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Abstract 

Background  Clear cell renal cell carcinoma (ccRCC) is characterized as one of the most common types of urologi-
cal cancer with high degrees of malignancy and mortality. Due to the limited effectiveness of existing traditional 
therapeutic methods and poor prognosis, the treatment and therapy of advanced ccRCC patients remain challeng-
ing. Tryptophan metabolism has been widely investigated because it significantly participates in the malignant traits 
of multiple cancers. The functions and prognostic values of tryptophan metabolism-related genes (TMR) in ccRCC 
remain virtually obscure.

Methods  We employed the expression levels of 40 TMR genes to identify the subtypes of ccRCC and explored 
the clinical characteristics, prognosis, immune features, and immunotherapy response in the subtypes. Then, a model 
was constructed for the prediction of prognosis based on the differentially expressed genes (DEGs) in the subtypes 
from the TCGA database and verified using the ICGC database. The prediction performance of this model was con-
firmed by the receiver operating characteristic (ROC) curves. The relationship of Risk Score with the infiltration of dis-
tinct tumor microenvironment cells, the expression profiles of immune checkpoint genes, and the treatment benefits 
of immunotherapy and chemotherapy drugs were also investigated.

Results  The two subtypes revealed dramatic differences in terms of clinical characteristics, prognosis, immune 
features, and immunotherapy response. The constructed 6-gene-based model showed that the high Risk Score 
was significantly connected to poor overall survival (OS) and advanced tumor stages. Furthermore, increased expres-
sion of CYP1B1, KMO, and TDO2 was observed in ccRCC tissues at the translation levels, and an unfavorable prognosis 
for these patients was also found.

Conclusion  We identified 2 molecular subtypes of ccRCC based on the expression of TMR genes and constructed 
a prognosis-related model that may be used as a powerful tool to guide the prediction of ccRCC prognosis and per-
sonalized therapy. In addition, CYP1B1, KMO, and TDO2 can be regarded as the risk prognostic genes for ccRCC.
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Introduction
Renal cell carcinoma (RCC) is the most aggressive geni-
tourinary tumor, with an estimated 431,288 new cases 
of renal cancer and 179,368 death cases in 2020 based 
on GLOBOCAN 2020 estimates [1]. RCC is a hetero-
geneous group of tumors, of which ccRCC constitutes 
approximately 75% of kidney malignancies [1–5]. Despite 
improvements in cancer screening and diagnostic tech-
nologies over the last few decades, approximately 30% of 
ccRCC patients generally show multiorgan distant metas-
tases at the time of diagnosis and have a poor 5-year out-
come; moreover, 20%–40% of patients usually experience 
a relapse [6–8]. The limited efficacy of chemotherapy and 
radiotherapy has significantly affected the treatment and 
management of ccRCC in clinics [9, 10]. In addition, a 
consensus regimen for the surveillance of ccRCC after 
nephrectomy is also unavailable, and strict adherence to 
follow-up guidelines may not be optimally applicable to 
all patients [11–13]. Abnormalities in the renal metabo-
lism are known to be the principal cause of ccRCC. 
Therefore, exploration of the pathogenesis of metabolic 
alterations and identification of the possible prognostic 
biomarkers driving ccRCC are urgently needed.

The essential amino acid l-tryptophan (Trp), which is 
exclusively supplemented from dietary sources, serves as 
a precursor of protein biosynthesis and the generation of 
crucial bioactive metabolites such as melatonin and sero-
tonin. The kynurenine (Kyn) pathway (KP) is the primary 
approach for tryptophan metabolism in most mamma-
lian tissues, and is mainly regulated by the rate-limiting 
enzymes kynurenine monooxygenase (KMO), indoleam-
ine 2,3-dioxygenase (IDO), and tryptophan 2,3-dioxyge-
nase (TDO). Trp and its biologically active metabolites 
are indispensable for the regulation of a variety of physi-
ological processes, such as immunity, neuronal function, 
and intestinal homeostasis [14]. Many human disorders, 
such as cancer, neurodegenerative disease, inflamma-
tory bowel, and cardiovascular disease, are significantly 
related to imbalances in tryptophan metabolism [15, 16]. 
A urine metabolomics study showed that tryptophan 
metabolism represented a critical pathway in ccRCC, 
while overexpression of tryptophan 2,3-dioxygenase 
(TDO) in ccRCC was closely related to high levels of 
Kyn and can predict immunotherapy resistance [17, 18]. 
Furthermore, specific targeting of tryptophan metabo-
lism-related (TMR) molecules for therapy has attracted 
growing interest, and some drug candidates targeting 
TMR genes have even exhibited promise in clinical tri-
als [14, 19]. Although several ongoing clinical stud-
ies have explored the metabolic pathways mediated by 
tryptophan in ccRCC, the clear function of tryptophan 
metabolism in the progression of ccRCC has not yet been 
investigated [20].

