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Abstract 

Background and objective Studies have shown that Caveolin gene polymorphisms (CAV-1) are involved in chronic 
diseases, such as metabolic syndrome. Moreover, the dietary insulin index (DII) and dietary insulin load (DIL) have 
been shown to potentially elicit favorable effects on cardiovascular disease (CVD) risk. Therefore, this study sought 
to investigate the effect of DII DIL and CAV-1 interaction on CVD risk factors.

Methods This cross-sectional study consisted of 333 overweight and obese women aged 18–48 years. Dietary 
intakes, DII, and DIL were evaluated using the 147-item food frequency questionnaire (FFQ). Serum profiles were 
measured by standard protocols. The CAV-1 rs 3,807,992 and anthropometric data were measured by the PCR–RFLP 
method and bioelectrical impedance analysis (BIA), respectively. Participants were also divided into three groups 
based on DII, DIL score, and rs3807992 genotype.

Results This comparative cross-sectional study was conducted on 333 women classified as overweight or obese. 
Participants with A allele for the caveolin genotype and higher DII score showed significant interactions with high-
density lipoprotein (HDL) (P for AA = 0.006 and P for AG = 0.019) and CRI-I (P for AA < 0.001 and P for AG = 0.024). In 
participants with AA genotype and greater DII score, interactions were observed in weight, systolic blood pressure 
(SBP), diastolic blood pressure (DBP), total cholesterol, CRI-II, fat-free mass (FFM), and skeletal muscle mass (SMM) 
(P < 0.079). Those with higher DIL scores and AA genotype had higher weight (P = 0.033), FFM (P = 0.022), and SMM 
(P = 0.024). In addition, DIL interactions for waist/hip ratio (WHR), waist circumference (WC), triglyceride (TG), CRI-I, 
and body fat mass (BFM) among individuals with AA genotype, while an HDL interaction was observed in individuals 
with AG and AA (P < 0.066).

Conclusion The findings of the present study indicate that people who carry the caveolin rs3807992 (A) allele 
and have greater DII and DIL scores are at higher risk for several cardiovascular disease and metabolic syndrome 
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biomarkers. These results highlight that diet, gene variants, and their interaction, should be considered in the risk 
evaluation of developing CVD.

Keywords Dietary insulin index (DII), Dietary insulin load (DIL), Caveolin, Cardiovascular disease

Introduction
Obesity is a chronic disease whose global prevalence has 
nearly tripled in the last four decades, affecting more 
women than men in developed and developing coun-
tries [1–3]. The obese population includes metaboli-
cally healthy and metabolically unhealthy individuals [4]. 
Indeed, it is not clear whether obesity causes metabolic 
syndrome as it is also observed in lean people [5]. How-
ever, obesity is related to high levels of oxidative stress, 
which plays an imperative role in the pathogenesis of 
numerous diseases [6–8], and obesity and insulin resist-
ance (IR) are the factors of the metabolic syndrome that 
contribute the most its relationship with oxidative stress 
[6]. Increased IR and oxidative stress in obesity result 
from changes in several factors, including dietary pat-
terns and genetic backgrounds [9–12]. Dietary patterns 
are key components associated with a higher incidence 
of obesity, particularly those containing fast-absorbing 
carbohydrates, which increase insulin concentrations 
attributed to hyperinsulinemia and IR [13]. Two proven 
methods to characterize higher insulin concentrations in 
serum are the dietary insulin load (DIL) and dietary insu-
lin index (DII), which are also associated with obesity and 
metabolic syndrome risk factors, indicating that those 
with a higher score of the aforementioned indexes have 
greater insulin concentrations [14–16].

Regardless of carbohydrate intake, other macronu-
trients (proteins and fats) are also involved in insulin 
secretion [17]. Although they do not raise glucose con-
centrations as much, they increase fructose, some amino 
acids, and fatty acids, enhancing insulin secretion [18, 
19]. Recently, the food insulin index (FII) has been intro-
duced to measure the insulin response to foods [20]. 
Indeed, FII is a more accurate way to predict postpran-
dial insulin secretion than other methods [20]. Using the 
FII, the insulin response to the diet indicated by DII and 
DIL can be calculated [21, 22]. This is important as high 
DII and DIL scores, especially in women, are associated 
with an increased incidence of obesity [14] and metabolic 
syndrome [16]. Research to date has also shown impor-
tant associations between DII and DIL with certain gly-
cemic, lipid, and inflammatory markers. For instance, the 
DIL score was positively associated with fasting blood 
glucose (FBG) and C-reactive protein (CRP) in older 
men [23]. In adolescents, a higher DII score was associ-
ated with higher IR and food cravings [24]. Moreover, 
both the DII and DIL are associated with plasma lipids 

(positively related to triglycerides and inversely related 
to HDL), especially in obese individuals [25]. The above-
mentioned associations reinforce the importance of these 
dietary indices in populations with excess body fat and 
metabolic abnormalities.

