ionization)

Setting Value

Spray voltage ( +) 3500

Spray voltage (−) 2500

Capillary temperature (+ or + −) 320

Capillary temperature (−) 320

Sheath gas (+ or + −) 47,5

Sheath gas (−) 47,5

Auxiliary gas (+ or + −) 11,25

Auxiliary gas (‑) 11,25

Spare gas (+ or + −) 2,25

Spare gas (−) 2,25

Max spray current ( +) 100

Max spray current (−) 100

Probe heater temperature (+ or + −) 412,5

Probe heater temperature (−) 412,5

S‑lens RF level 50

Ion source HESI



Page 4 of 14Johansson et al. European Journal of Medical Research           (2024) 29:71 

choice most effectively removed matrix effects in 
plasma based on spiking experiments.

Characterisation of sepsis survivors vs non‑survivors
Using R the differences between patients with a greater 
than 30-day survival and less than 30-day survival from 
ICU admission for sepsis were defined. For the clini-
cal and patient history features including the markers 
of endothelial dysfunction Fisher’s exact test (discrete 
variables) and Mann–Whitney U test (continuous vari-
ables) were performed with the rstatix package [33].

Data filtering and quality control
The data, including the reported metabolite concentra-
tions, the various clinical features, was processed using 
R. An initial assessment of the data led to the removal 
of variables that were closely linked, for example, date 
of birth was removed but age retained. This produced a 
data set with 52 patients and 96 features (metabolites, 
endothelial markers and clinical characteristics see 
Additional file 1) plus the 30-day survival outcomes for 
each patient.

Features that were missing measurements in more 
than 10% of patients were identified. A total of 14 fea-
tures were found to contain greater than 10% missing 
values. Of these 13 were metabolites, and removed, 
from all subsequent analyses. BMI was retained for the 
initial characterisation of patients but not included in 
later analyses.

Many measurements of hypoxanthine were below 0, 
suggesting that the quantification was poor. Therefore, 
this metabolite was also excluded from further analysis.

Next it was determined that no patients lacked greater 
than 10% of features, so all were retained.

For remaining metabolites missing values were imputed 
using the missRanger algorithm from the Ranger R pack-
age [34], then the data were log and pareto scaled.

Selection and assessment of the predictive power 
of various features for 30‑day survival.
To assess the utility of various features as a predictive 
tool for sepsis survival receiver operator curve (ROC) 
characteristics were used via the pROC package [35] in 
R. We used the lm function in R to fit models accounting 
for either septic shock diagnosis [4] or PECAM and sTM 
concentration combined [10–14]. All observations were 
used for fitting in a bootstrap approach due to the small 
sample size. The pROC package was then used to estab-
lish the area under the curve (AUC) for ROC curves for 
these models.

The glmnet package [36] was used to implement a 
LASSO regression. LASSO regression requires the 
selection of the optimal value for the hyperparameter 
lambda (λ) by minimisation of the cost function, Eq. 1. 
This optimisation was performed by nested k-fold 
cross-validation. The data set was partitioned to form 
5 groups of which 4 are used as a subset to regress all 
metabolite parameters and the significantly altered 
clinical variables on a y variable of interest (either death 
within 30 days of admission, sTM or PECAM). From 
these regressions an optimal lambda is identified using 
an internal cross-validation that minimizes the cost 
function to get the best fitting regression line. Where N 
is the number of patients, p is the number of predictors, 
λ is the lambda hyperparameter, wj is the coefficient for 
predictor j and v is the penalty vector, which tunes the 
amount of penalization of each predictor. The penalty 
vector values for all predictors were 1. The median of 
the optimal lambda values from the five partitions was 
identified. This fivefold cross-validation process was 
repeated 500 times to build a sparse linear regression 
model, consisting of the metabolites associated with 
each of the variables of interest. Details of the repeated 
cross-validations are shown in Additional file 2.

For the LASSO regression, the glmnet package was 
used. LASSO regression extends regular linear regres-
sion by adding a penalty term that encourages spar-
sity in the model, leading to potential feature selection 
benefits (Eq. 1). Regular linear regression, on the other 
hand, does not include any regularization or penalty 
terms. The regularization parameter λ needs to be 
selected carefully to balance accuracy (good data-fit-
ting) and interpretability (sparsity) of the model.