In this study, genes related to tryptophan metabolism 
were used to identify stable molecular subtypes, and 
the distinct characteristics of the clinical, pathway, and 
immune response were further confirmed. On the basis 
of these findings, a six-gene-based model for prediction 
of the prognosis of ccRCC was established, which may 
provide meaningful guidance for the treatment of ccRCC. 
Additionally, three risk factors, namely, CYP1B1, KMO, 
and TDO2, were identified for ccRCC.

Materials and methods
Data acquisition and processing
The data for ccRCC copy number variation (CNV) and 
TCGA-KIRC mutations were downloaded from The 
Cancer Genome Atlas (TCGA) database (https://​portal.​
gdc.​cancer.​gov). The ccRCC RNA sequencing (RNA-seq) 
data were obtained from 481 primary tumor samples and 
72 normal kidney samples and were used as training data. 
Validation data of gene expression profiles of 91 ccRCC 
samples were obtained from the International Cancer 
Genome Consortium (ICGC) database (https://​icgc.​
org/).

Cell culture
Human cancer ACHN cells and normal kidney proximal 
tubular epithelial HK2 cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM; 11,965,084, Gibco) 
supplemented with 1% penicillin–streptomycin and 
10% fetal bovine serum (FBS). The cells were cultivated 
in humidified incubators with 5% CO2 at 37 °C and rou-
tinely passaged every 1–2 days.

Source of genes for tryptophan metabolism
The genes involved in tryptophan metabolism were obtained 
from the Molecular Signatures Database (MSigDB) (http://​
www.​broad​insti​tute.​org/​gsea/​msigdb/) ’KEGG_TRYPTO-
PHAN_METABOLISM’. Forty TMR genes were included, 
namely, AADAT, AANAT, ACAT1, ACAT2, ACMSD, 
AFMID, ALDH1B1, ALDH2, ALDH3A2, ALDH7A1, 
ALDH9A1, AOC1, AOX1, ASMT, CAT, CYP1A1, CYP1A2, 
CYP1B1, DDC, ECHS1, EHHADH, GCDH, HAAO, HADH, 
HADHA, IDO1, IDO2, IL4I1, INMT, KMO, KYNU, MAOA, 
MAOB, OGDH, OGDHL, TDO2, TPH1, TPH2, WARS1, and 
WARS2.

Molecular subtyping related to tryptophan metabolism
To explore the association between TMR genes and 
ccRCC, a consensus cluster analysis was performed to 
sort samples into different subtypes according to the 
expression profiles of the TMR gene [21]. Critical operat-
ing parameters included 500 iterations and an 80% resa-
mpling rate; resampling of 2 to 10 groups (k = 2 to k = 10) 
was implemented using the partitioning algorithms 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://icgc.org/
https://icgc.org/
http://www.broadinstitute.org/gsea/msigdb/
http://www.broadinstitute.org/gsea/msigdb/
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around medoids (PAM) and “Spearman” as a distance 
measure, http://​www.​bioco​nduct​or.​org/).

Construction of a LASSO regression model and survival 
analysis
The limma R package was applied to identify differentially 
expressed genes (DEGs) from TMR genes between differ-
ent subgroups. Univariate Cox regression analysis was 
developed with the TMR-DEGs and prognostic informa-
tion to filter out genes most connected to ccRCC prog-
nosis with a false discovery rate (FDR) < 0.05 and |log2 
fold change (FC)|> 1. To compress the number of DEGs 
related to prognosis and construct an optimal prognos-
tic signature, LASSO Cox regression was conducted 
using the glmnet R package. The Risk Score was calcu-
lated using the following formula: Risk Score = Σβi × Expi, 
where β indicated the regression coefficient, i repre-
sented the variable number, and Exp denoted the levels of 
gene expression of the variables. A Risk Score of “0” was 
used as the threshold to classify the samples as high or 
low risk. Kaplan–Meier survival analysis was performed 
for measurement of OS.