Several genomes may have synergic effects with dietary 
patterns leading to a higher prevalence of obesity. Small 
pits 60–80 nm in diameter are found in the plasma mem-
brane called caveola [26]. The caveola can be found in 
particular tissues such as adipocytes, vascular endothe-
lial cells, muscle cells, epithelial cells, and fibroblasts [27]. 
Caveola has several functions, including regulating cho-
lesterol and lipid metabolism, cellular signaling, mechan-
ical protection, endocytosis, and a significant increase in 
cell surface area [28, 29]. The role of the caveolin gene 
on metabolic status can be explained by increasing the 
expression of CAV-1 mRNA in visceral and subcutane-
ous adipose tissue that is associated with obesity and its 
related disorders, such as type two diabetes (T2D) [30]. 
The association of CAV-1 rs3807992 and metabolic syn-
drome has been confirmed through the effects of CAV-1 
on visceral fat and IR [31, 32]. CAV-1 and CAVIN-1 
mRNA are highly expressed in visceral and subcutane-
ous adipose tissues, particularly among obese individu-
als, which may be associated with dyslipidemia [30], and 
atherosclerosis [33]. A high-fat diet increases caveolin 
expression [27], which can affect the insulin pathway [34, 
35]. The relationship between CAV-1 and high-fat diets 
has been shown in knockout mice. The available inves-
tigations showed that mice with polymorphisms in this 
gene had resistance to weight gain, hyperinsulinemia, 
and accumulation of epididymal fat following a high-fat 
diet [36–38]. These findings indicate that caveolin gene 
polymorphisms are closely related to diets and metabolic 
factors in an obesity-promoting environment. Therefore, 
evaluating the associations between diet-dependent insu-
lin response indices, metabolic components, and caveo-
lin gene polymorphisms may be clinically relevant to 
employing successful prevention and treatment strategies 
in overweight and obese populations.

To date, no study has investigated the association of 
caveolin gene polymorphisms with DII and DIL. Given 
the role of caveolin in insulin signaling pathways, the pre-
sent study aimed to investigate the interaction between 
caveolin genotypes with DII and DIL on metabolic com-
ponents and body composition indices in overweight 
and obese women. The recent research underscores the 
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importance of understanding the interplay between 
dietary inflammatory index (DII), caveolin-1 (CAV-1) 
expression, and metabolic markers. This study extends 
these insights by examining their relationships in a spe-
cific population, offering novel perspectives for dietary 
interventions. The integration of genetic factors like 
CAV-1 with dietary patterns provides a more compre-
hensive understanding of metabolic health in women, 
potentially guiding personalized dietary recommenda-
tions and management strategies for obesity and related 
metabolic disorders. Evaluation of several dietary macro-
nutrients and micronutrients was also performed as 
these may be involved in insulin signaling and secretion.

Methods
Study population
A cross-sectional of 333 overweight and obese (body 
mass index [BMI]: 25–40  kg/m2) premenopausal (18–
48  years) women who were referred to the health cent-
ers in Tehran were recruited as participants. Women who 
had a history of acute or chronic illnesses such as hyper-
tension, cardiovascular diseases, diabetes, kidney disease, 
liver disease, cancers, and thyroid diseases, were preg-
nant or breastfeeding, smokers, regular alcohol consum-
ers, and those who followed a diet with less than 800 kcal 
and more than 4,200 kcal were excluded from the study. 
Moreover, those who took medications or dietary sup-
plements were also excluded. This study was conducted 
according to the Declaration of Helsinki. All procedures 
involving human participants were approved by the eth-
ics committee of the Tehran University of Medical Sci-
ences (IR.TUMS.VCR.REC.1398.142). Written informed 
consent was obtained from all participants.