Due to a small sample size, a bootstrap resampling 
procedure was used to identify an optimal λ. For 
each bootstrap sample, fivefold cross validation was 
employed to assess the performance of the LASSO 
regression model across a range of λ values. The goal 
was to identify the optimal λ that minimizes the cross-
validated mean squared error. A median λ value from 
the 500 bootstrap samples was determined (Additional 
file  2), providing robustness to the model selection 
process. This median λ value was then used in a final 
LASSO regression model, where all the original metab-
olite measurements were fitted to predict the response 
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variable of interest (i.e., sTM, PECAM and 30-day sur-
vival rate).

Investigation of the mechanisms behind poor outcomes 
in sepsis
First, the links between the markers of endothelial dys-
function and metabolism were investigated by perform-
ing LASSO regression as above but with the model being 
fitted to PECAM or sTM concentration and instead of 
survival.

Second, the areas of metabolism linked to survival and 
endothelial dysfunction were investigated using over-
representation analysis run via the deCoupleR [37] pack-
age and the KEGG pathways [38] section of the chemical/
chemical interaction network from the Stitch database 
(downloaded May 2022) [39] using the size of the coef-
ficients found by LASSO regression analysis for 30-day 
survival, PECAM and sTM concentrations.

Results
Analysis of patient characteristics and clinical features 
on admission show few differences between survivors 
and non‑survivors of sepsis at 30 days
Basic demographic parameters and PECAM and sTM, 
endothelial health indicators, were compared between 
survivors and non-survivors. Of a total of 52 patients in 
this study 19 died within 30 days of ICU admission for 
sepsis. The mean age of patients in this study was 71, not 
significantly different between survivors and non-sur-
vivors, see Table  2. The sex of patients was evenly split 
between males and females (25 males) and the 30-day 

survival rate was the same for both, Table  2. BMI was 
lower in patients who died within 30 days of ICU admis-
sion, Table 2.

We considered the effects of patient health history and 
the reason for admission secondary to sepsis. Only an 
existing history of liver cirrhosis or diabetes were signifi-
cantly over-represented among non-survivors (p = 0.004 
and 0.011, respectively), see Supplement 2a. Liver disease 
as an admission reason was also over-represented among 
non-survivors (p = 0.044) (see Additional file 3b).

Patients who died within 30 days of the sepsis diagno-
sis had a higher base excess, SOFA score, plasma PECAM 
concentration, and plasma sTM concentration than those 
who survived (p = 0.02, 0, 0 and 0.01, respectively), see 
Table  2. However, there were no differences in survival 
by vasopressor treatment, mechanical ventilation use or 
those septic shock diagnosis, see Additional file 3a.

Current predictors of survival in sepsis perform similar 
to markers of endothelial health
We examined three previously reported methods of 
predicting 30-day all-cause mortality, septic shock diag-
nosis, SOFA score and a combination of two previously 
reported markers of endothelial health and sepsis out-
come, PECAM and sTM.

In this study a septic shock diagnosis was only slightly 
more able than chance to predict 30-day mortality, area 
under the curve (AUC) of 0.57 (0.432–0.714), see Fig. 1a.

The full SOFA score showed an AUC of 0.77 (95% CI 
(0.624–0.93)) for 30-day mortality, see Fig. 1b.

The combination of both endothelial health indicators, 
PECAM and sTM, was able to predict 30-day mortality 

Table 2 Patient Characteristics comparing those with 30-day survival vs 30-day all-cause mortality from ICU sepsis admission, P values 
from Fishers Exact test (discrete variables) or Mann–Whitney U test (continuous variables) (F = Female, M = Male, BMI = Body Mass Index, 
SOFA = Sequential Organ Failure assessment, PECAM = Platelet Endothelial Cell Adhesion Molecule) 

Status

Category Feature Survivors [Counts/Median 
(Lower and Upper Quartiles)]