Gene set enrichment analysis
We performed gene set enrichment analysis (GSEA) 
using Hallmark Gene Sets from the Molecular Signatures 
Database (MSigDB) to identify different functional path-
ways within the molecular subtypes [22].

Evaluation of the tumor microenvironment and responses 
to immunotherapy
The CIBERSORT algorithm (https://​ciber​sort.​stanf​ord.​
edu/) was used to quantify the relative abundance of 
tumor-infiltrating immune cells in each case of ccRCC. 
The proportion of immune and stromal cells in the 
TME was also estimated using the ESTIMATE method 
(https://​sourc​eforge.​net/​proje​cts/​estim​atepr​oject/). The 
TIDE algorithm (http://​tide.​dfci.​harva​rd.​edu/) was used 
to assess the response of ccRCC patients to immunother-
apy [23].

Real‑time quantitative PCR, tissue microarray, 
and immunohistochemistry
Immunohistochemistry (IHC) staining was performed 
in accordance with the standard guidelines to detect the 
targeted proteins on these 180 tissue specimens. A tissue 
microarray (TMA) consisting of 150 ccRCC tumor tis-
sues and 30 adjacent normal samples (HKidE180Su02) 
was purchased from Outdo Biotech (Shanghai, China). 
The corresponding primary antibodies are shown in 
Additional file 1: Table S1. The TMA was digitized with 
a PANNORAMIC 250 scanner (3DHISTECH, Hungary). 
The outcomes were blindly scored by two pathologists 

on the basis of the area and intensity of the staining. The 
samples were separated into high- and low-expression 
groups in accordance with the median gene expression 
level. This study was approved by the Ethics Commit-
tee of The First Affiliated Hospital, Zhejiang University 
School of Medicine (No. IIT20220924A). Then, the three 
identified risky genes were further validated by quanti-
tative real-time polymerase chain reaction (qRT-PCR). 
Total RNA of the cultured cells was extracted using TRI-
zol (Invitrogen, CA, USA), and the cDNA was synthe-
sized by the PrimeScript™ RT reagent kit (Takara, Shiga, 
Japan) in accordance with the manufacturer’s instruc-
tions. The CFX96 Real-Time PCR Detection Systems 
(Bio-rad, CA, USA) was employed to perform qRT-PCR 
to validate the gene expression level, and the specific 
steps were conducted routinely. All primers used are 
shown in Additional file 1: Figure S2. Three samples were 
repeated for each gene to calculate the mean threshold 
period (Ct), and the relative expression of each mRNA 
was normalized by the housekeeping gene GAPDH.

Statistical analysis
All statistical analyses were performed using R version 
3.5.1, SPSS v25, and GraphPad Prism 7.0. For assess-
ment of the statistical significance of quantitative data, 
normally distributed variables were estimated using Stu-
dent’s t-tests. The Wilcoxon rank-sum test was used for 
comparisons between groups of non-normally distrib-
uted variables. The relationships between two continuous 
variables were estimated by Spearman’s rank order cor-
relation. P < 0.05 was defined as significant.

Results
Gene mutations and expression changes of TMR genes 
in ccRCC​
To investigate the genetic alterations in TMR genes 
that may be associated with the pathogenesis of ccRCC, 
we evaluated the incidences of genetic alterations in 40 
TMR genes among cases from the TCGA ccRCC data-
sets. Somatic mutations were observed in 35 cases with 
a detection rate of 10.42% (35/336) (Fig. 1A); the highest 
mutation frequency was recorded for AOC1, followed 
by EHHADH. Since gene alterations are known to influ-
ence gene expression, we aimed to clarify the association 
between the mutations and expression of these 40 TMR 
genes in ccRCC by evaluating the expression of these 40 
TMR genes in ccRCC. In comparison with the normal 
tissues, the tumor tissues exhibited significantly dysfunc-
tional expression of these TMR genes (Fig. 1B), suggest-
ing that genetic alterations in TMR genes can alter the 
expression of the corresponding genes and result in a 
poor prognosis in ccRCC patients.