The screening of potential participants took place 
between January 2019 and December 2020. We screened 
a total of 410 overweight and obese women. Of these, 
only 333 qualified for inclusion, as 77 individuals were 
excluded for reasons such as age (n = 7), pregnancy or 
lactation (n = 10), recent changes in diet (n = 8), and other 
chronic diseases (n = 29). Furthermore, subjects with 
missing data for biomarkers or covariates (n = 10), those 
who did not answer more than 70 questions (n = 3) on the 
FFQ, and those who reported an overall total daily energy 
intake outside the range of 800–4200  kcal (n = 10) were 
not included in the statistical analysis.

Anthropometric assessment and body composition
Anthropometrics and body composition measurements 
took place between 8–9 am after 12 h of overnight fast-
ing. Participants were asked to avoid any strenuous phys-
ical activity for 72 h before the assessment. Furthermore, 
30 min before the test, participants were asked to urinate 
(void) completely and avoid consuming water. Weight 

was measured using a digital scale (Seca 711; Seca, 
Hamburg, Germany) to the nearest 0.1  kg. Height was 
measured using a wall-mounted stadiometer (Seca 711; 
Seca, Hamburg, Germany). Waist circumference (WC) 
and hip circumference (HC) were determined at both 
the smallest and largest girths using standard anthro-
pometric guidelines [39]. The waist-to-hip ratio (WHR) 
was obtained by dividing the waist circumference by the 
hip circumference. As a final point, we calculated BMI 
by dividing weight (kg) by the square of height (meters) 
[BMI = weight/height (kg/m2)]. Obesity and overweight 
were defined as BMI 30–40 kg/m2 and BMI 25–29.9 kg/
m2, respectively. A multi-frequency bioelectrical imped-
ance analyzer, InBody 770 scanner (test–re-test reliabil-
ity: 0.980) according to manufacturer guidelines.

Biochemical assessments
Blood samples (10  mL) were taken following an over-
night fast (12  h). The serum was separated by centri-
fuging and stored at a temperature of − 80  °C until the 
analysis was carried out. All measurements were taken 
at the nutrition laboratory of TUMS. Commercial kits 
(Pars Azmoon, Iran) were used to measure lipid profile 
and glucose. The enzyme-linked immunosorbent assay 
(ELISA) method (Human insulin ELISA kit, DRG Phar-
maceuticals, GmbH, USA) was used to measure serum 
insulin concentrations.

Castelli risk indices I and II calculation
Castelli risk indices I (CRI-I) and Castelli risk indices II 
(CRI- II) were calculated by following the formula (TC/
HDL-C) and (LDL-C / HDL-C), respectively [40].

Blood pressure measurement
Blood pressure was measured using an automated BP 
monitor (Omron) after ten minutes of sitting. Two meas-
urements at 1-min intervals were collected and averaged.

Dietary measurements
To assess participants’ dietary intake and nutritional sta-
tus over the past year, a semi-quantitative food frequency 
questionnaire (semi-FFQ) was used. This process was 
designed based on the Willett study that included 147 
food items and standard serving sizes for each nutrient 
[41]. The reliability and validity of this FFQ from com-
mon Iranian foods have been previously described [42]. 
Household measures were used to convert the size of 
food consumption into grams [43]. Trained nutritionists 
filled out questionnaires. To find out the participants’ 
daily intake of each food, the Nutritionist 4 software was 
used.
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Calculation of DII and DIL
The FII was defined as The area under the curve, repre-
senting the food insulin response in a portion of 1000 kJ 
(239  kcal) of energy over 2  h divided by the area under 
the reference food curve over 2 h with the same amount 
of energy [18]. To determine the insulin index of each 
food in the semi-FFQ, we used the methods outlined in 
Bell’s thesis [44]. For some foods that were exclusively in 
our questionnaire, we used the insulin index of similar 
foods described by the Bell study [44]. The insulin load 
of each food was first calculated separately by the follow-
ing formula: Insulin index of each food × energy content 
of food/1  g × amount of food consumption (g/d). Insu-
lin loads of the foods consumed in one day were added 
together, and the DIL was calculated. DII was obtained 
by dividing DIL by total energy consumption.