Non‑survivors [counts/median 
(lower and upper quartiles)]

p value

Demographic Information Sex F‑17, M‑16 F‑10, M‑9 1.000

Reported smoking status Ex‑smoker‑12, no‑11, yes‑7, miss‑
ing‑3

Ex‑smoker‑10, No‑6, yes‑2, miss‑
ing‑1

0.679

Age (years) 71 (66–79) 72 (68.5–78.5) 0.879

BMI 31.419 (25.703–33.951) 24.412 (19.891–27.244) 0.036
Endothelial Feature PECAM (ng/mL) 10.8 (9.33–13.3) 15.4 (12.25–19) 0.005

Soluble Thrombomodulin (ng/
mL)

13.21 (10.42–18.73) 20.17 (14.675–24.21) 0.006

Measurement at ICU Admission Base excess (mM) 1.8 (1.2–2.6) 2.8 (1.95–3.775) 0.020
Lactate (mM) 7 (6.3–7.8) 6.5 (5.8–8.5) 0.894

SOFA 8 (7–9) 13 (10–14) 0.001
Met the criteria for septic shock Septicshock‑16, Sepsis‑17 SepticShock‑12, Sepsis‑7 0.391
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well with an AUC of 0.77 (95% CI 0.626–0.911), see 
Fig. 1c. This suggests that endothelial health was a good 
indicator of sepsis survival, in the study population.

A LASSO regression model suggests metabolites 
as predictors of sepsis survival
To identify the metabolites that would be the best bio-
markers for sepsis survival we used penalised regres-
sion. We then assessed the ability of this model and the 

most important metabolites to predict sepsis survival. 
LASSO regression models show 30-day survival as 
being best predicted by 15 metabolites. Nine metabo-
lites that are positively correlated with 30-day mortal-
ity and six which are negatively correlated with 30-day 
mortality, see Table  3. Many of these metabolites are 
amino acids or carnitines.

The ROC curve for this model shows that it predicts 
30-day survival very well with an AUC of 0.94 (95% CI 

Fig. 1 ROC curves assessing the predictive power of a Septic shock diagnosis. b SOFA score, or c combination of PECAM and sTM, indicators 
of vascular endothelial health
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0.841-1), see Fig. 2a. Overlapping 95% confidence inter-
vals of the AUC of these two models show that this was 
an equally good model as that Wang et al. [40] (includ-
ing isoleucine, acetylcarnitine, lactate and pyruvate) 
applied to our data set, see Fig. 2b.

Models for each of the two metabolites with the largest 
coefficients in the LASSO model were tested. Isoleucine 
showed a moderately good predictive ability alone, AUC 
of 0.628 [95% CI (0.459–0.798)] for 30-day mortality, see 
Fig.  2c. Histidine was a better predictor, AUC of 0.818 
[95% CI (0.687–0.949)] for 30-day mortality, see Fig. 2d.

We found that a group of metabolic markers, including 
isoleucine and histidine, were able to predict 30-day sur-
vival very well.

Endothelial health markers and sepsis survival are best 
modelled by overlapping sets of metabolites
We next used penalised regression to identify metabo-
lites that correlate with sTM and PECAM, markers 
of endothelial health. We then identified the overlap 
between the three sets of metabolites. LASSO regres-
sion shows that plasma PECAM levels are positively cor-
related with 10 metabolites, and negatively correlated 
with 13 metabolites, see Table  3  and Fig.  3a and  b. A 
similar model for sTM shows a positive correlation with 
9 metabolites and, and negatively with 6 metabolites, see 
Table 3 and Fig. 3a and b.

Several metabolites correlate with sTM, PECAM and 
30-day mortality. Histidine, and urate are a both posi-
tively associated with all three traits, while sphingosine 
1 phosphate is negatively associated with all three traits, 
see Additional files 3 and 4. Interestingly there are no 
metabolites that are positively related to both PECAM 
and sTM but not to mortality. Furthermore, histidine 
is one metabolite that is most strongly associated with 
30-day sepsis mortality.