http://www.bioconductor.org/
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
https://sourceforge.net/projects/estimateproject/
http://tide.dfci.harvard.edu/
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Identification of molecular subtypes based on TMR genes
On the basis of the expression levels of the 40 TMR 
genes, we used consensus clustering to better explore the 
role of TMR genes in ccRCC and cluster patients into dif-
ferent TMR subgroups. The results confirmed that the 
stability of the clustering was the most optimal when 
k = 2, when the clustering variable (k) was increased from 
2 to 10 (Fig.  2A-C). Thus, ccRCC patients were catego-
rized into two distinct TMR subtypes (named S1 and S2), 
with 234 patients in cluster 1 and 247 patients in cluster 
2. Further, Kaplan–Meier survival analysis revealed that 
the difference in survival between these two subtypes 
was significant, and in comparison with the patients in 
S2, the patients in S1 exhibited significantly better OS 
(Fig. 2D). The consistent results obtained from the ICGC 
datasets indicated the high reliability and reproducibility 

of the molecular subtype based on TMR genes (Fig. 2E). 
Furthermore, using univariate Cox regression analy-
sis, 24 TMR genes were selected due to their significant 
correlations with the prognosis of ccRCC. The CYP1B1, 
KMO, and TDO2 genes with a risk ratio greater than 1 
were classified as risk factors for ccRCC, whereas the 
remaining 19/24 genes were considered protective fac-
tors (Fig. 2F).

Upregulation of CYP1B1, KMO, and TDO2 predicts a poor 
prognosis
To evaluate the relationship of CYP1B1, KMO, and 
TDO2 with the prognosis of the patients, ICH was 
performed to explore the levels of CYP1B1, KMO, 

Fig. 1  Associations between TMR somatic gene mutations and gene expression in ccRCC. a Somatic gene mutation landscape of 40 TMR genes 
in ccRCC samples. b Differences in the expression of 40 TMR genes in tumor tissues from ccRCC patients and adjacent normal tissues
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and TDO2 in tumors and adjacent normal tissues. The 
results revealed that in comparison with the normal 
tissues, tumor tissues from ccRCC patients exhibited 
obviously high CYP1B1, KMO, and TDO2 staining 
(Fig.  3A-C). The expression of CYP1B1, KMO, and 
TDO2 in tumor tissues was significantly upregulated 
in comparison with those in adjacent normal tissues 
(Fig.  3D-F). The survival analysis further revealed 
that in comparison with patients with a low density of 
CYP1B1, KMO, and TDO2, patients with a high den-
sity of CYP1B1, KMO, and TDO2 showed significantly 
poor prognosis (Fig.  3G-I). In addition, we performed 
qRT-PCR experiments in ccRCC ACHN cell lines and 
normal HK2 cells for these three genes to validate the 
microarray results. The results showed that the expres-
sion of CYP1B1 and KMO were significantly upregu-
lated in ACHN cells in comparison with those in HK2 
cells, whereas TDO2 expression showed the opposite 
trend (Fig. 3J-L).

Clinical characteristics, biochemical functions, and immune 
features of ccRCC molecular subtypes
We explored the distribution of the clinicopathologi-
cal features of these two ccRCC subtypes. Significant 
differences in patient sex, T/N/M stage, stage, grade, 
and survival status were observed between the two sub-
types (Additional file  1: Figure S1). We found that S1 
consisted of a higher proportion of alive patients with 
milder disease stages, such as T1, N0, M0, stage I, and 
early grade. These differences indicated that TMR genes 
may be involved in ccRCC development by some under-
lying mechanisms. To assess the pathway enrichment of 
the two subtypes, we performed GSEA, and the results 
showed that metastasis-related processes, such as epi-
thelial–mesenchymal transition (EMT), KRAS signaling, 
and myogenesis, were primarily enriched in S2. Most of 
the metabolic-related pathways, like fatty acid metabo-
lism, adipogenesis, as well as bile acid metabolism path-
ways, were enriched in S1 (Additional file 1: Figure: S2A). 
Further investigation of the oncogenic pathways between 