Genotyping
To determine the different genotypes of CAV-1 poly-
morphisms, DNA was extracted from serum, and then 
Polymerase Chain Reaction (PCR-R) Restriction Frag-
ment Length Polymorphism of PCR products (RFLP) 
technique was used to examine cav 1 polymorphisms. 
Contrast primers were used in PCR: F:3′AGT ATT GAC 
CTG ATT TGC CATG5′R:5′GTC TTC TGG AAA AAG 
CAC ATGA-3′0.1 μl of extracted DNA, 1 μl of Forward-
ing primers, 1  μl Revers primers, 7  μl of distilled water 
and 10 μl of Taq DNA polymerase Master Mix, making 
a total of 20 μl. PCR reactions in this solution were per-
formed as follows: PCR was utilized to denature DNA 
templates for 3  min at 40 cycles, including one-minute 
denaturing at 94  °C, one-minute annealing at 42–50  °C, 
and angulation at 72 °C for two minutes. To separate the 
amplified DNA, we first use the Hin 1II(Nlalll) restriction 
enzyme at 37 °C overnight to digest it and then separate 
it by electrophoresis on an agarose gel (2%). The geno-
types identified from the CAV-1 rs 3,807,992 variant are: 
uncut homozygous AA (213 bp), cut heterozygous AG (3 
bands: 118 and 95 and 213 bp), and cut homozygous GG 
(2 bands: 118 and 95 bp) [45].

Physical activity assessment
The International Physical Activity Questionnaire (IPAC) 
was used to assess physical activity levels. This question-
naire evaluates the number of activities in leisure, house-
work, work, physical activity related to transportation, 
and sports in the last seven days. Using the data obtained 
from this questionnaire, we established metabolic equiv-
alents (METS) and subsequently categorized the level of 
physical activity of the participants with the following 
classification: low, below 600 MET/h per week; moderate, 
600 to 3000 MET/h per week; and high, more than 3000 
MET/h per week [46].

Assessment of other variables
Economic status, a key covariate in our study, is assessed 
through a multi-faceted approach. This approach 
encompasses income levels, employment status, and 
educational attainment, reflecting a broad spectrum 
of socio-economic factors. The demographic informa-
tion was gathered through a structured demographic 
questionnaire designed to systematically acquire per-
tinent personal details. Economic status, a focal point 
of the study, was meticulously assessed through inquir-
ies encompassing annual income and property holdings. 
Participants were asked to disclose their employment 
status, educational attainment, marital status, smoking 
habits, medication history, and any previous experiences 
with significant trauma. This comprehensive approach 
ensured a thorough exploration of the participants’ socio-
economic and personal backgrounds, contributing to the 
robustness of the collected data. By incorporating these 
varied aspects, our study offers a more nuanced analysis 
of how economic status intersects with dietary choices 
and metabolic health.

Statistical analysis
The data were analyzed using IBM SPSS version 23 soft-
ware. We examined the normality of the data using the 
Kolmogorov–Smirnov test. Comparison between DII 
and DIL tertiles and different genotypes of the caveolin 
gene were evaluated using one-way analysis of variance 
(ANOVA) and analysis of covariance (ANCOVA). For the 
relationships, p < 0.05 was considered statistically signifi-
cant. The general linear model (GLM) was employed to 
investigate the interaction between caveolin gene poly-
morphisms, DII and DIL. GG was considered as a refer-
ence. The genotypes were recorded and given GG, code 
0, AG, code 1, and AA code 2. In Model 1. Interaction 
analysis data were adjusted for age, BMI, and physical 
activity, and in model 2, economic status, education level, 
marital status, and job were added. To detect the inter-
action significance, P < 0.1 was considered. The exact test 
was used for the Hardy–Weinberg Equilibrium (HWE) 
The Hardy–Weinberg equilibrium and comparison of 
categorical variables were assessed with the c2 test.

The selection of confounding variables was driven by 
a thoughtful consideration of factors that could influ-
ence the relationships under investigation. Recogniz-
ing the complexity of the interactions between dietary 
indices, genetic variants, and cardiometabolic risk fac-
tors, we specifically chose confounding variables that are 
established contributors to metabolic health [47, 48]. The 
age and BMI were included as essential covariates given 
their well-documented associations with both dietary 
patterns and cardiometabolic outcomes [49]. The total 
energy intake, a key determinant of nutritional status, 
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was considered to control for variations in overall dietary 
consumption [50]. Additionally, physical activity was 
incorporated as a confounding variable, acknowledging 
its impact on metabolic health and potential to confound 
the observed associations [51]. This selection aimed to 
enhance the precision of our findings by accounting for 
the potential influence of these variables on the relation-
ships of interest.