Table 3 Results of LASSO regression as associated with 30‑day 
survival, sTM and PECAM

Correlation Metabolite Coefficient

Non-survival Glycine − 0.011

Isoleucine − 0.124

Asparagine 0.035

Glutamate − 0.012

Tyrosine 0.090

Pyruvate − 0.065

Fumarate 0.083

Oxoproline 0.101

Butyrylcarnitine 0.028

Docosahexanoate − 0.036

Glutamine 0.029

Histidine 0.111

Myristoylcarnitine 0.055

Sphingosine 1 phosphate − 0.049

Urate 0.004

sTM Glutamate − 1.327

Ornithine 1.064

Tryptophan − 0.650

Cystine − 0.278

Fumarate 1.221

Acetylcarnitine 0.845

Eicosapentanoate − 0.102

Histidine 1.296

Linoleate − 0.896

Kynurenine 0.865

Myristoylcarnitine 0.606

Octanylcarnitine 1.409

Sphingosine 1 phosphate − 1.729

Trimethyl N oxide 0.144

Urate 0.548

PECAM Glycine − 1.728

Valine − 1.222

Isoleucine − 1.083

Threonine 3.463

Glutamate 0.978

Phenylalanine − 0.104

Tryptophan − 0.983

Aspartate 0.887

Pyruvate − 0.435

Succinate − 0.430

Arachidonate 0.671

Arginine 0.732

Docosahexanoate − 0.897

Gamma Linolenicate A − 0.605

Glucose − 0.610

Table 3 (continued)

Correlation Metabolite Coefficient

Glutamine 0.206

Histidine 1.869

Linolenate − 0.212

Myristoylcarnitine − 0.379

Propionylcarnitine 0.107

Sphingosine 1 phosphate − 0.865

Trimethyl N oxide 0.363

Urate 1.832
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Enrichment analysis shows the importance of central 
carbon and amino acid metabolism to sepsis response
Over-representation analysis (ORA) was performed to 
compare the sets of metabolites identified by LASSO 
regression as being linked to 30-day mortality, plasma 
sTM concentration or plasma PECAM concentration, 
to the KEGG pathways [38] found in the Stitch database 
[39], significant results shown in Table 4 and Fig. 4a.

The pathways identified as being over-represented 
in the predictors of 30-day mortality include “ABC 
transporters”, see Table 4 (full results Additional file 4). 
Those over-represented in the group related to sTM 
include “Alanine, aspartate and glutamate metabolism”, 
see Table 4 (and Additional file 5). Finally, those over-
represented in the PECAM-related group include “ABC 
transporters”, see Table  4 (and Additional file  6), see 

Fig. 2 ROC curves assessing the predictive power of various metabolites. a In the data set from this paper and the LASSO regression selected 
metabolites. b Consensus model from Wang et al., with as many metabolites as possible included c isoleucine and d histidine all predicting 30‑day 
survival in sepsis patients
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Fig.  3a). Only one pathway, “Central carbon metabo-
lism in cancer” was over-represented in all three sets, 
see Fig. 3b, highlighting the importance of energy dys-
regulation to both sepsis pathology and endothelial 
dysfunction. On the other hand, many pathways are 
common to PECAM and mortality, including “ABC 
transporters”. “Histidine metabolism” and “Valine, leu-
cine and isoleucine metabolism”, were both found to 
be over-represented in both the mortality and PECAM 
marker sets, as shown in Fig. 4b. This once more high-
lights amino acids as key to the metabolic dysregulation 
of sepsis. Two non-metabolic pathways were identified 
as over-represented in the sTM markers—“Glucagon 
signalling” and “Neuroactive Ligand-Receptor Interac-
tion”. These indicate some of the regulatory pathways 
that become dysregulated in sepsis leading to meta-
bolic dysregulation.

Discussion
We compared the utility of the novel metabolic and 
endothelial markers against current standard risk mark-
ers (septic shock diagnosis and SOFA score) to predict 
30-day mortality.

The sepsis 3 guidelines identify high risk patients as 
having septic shock. In this study a septic shock diagno-
sis was only a slightly better predictor of 30-day mortality 
than chance, with an AUC of 0.573, see Fig. 1a. This was 
in line with the 46% crude mortality observed for septic 
shock by the Sepsis Definitions Task Force [5] and indi-
cates that septic shock under the 2016 criteria was an 
ineffective predictor of 30-day sepsis mortality.

Many previous studies of sepsis survival have used 
the SOFA score as a predictor of sepsis mortality. With 
an AUC of 0.777, see Fig. 1c, the predictive ability of the 
SOFA score was in line with previously reported values, 
such as Langley et al. [20], with a predictive accuracy of 
SOFA score of 68% in their initial population and 61% in 
their predictive population and Wang et al. who found an 
AUC of 0.56 for their cohort for a similar study [40].