Fig. 2  Subgroups of ccRCC divided by TMR genes. a CDF curves of the consensus score for k = 2–10 in the TCGA dataset. b Relative change 
in the area under the CDF curve for k = 2–10 in the TCGA dataset. c Consensus clustering matrix for k = 2. d Kaplan–Meier survival analysis 
of the patients in the S1 and S2 groups in the TCGA and ICGC datasets. f Forest plot of TMR genes in the TCGA dataset
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the two subtypes showed that S2 had higher scores for 
WNT, NOTCH, as well as cell cycle-relevant pathways 
than S1 (Additional file 1: Figure: S2B). To clarify the gen-
erality of our subtypes, we explored the distributions of 
the six immune subtypes proposed by Thorsson et al., of 
which C3 represented the best prognosis, while C4 cor-
related with poor outcomes in these two subtypes [24]. 
As predicted, the results showed that C3 accounted for 
the predominant proportion in S1 compared to S2, which 
was in agreement with our results showing that S1 had 
a better survival (Additional file 1: Figure S3A). We also 

conducted an analysis of the immune landscape between 
the 2 molecular subtypes. Additional file  1: Figure S3B 
shows the top 10 gene mutations with significant dif-
ferences between the 2 molecular subtypes, including 
VHL, PBRM1, TTN, SETD2, MTOR, MUC16, KDM5C, 
DNAH9, and ATM.

Since the significantly different gene functions between 
the two TMR subtypes mainly focused on immune- or 
metabolism-related pathways, we speculated that this 
phenomenon might be related to the different immune 
microenvironments between the two TMR subtypes. 

Fig. 3  Expression levels of CYP1B1, KMO, and TDO2 and their relationships with the prognosis of ccRCC patients. a-c Representative IHC staining 
of CYP1B1, KMO, and TDO2 in tumor tissues and adjacent normal tissues; scale bar, 200 µm. d-f The expression of CYP1B1, KMO, and TDO2 in tumor 
tissues and adjacent normal tissues. g-i Kaplan–Meier survival analysis of the prognosis of patients with ccRCC with low or high expression 
of CYP1B1, KMO, and TDO2. j-l The expression of CYP1B1, KMO, and TDO2 in the ccRCC cell line (ACHN) and the control cell line (HK2)



Page 7 of 13Yao et al. European Journal of Medical Research           (2024) 29:22 	

Therefore, we assessed the immune infiltration analysis 
data to further explore the influence of TMR genes on 
the tumor immune microenvironment of ccRCC. TME is 
known to play a crucial role in tumorigenesis and treat-
ment, so we further investigated the differences in immu-
nological characteristics between the two subtypes. A 
CIBERSORT analysis was performed to explore the levels 
of the 22 types of immune cells that infiltrated the tumors 
in the two subtypes. The results showed a clear difference 
in the proportions of immune cells between the two sub-
types. Specifically, the S1 group showed fewer follicular 
helper T cells, activated CD4 memory T cells, regulatory 
T cells, and M0 macrophages and more monocytes, neu-
trophils, M1 macrophages, resting dendritic cells, and 
resting mast cells (Fig. 4A). The distinctly lower immune, 
stromal, and estimate scores in S1 suggested that S1 pos-
sessed relatively higher tumor purity (Fig. 4B). Consider-
ing the distinct TMEs of the two subtypes, we examined 
the responses of the patients in the two subtypes to 
immunotherapies. The expression of the immune check-
point is gradually considered to reflect the patients’ 
response to immunotherapy in cancer, and most of the 
immune checkpoint-associated genes were observed 
to be differentially expressed in the two subtypes. In 
comparison with their expression levels in S2, most of 
the immune checkpoints, such as CD200, TNFRSF14, 
NRP1, CD244, HAVCR2, ADORA2A, KIR3DL1, ICOSLG, 
IDO1, HHLA2, TNFSF18, VSIR, CD40, and CD274 were 

significantly overexpressed in S1, while the expressions 
of BTLA, LAG3, CD28, LGALS9, TNFSF14, TMIGD2, 
PDCD1LG2, TNFRSF8, TNFRSF25, TNFRSF18, and 
CD44 were decreased in S1 (Fig. 4C).