Results
Associations between DII and anthropometric indices, 
body composition, blood pressure, biochemical factors, 
and lipid ratios
Participants were divided into three groups based on 
DII scores: low, medium, and high. Marginally dif-
ference was indicated for HDL (P = 0.062), and CRI-I 
(P = 0.073). Those in the first tertile had higher HDL and 
lower CRI-I than those in the third tertile (48.27 ± 9.51 
vs. 44.48 ± 10.65) and (3.88 ± 0.85 vs. 4.52 ± 2.24), respec-
tively. After adjusting for age, BMI, total energy expendi-
ture, and physical activity, a significant difference was 
observed in the job status of the participants (P = 0.031). 
(Table 1).

Associations between DIL and anthropometric indices, 
body composition, blood pressure, biochemical factors, 
physical activity, and lipid ratios:
Participants were divided into three groups based on DIL 
scores: low, medium, and high. A significant difference 
was observed in physical activity (P = 0.032). After adjust-
ing for age, BMI, total energy expenditure, and physical 
activity, a significant difference was observed for dias-
tolic blood pressure (DBP) (P = 0.014). Individuals in the 
first tertile had higher DBP than those in the third tertile 
(79.22 ± 9.2 vs. 77.10 ± 9.21) (Table 1).

Associations between anthropometric indices, body 
composition, blood pressure, biochemical factors, and lipid 
ratios with rs3807992 genotypes
In Table  2, the target population was divided based on 
different genotypes of the caveolin gene, which include 
GG (n = 88), AG (n = 78), and AA (n = 167). There was a 
significant difference between the three genotypes. Par-
ticipants who carried AA in comparison with other geno-
types had a higher height, CRI-I, and FFM (P < 0.05) in 
both the crude and model I (adjusted for age, BMI, total 
energy intake, and physical activity). In addition, insulin 
concentrations were higher in GG carriers compared to 
others (P = 0.042). Moreover, after adjusting for potential 
confounders, a significant link was observed between the 
genotypes and SMM (P = 0.023).

Associations between dietary intake components and DII 
tertile
As shown in Table 3, except for total fiber, glucose, galac-
tose, fructose, sodium, calcium, and vitamin K, all of the 
other variables had significant associations among DII 
groups (P < 0.05). After adjusting for total energy, those 
who had higher DII also had greater intake of carbohy-
drates, SFA, iron, potassium, magnesium, phosphorus, 
vitamins E, C, B1, B6, and B9; while the intake of total fat, 
monounsaturated fatty acid (MUFA), polyunsaturated 
fatty acid (PUFA), vitamin A, D, B12, and caffeine was 
lower in compared with other tertiles (Table 3).

Associations between dietary intake components and DIL 
tertile
After adjusting for total energy intake, a significant asso-
ciation was observed between DIL and intake of carbo-
hydrates, total fat, MUFA, PUFA, vitamin B1, K, E, zinc, 
magnesium, phosphorus, and iron (P < 0.05). This was 
positively associated with the intake of these compo-
nents, wherein the individuals with a higher index of DIL 
had a higher intake (Table 3).

Interactions between DII and caveolin rs3807992 
genotypes on Metabolic components
An Allele carrier showed significant interactions with 
HDL and CRI-I. Participants who scored higher for DII 
had lower HDL concentrations than the reference popu-
lation (GG) (genotype AA (β = −  2.95, 95% CI (−  5.02, 
− 0.87), P = 0.006) and genotype AG (β = − 2.70, 95% CI 
(− 4.96, − 0.44), P = 0.019)). CRI-I indicated a significant 
interaction with DII in AA and AG genotypes, where the 
AA genotype (β = 0.67, 95% CI (0.34, 1.0), P ≤ 0.001), as 
well as the AG genotype (β = 0.41, 95% CI (0.05, 0.77), 
P = 0.024), had a high CRI-I index. In participants with 
AA genotype and those with higher DII score, significant 
interactions were observed in body mass (β = 1.86, 95% 
CI (− 0.24, 3.97), P = 0.078), systolic blood pressure (SBP) 
(β = 2.9, 95% CI (0.29, 5.52), P = 0.030), diastolic blood 
pressure (DBP) (β = 2.0, 95% CI (0.19, 3.82), P = 0.031), 
CRI-II (β = 0.14, 95% CI (0.01, 0.26), P = 0.030), FFM 
(β = 1.10, 95% CI (0.04, 2.17), P = 0.042), SMM (β = 0.66, 
95% CI (0.03, 1.30), P = 0.040) and total cholesterol 
(β = 6.95, 95% CI (− 0.47, 4.37), P = 0.067). There was also 
a significant interaction for insulin in the AG genotype, 
β = − 0.07, 95% CI (− 0.14, − 0.03), and P = 0.042 (Table 4 
and Fig. 1).