We found that patients with liver disease had a higher 
risk of mortality. However, due to the small number of 
liver patients included in this data set (n = 5), many of 
whom also had another condition this may be an artifact 
of the data set. Incomplete data regarding BMI prevented 
further follow-up of this differential feature. However, 
the lower BMI in the non-surviving group may indicate a 
frailer population at higher risk of sepsis mortality.

The endothelial health indicators PECAM and sTM 
have previously been shown to predict poor outcomes 
in sepsis [10, 11]. In this study they did so with a simi-
lar efficacy as SOFA score, AUC for endothelial health of 
0.769 (95% CI 0.626–0.911) AUC 0.777 for SOFA score, 
see Fig. 1.

The LASSO regression selected metabolite model was 
extremely effective at predicting 30-day mortality in our 
own data set AUC of 0.93 (95% CI 0.836–0.836), see 
Fig.  2a. This may suggest a degree of over-fitting, likely 
due to the small sample size in this study.

To assess the general applicability of our models, we 
tested them on other published sepsis metabolomics data 
sets [20, 41–43] produced mixed results. Models that 
included all overlapping metabolites with coefficients 
determined by the LASSO regression, produced an AUC 

Fig. 3 Venn diagrams showing the proportion of metabolites shared between regression models of mortality, PECAM and sTM. a Positive 
correlation. b Negative correlation
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of better than 0.6 in two out of three data sets tested and 
around equal to chance in the other. However, these data 
sets were very different in metabolite coverage. Only 
measurements of 8 or 9 out of the 15 LASSO identified 
metabolites were available in each of the tested data sets. 
We then retested these data sets using only the metabo-
lites included in each data set and finding data set-spe-
cific coefficients. This produced better outcomes, with 
AUCs of around 0.84 in all three cases, the ROC curve 
for the Wang model shown in Fig. 2b.

This suggests that while the exact patterns of metabolic 
changes vary between patient populations there was a 
consistent set of metabolites that are important to sep-
sis outcome. This assumption is further reinforced by the 
high variability seen in the measurements within each 
data set and the low number of individually significantly 
different metabolites (see supplementary data).

The consistent importance of amino acids, carniti-
nes, fatty acids and lipids and TCA cycle derivatives as 

markers of sepsis outcome was also shown by Wang et al. 
[40] who identified isoleucine, pyruvate (also identified 
in this study), alanine, lactate, acetylcarnitine (related to 
markers identified here) and lyso-phosphytidyl cholines 
and glycines as consensus markers of mortality predic-
tion across multiple metabolomics studies. The data set 
from Wang et al. [40] showed a 95% confidence interval 
range of 0,69–0,84. This model included a similar set 
of metabolites to our model, suggesting that these are 
indeed ubiquitous markers of metabolic dysregulation 
related to sepsis outcome. However, across four different 
data sets the metabolic differences between sepsis sur-
vivors and non-survivors are not always consistent [20, 
41–44]. Tyrosine, butyryl and acetyl carnitines, pyruvate, 
lactate and alanine are consistently up-regulated in sepsis 
non-survivors. Myristoylcarnitine, histidine and aspara-
gine are up-regulated in this data set but down-regulated 
in one other study. Isoleucine and glutamate are down-
regulated in this data set but up-regulated in at least one 

Table 4 Results of ORA showing the over‑represented pathways for metabolites identified by LASSO regression as associated with 
30‑day survival, sTM and PECAM