Construction of a prognostic Risk Score relevant 
to tryptophan metabolism for ccRCC patients
In previous analyses, we demonstrated the presence of 
differences in OS, TME, and immunotherapy sensitivity 
between S1 and S2. Next, we chose the DEGs from two 
subtypes to build a prognostic model for ccRCC patients. 
In DEG analysis of S1 and S2, 426 DEGs were screened, 
including 372 upregulated genes and 54 downregu-
lated genes (Additional file  1: Figure S4A). The LASSO 
regression analysis further compressed the gene number 
recruited into the prognostic model. After combining 
the variation trajectories of each independent variable 
and performing tenfold cross-validation for the model, 
0.037 was selected as the optimal lambda value and 14 
genes were obtained (Additional file  1: Figure S4B). We 
then minimized the Akaike information criteria (AIC) 
to generate the most stable model consisting of six 
genes (ENAM, DHDH, SHISA9, CTHRC1, CRABP2, and 
IL20RB) (Additional file  1: Figure S4C). The Risk Score 
was established by combining each gene expression value 
multiplied by the respective coefficient as follows: Risk 
Score = −0.366 × ENAM-0.195 × D​HDH​-0.​231 × SHISA
9 + 0.095 × CTHRC1 + 0.083 × CRABP2 + 0.068 × IL20R

Fig. 4  Differences in immune characteristics between patients in the S1 and S2 groups. Differences in the distributions of immune cell infiltration 
(a), immune scores (b), and expression of immune checkpoint genes (c) between patients of the S1 and S2 groups
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B. The median value was employed to classify cases into 
high- and low-risk groups. Furthermore, we compared 
the association between risk groups and molecular sub-
types and found that the majority of S2 patients with a 
poorer prognosis belonged to the high-risk group (Addi-
tional file 1: Figure S4D). As shown in Fig. 5A, in compar-
ison with patients of the low-risk group, patients of the 
high-risk group exhibited poor OS rates, and the areas 
under the curve (AUCs) for the 1-, 3- and 5-year OS in 
were 0.76, 0.78, and 0.79, respectively (Fig. 5A), indicat-
ing the favorable predictive capacity of the prognostic 
model for patient survival rates. Furthermore, to reduce 
bias, a verification analysis for this six-gene-based model 
was performed using the ICGC cohort. Similar results 
showed that the OS rates of the high-risk group were 
inferior to those of the low-risk group and the AUCs 
for the OS of 1-, 3-, and 5- year were 0.62, 0.68, and 0.68 
(Fig. 5B). Taken together, these results indicated that the 
established six-gene model displayed robust survival pre-
diction efficacy for ccRCC patients. The univariate and 
multivariate Cox regression analysis further verified the 
independence for the prognosis of Risk Score, demon-
strating the potential predictive performance of the six-
gene model in clinical practice (Fig. 5C-D).

The correlation of Risk Score with clinical characteristics 
and pathway signatures
To explore the clinical applicability of Risk Score, we 
also explored the relationships of Risk Score with clinical 

characteristics in the TCGA dataset. The results showed 
a remarkably different distribution of clinical character-
istics such as sex, TNM stage, stage, grade, and survival 
status, except for age, between the high- and low-risk 
groups (Additional file  1: Figure S5). Patients with a 
worse clinical stage showed a higher Risk Score. Collec-
tively, these results showed a strong correlation between 
clinical features and the six-gene-based model, suggest-
ing that a higher Risk Score usually represented a high 
degree of malignancy. Next, we applied ssGSEA to com-
pute the enrichment of the pathways in each sample and 
obtained a total of seven key pathways with correlation 
values greater than 0.4. Five of these metabolism-related 
pathways were inversely associated with the Risk Score, 
while two showed positive relationships with the Risk 
Score (Additional file 1: Figure S5).

Relationship between Risk Score and tumor immune 
characteristics
To elucidate the association of the Risk Score with TME, 
the CIBERSORT algorithm was used to quantify the rela-
tive levels of 22 immune cell types in the high- and low-
risk groups. The proportions of the infiltrated immune 
cells were remarkably distinct in the two groups, with 
the high-risk group showing notably higher levels of 
Tregs and M0 macrophages and fewer M1 macrophages 
(Fig. 6A). The higher ESTIMATE scores in the high-risk 
group reflected the relatively lower tumor purity in the 
high-risk group of patients (Fig. 6B). Thus, the Risk Score 