Comparison KEGG ORA Score Adjusted p value

Non-survival ABC transporters—Homo sapiens (human) 3.850 0.001

Aminoacyl‑tRNA biosynthesis—Homo sapiens (human) 4.702 0.000

Central carbon metabolism in cancer—Homo sapiens (human) 5.001 0.000

Glutathione metabolism—Homo sapiens (human) 2.245 0.027

Histidine metabolism—Homo sapiens (human) 2.153 0.027

Mineral absorption—Homo sapiens (human) 2.362 0.025

Protein digestion and absorption—Homo sapiens (human) 4.791 0.000

Valine, leucine and isoleucine biosynthesis—Homo sapiens (human) 2.463 0.024

Valine, leucine and isoleucine degradation—Homo sapiens (human) 2.202 0.027

sTM Alanine, aspartate and glutamate metabolism—Homo sapiens (human) 2.377 0.031

Arginine biosynthesis—Homo sapiens (human) 2.463 0.031

Butanoate metabolism—Homo sapiens (human) 2.202 0.031

Central carbon metabolism in cancer—Homo sapiens (human) 2.256 0.031

Citrate cycle (TCA cycle)—Homo sapiens (human) 2.523 0.031

Glucagon signaling pathway—Homo sapiens (human) 2.409 0.031

Neuroactive ligand–receptor interaction—Homo sapiens (human) 2.109 0.031

Nicotinate and nicotinamide metabolism—Homo sapiens (human) 2.085 0.031

Phenylalanine metabolism—Homo sapiens (human) 2.047 0.031

Pyruvate metabolism—Homo sapiens (human) 2.319 0.031

Tyrosine metabolism—Homo sapiens (human) 1.933 0.037

PECAM ABC transporters—Homo sapiens (human) 3.850 0.002

Aminoacyl‑tRNA biosynthesis—Homo sapiens (human) 4.702 0.000

Central carbon metabolism in cancer—Homo sapiens (human) 2.256 0.032

Glycine, serine and threonine metabolism—Homo sapiens (human) 2.126 0.033

Histidine metabolism—Homo sapiens (human) 2.153 0.033

Mineral absorption—Homo sapiens (human) 2.362 0.030

Protein digestion and absorption—Homo sapiens (human) 4.791 0.000

Valine, leucine and isoleucine biosynthesis—Homo sapiens (human) 2.463 0.030
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other data set (although also down-regulated in at least 
one other). It is possible that this may reflect underlying 
differences in the populations studied, for example, the 
average ages of the populations and possibly underlying 
conditions may contribute to the metabolic states of the 
population.

Over representation analysis of the LASSO identified 
metabolites highlighted central carbon metabolism and 
various areas of amino acid metabolism as key to mortal-
ity biomarkers.

This analysis also showed that central carbon meta-
bolic dysregulation was common to identifying bio-
markers for 30-day mortality and the levels of two 
different endothelial health biomarkers, again in line 
with Wang’s findings. Further amino acid metabolism 
pathways including those of Alaine and Leucine were 
identified as key to the groups of metabolites correlated 
with PECAM and sTM concentration, again highlight-
ing the link between endothelial dysfunction, metabolic 
dysfunction and mortality in sepsis patients. Thirteen 
metabolites correlate with both PECAM and 30-day 
mortality, whereas only six correlate with both sTM 
and mortality. This could indicate that the differing 
functions of PECAM and sTM contribute in different 
ways to the pathology of sepsis, this has previously been 
seen as differences in the timing of PECAM and sTM 
changes in plasma were associated with different risks 
in sepsis patients [29, 45]. Five metabolites are com-
mon to both endothelial biomarker models. The gen-
eral low level of overlap between metabolites correlated 

with sTM and PECAM concentrations may indicate 
that these two markers of endothelial health act in dif-
ferent mechanisms—although their concentrations are 
quite well-correlated in this data set. PECAM being 
largely associated with changes to the junction between 
endothelial cells and interactions with platelets, while 
sTM can indicate more direct damage to the endothe-
lial cells and altered inflammatory response [46, 47]. 
Sphingosine 1 phosphate, had a negative coefficient in 
all three LASSO models. Sphingosine 1 phosphate has 
previously been shown to be produced by endothe-
lial cells. Furthermore, low sphingosine 1 phosphate 
plasma levels have been shown to have an increased 
risk of kidney injury and coagulation disorders in sepsis 
patients [48]. It is, therefore, possible that the decreased 
sphingosine 1 phosphate associated with endothelial 
damage markers and 30-day non-survival may be linked 
to the positive correlation of urate, potentially indicat-
ing reduced kidney function, with endothelial damage 
markers and 30-day non-survival. Histidine rich glyco-
protein has been shown to influence sepsis survival and 
to be involved in the maintenance of endothelial barrier 
integrity [49–51], in our study we found higher levels of 
histidine correlated with non-survival and higher lev-
els of endothelial damage biomarkers. It is possible that 
this may indicate that there was less histidine incor-
porated into histidine rich glycoprotein, or that it was 
being broken down producing more free histidine. The 
metabolites identified in this study, therefore, indicate 
not only a link to 30-day sepsis survival potential but 

Fig. 4 A figure showing significantly overrepresented KEGG pathways in metabolites highlighted by LASSO regression defining a sepsis survival, 
sTM and plasma PECAM by a plot of points located based on the ORA—log of FDR adjusted p value and size of the point defined by the ORA score 
and b a Venn diagram showing the shared and unique pathways from part a 
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also to possible mechanisms that mediate this outcome. 
However, as this was not a mechanistic study further 
investigation is warranted.

Previous studies have shown several broad patterns 
in changes to metabolites, summarised and confirmed 
by Wang et  al. in 2020 [40], including that amino acid 
metabolism, and central energy metabolism have been 
identified in many studies as being altered between either 
sepsis patients and healthy or non-septic controls or 
between sepsis survivors and non-survivors [40]. These 
results are generally very similar to the findings from this 
study. The two amino acids measured by us to be lower in 
sepsis non-survivors, glutamate and isoleucine, have also 
been measured to decrease in some other studies [20]. 
While the amino acids, TCA cycle components and car-
nitines found to be increased in our study are commonly 
increased in several studies [20, 42, 43]. The increased 
representation of central energy and amino acid metabo-
lism pathways seen in differential metabolites for sepsis 
survival in this data set are like the metabolic pathways of 
importance identified by Wang et al. [40].

Previously sTM and PECAM levels in patient plasma 
have previously been shown to be associated with poor 
outcomes in sepsis [10–12, 14, 52]. In this study an over-
lapping, set of metabolites correlates with each of these 
endothelial damage markers. Markers of amino acid 
metabolism and central energy metabolism are enriched 
pathways among metabolites linked to endothelial dam-
age markers and to sepsis survival. This is a similar set of 
changes to those previously observed in lipopolysaccha-
ride and interferon-stimulated endothelial cells in which 
loss of endothelial glycocalyx was observed [24]. Given 
the differences between the metabolites linked to sTM 
and PECAM it would be interesting to examine them in 
more detail in a larger cohort to fully understand their 
contributions. For example, the branched chain amino 
acids which are associated with dendritic cell function 
[53], are more associated with PECAM. PECAM has also 
been shown to be associated with dendritic cell migration 
[54], possibly indicating a functional link to endothelial 
immune function. Histidine metabolism was also associ-
ated with PECAM levels and histidine rich glycoprotein 
has been shown to be a good biomarker in sepsis [55]. On 
the other hand, arginine metabolism was associated with 
the levels of sTM, arginine is metabolised to nitric oxide 
which regulates blood pressure and has been shown to 
be important to sepsis outcome [56–58]. Again, it will be 
useful in the future to examine the functional and meta-
bolic links highlighted here.

While this study has highlighted several interesting 
metabolites as potential biomarkers that may link sep-
sis survival and endothelial damage, and it agrees with 

other studies in this area, there are some weaknesses that 
mean that further study will be important. This study 
used a fairly small number of patients. Due to the small 
number of patients the metabolite model may have been 
overfitted, making it less generally applicable. We have 
mitigated this effect by considering the model in other 
published data sets, it performed less well in these data 
sets, but in those data sets with similar metabolite sets 
still performed well. A further weakness is that by con-
sidering not just survival but also endothelial markers 
the likelihood of chance findings is increased. Finally, this 
study considered a single measurement of metabolites 
and endothelial markers, this makes it useful for explor-
ing clinical markers but limits the mechanistic conclu-
sions which can be drawn. It will be interesting to follow 
this study with a larger cohort.

Conclusion
Our analysis of an integrated metabolomics and endothe-
lial biomarker data set has reinforced the findings of an 
increasing number of studies that amino acids, TCA 
cycle components and carnitines are key areas of meta-
bolic dysfunction in sepsis. We have also found that cen-
tral carbon metabolism, including TCA cycle derivatives, 
and amino acids particularly histidine and isoleucine are 
indicators of levels of endothelial dysfunction markers as 
well as sepsis outcome and, therefore, may benefit from 
more focused study.
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