Fig. 5  Identification and validation of the predictive abilities of the six-gene model in low- and high-risk groups. a-b Kaplan–Meier survival 
and receiver operating characteristic (ROC) curves of the six-gene model in the TCGA and ICGC datasets. c-d Univariate and multivariate Cox 
regression analysis for the prognosis of patients with ccRCC​
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was strongly associated with the ccRCC TME. Con-
sidering the close relationship between the Risk Score 
and immune activity, we next compared the levels of 
immune checkpoint genes in the two groups and found 
that patients in the high-risk group had lower levels of 

TNFRSF14, NRP1, CD200R1, HAVCR2, ADORA2A, 
KIR3DL1, ICOSLG, HHLA2, TNFSF15, and CD274 
(Fig.  6C). Subsequently, the TIDE algorithm was used 
to illustrate the predictive performance of Risk Score 
for immunotherapy. The TIDE scores were higher in the 

Fig. 6  Relationships of Risk Score with tumor immune characteristics and clinical application. Differences in the distributions of immune cells (a), 
immune scores (b), expression of immune checkpoint genes (c), TIDE score (d), and therapeutic response state (e) between low- and high-risk 
groups. f Kaplan–Meier survival analysis of patients in the low- and high-risk groups in the IMvigor210 dataset. g Estimation of drug sensitivity 
between the low- and high-risk groups
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high-risk group; thus, patients in this group showed a 
greater tendency toward escape from antitumor immune 
activity and unfavorable responses to immunotherapy 
(Fig.  6D). We also assessed the prognostic efficacy of 
Risk Score in the IMvigor210 cohort, and patients who 
received anti-PD-L1 treatment showed stable disease 
(SD)/progressive disease (PD) with a significantly higher 
Risk Score than those with complete response (CR)/par-
tial response (PR) (Fig.  6E). The survival analysis also 
showed that patients in the high-risk group had a poorer 
OS than those in the low-risk group (Fig.  6F). Further-
more, since chemotherapy is also a traditional therapeu-
tic approach for ccRCC, we estimated the IC50 of the 
commonly used chemotherapeutic agents for ccRCC 
(MG-132, paclitaxel, and sorafenib) in the two groups. 
We observed that patients in the high-risk group showed 
lower IC50 values, indicating that these three chemo-
therapeutic agents were more beneficial to patients in the 
high-risk group (Fig.  6G). These results confirmed that 
Risk Score could identify the susceptibility of patients to 
various types of immunotherapies and chemotherapies.

Discussion
Metabolic reprogramming, especially tryptophan 
metabolism, has been increasingly shown to have sig-
nificant associations with the progression of various can-
cers [25–28]. RCC is fundamentally a metabolic disease 
characterized by reprogramming of energy metabolism, 
involving multiple metabolic pathways including gly-
colysis, mitochondrial bioenergetics, lipid metabolism, 
and amino acid metabolism [29–32]. Particularly, RCC 
exhibits a rerouting of metabolic alterations through 
glycolysis, favoring energy production via this pathway 
instead of oxidative phosphorylation to efficiently utilize 
glucose to meet their growth and proliferation demands 
[33–35]. Additionally, mitochondrial bioenergetics and 
oxidative phosphorylation capacity are compromised in 
RCC cells. Mitochondria, the primary organelles respon-
sible for energy production, exhibit abnormal function in 
RCC, potentially leading to unstable energy supply [33, 
36–38]. Furthermore, lipid metabolism is dysregulated in 
RCC. Abnormal lipid uptake and metabolism contribute 
to lipid accumulation and aberrant signaling pathways in 
RCC cells [33, 36–38]. Amino acid metabolism, particu-
larly tryptophan and its metabolite kynurenine, is also 
altered in RCC. Tryptophan metabolism was reported to 
contribute to the tumorigenesis of various malignancies, 
mainly by inhibiting the antitumor immune response 
and improving the malignant properties of cancer cells 
[39, 40]. Altered tryptophan metabolism has been shown 
to have important implications for ccRCC [41]. Wet-
tersten HI et  al. indicated that ccRCC patients exhib-
ited significantly elevated levels of immunosuppressive 

tryptophan metabolites, especially quinolinate and Kyn, 
and the upregulation of tryptophan metabolism is closely 
correlated with the grade of the ccRCC tumor [42, 43]. 
Lucarelli, G. et  al. demonstrated for the first time that 
activation of KP portended adverse cancer-specific sur-
vival (CSS) and progression-free survival (PFS) in ccRCC 
and that the Kyn-to-tryptophan ratio could be used to 
reflect the aggressiveness of ccRCC [44].

Furthermore, IDO, the rate-limiting enzyme of the Kyn 
pathway, was shown to perform crucial functions in the 
induction of immune tolerance and is associated with the 
long-term survival of patients with ccRCC [45]. Selective 
inhibition of IDO has been increasingly shown to prevent 
its immunosuppressive effect on antitumor T cell activa-
tion, which is currently being tested in preclinical models 
of ccRCC [46, 47]. RCC is characterized by a high degree 
of immune infiltration, and the immune microenviron-
ment plays a crucial role in regulating angiogenesis and 
abnormal inflammatory features [48–50]. Recent evi-
dence suggests that the activation of specific metabolic 
pathways is closely associated with these processes [44, 
51]. And the immune microenvironment features within 
RCC TME significantly impact the biological character-
istics of RCC cells and affect systemic treatment efficacy 
[52–56]. Therefore, understanding and intervening in the 
immune microenvironment features within RCC TME 
are of great significance for the treatment of RCC. In our 
study, we employed immune infiltration analysis to inves-
tigate the impact of TMR gene on the tumor immune 
microenvironment in ccRCC. The results revealed dis-
tinct immunological characteristics and significant dif-
ferences in the proportions of 22 immune cell types 
between the two subtypes of tumors. Furthermore, dif-
ferential expression of most immune checkpoint-related 
genes was observed between the two subtypes. Addition-
ally, our study demonstrated a close association between 
risk scores and immune microenvironment characteris-
tics in ccRCC. Importantly, in the risk score model based 
on TMR genes, high-risk group patients exhibited a 
greater tendency towards tumor immune evasion. These 
findings confirm the efficacy of risk scoring based on 
TMR genes in predicting the response of RCC patients to 
immunotherapy.

Polygenic risk models have become widespread in 
several cancers and have begun to make an impact in 
individualized disease risk predictions and clinical man-
agement of patients [57–59]. Wang Z et  al. identified 
an immune-related prognostic model for HCC and its 
close relationship with the status of the tumor immune 
microenvironment [60]. They also developed a prognos-
tic classifier based on genes related to lipid metabolism 
for clinical application in breast invasive carcinoma [61]. 
Lin X et al. presented novel multigene panels that could 
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be used to assess the relapse and fatality risk stratifica-
tion of adrenocortical carcinoma [62]. Cui Y et al. merged 
the two prognosis models based on infiltrated tumor 
immune cells and ceRNA networks in ccRCC to improve 
the personalized management of ccRCC patients [63]. 
Dong Y et al. validated the association of ferroptosis with 
tumor immunity in ccRCC and constructed a risk model 
based on ferroptosis-associated lncRNAs for predict-
ing the prognosis in patients with ccRCC [64]. However, 
these models did not concomitantly clarify the over-
all immune status of patients and practically translated 
into clinical applications. In our study, we identified two 
molecular subtypes of ccRCC on the basis of the expres-
sion profiles of 40 TMR genes, which exhibited distinct 
differences in patient prognoses, clinical characteristics, 
pathway characteristics, and even immune characteris-
tics. These studies collectively support the crucial role of 
tryptophan metabolism in the prognosis of ccRCC and 
its significant influence on immunotherapies.

Meanwhile, our study had several limitations. Since 
we did not conduct in-depth research of the mechanism, 
the underlying molecular mechanisms of carcinogenesis 
induced by CYP1B1, KMO, and TDO2 remain to be clar-
ified. Additional studies are warranted to elucidate these 
mechanisms, which may contribute greatly to ccRCC 
development. Additionally, our findings depended largely 
on public databases using bioinformatics analysis; there-
fore, further large-sample studies are required to verify 
these findings.

In conclusion, this study indicate that our six-gene-
based risk model based on tryptophan metabolism can 
be used to predict ccRCC prognosis and determine the 
clinical response of patients to treatment, especially 
immunologic drugs and subsequent individualized treat-
ments. Furthermore, high expression levels of CYP1B1, 
TDO2, and KMO were correlated to a poor outcome in 
ccRCC patients.
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