Interactions between DIL and caveolin rs3807992 
genotypes on metabolic components
Those with higher DIL adherence and AA genotype 
had higher body mass (β = 2.37, 95% CI (0.19, 4.55), 
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Table 2 Characteristics of the study population across rs 3,807,992 genotypes

Variables Genotypes P-value P-value*

GG(n = 88) AG(n = 78) AA(n = 167)

Demographic variables

 Age(years) 37.45 ± 9.01 35.58 ± 9.47 36.66 ± 9.25 0.31 0.37**
Anthropometric variables

 Body mass (kg) 79.66 ± 11.66 81.08 ± 12.07 81.85 ± 11.73 0.31 0.38

 Height(cm) 160.65 ± 6.14 161.03 ± 5.55 162.30 ± 5.67 0.06 0.04

 WC(cm) 98.70 ± 9.70 99.69 ± 10.43 99.49 ± 9.43 0.69 0.84

 BMI(kg/m2) 31.04 ± 4.28 31.18 ± 3.99 31.02 ± 3.98 0.95 0.94**
 WHR(cm) 1.44 ± 6.81 0.94 ± 0.06 0.94 ± 0.04 0.62 0.69

Body composition

 FFM(kg) 46.04 ± 5.72 46.15 ± 5.31 47.60 ± 6.04 0.07 0.01

 SMM(kg) 25.24 ± 3.41 25.31 ± 3.15 26.13 ± 3.61 0.08 0.01

 BFM(kg) 34.41 ± 8.65 35.16 ± 8.93 34.85 ± 8.92 0.79 0.85

Blood pressure

 SBP(mmHg) 109.40 ± 14.82 111.54 ± 13.26 114.16 ± 15.92 0.09 0.12

 DBP(mmHg) 76.88 ± 11.02 77.68 ± 9.24 78.91 ± 10.63 0.42 0.87

Biochemical parameters

 FBS(mg/dl) 87.30 ± 8.95 86.94 ± 7.22 88.48 ± 12.07 0.64 0.45

 TC(mg/dl) 186.88 ± 38.07 179.21 ± 32.62 185.80 ± 36.36 0.46 0.64

 TG(mg/dl) 121.91 ± 62.26 101.53 ± 49.64 122.98 ± 61.94 0.09 0.11

 HDL(mg/dl) 49.51 ± 10.82 44.00 ± 9.82 44.41 ± 10.41 0.00 0.00

 LDL(mg/dl) 98.26 ± 26.19 92.31 ± 20.46 92.71 ± 23.14 0.20 0.25

Insulin (mIU/ml) 1.25 ± 0.23 1.16 ± 0.24 1.22 ± 0.24 0.04 0.03

Lipid ratios

 CRI-I 3.92 ± 0.99 4.34 ± 1.33 4.53 ± 2.11 0.02 0.04

 CRI-2 2.04 ± 0.56 2.21 ± 0.59 2.20 ± 0.63 0.08 0.09

Qualitative variables

 Marital status

  Single 44 (46.8%) 22 (23.4%) 28 (29.8%) 0.60 0.57

  Married 134 (52.1%) 59 (23.0%) 64 (24.9%)

 Physical activity

  Low 57 (48.7%) 25(21.4%) 35(29.9%) 0.30 0.53**
  Moderate 58 (52.7%) 19 (17.3%) 33 (30.0%)

  Intensive 2 (20.0%) 4 (40.0%) 4 (40.0%)

 Housing situation

  No home ownership 118 (52.2%) 56 (24.8%) 52 (23.0%) 0.21 0.35

  Home ownership 71 (48.0%) 31 (20.9%) 46 (31.1%)

 Family number

  Less than four 160 (51.3%) 71 (22.8%) 81 (26.0%) 0.64 0.65

  More than or equal to four 27 (48.2%) 16 (28.6%) 13 (23.2%)

 Smoking

  Yes 16 (59.3%) 5 (18.5%) 6 (22.2%( 0.63 0.26

  No 175 (49%) 83 (23.6%) 94 (26.7%)

 Education

  Illiterate 1 (25.0%) 0 (0.0%) 3 (75.0%) 0.15 0.88

  Diploma 25 (56.8%) 11 (25.0%) 8 (18.2%)

  Bachelor and higher 152 (50.2%) 70 (23.1%) 81 (26.7%)
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P = 0.033), FFM (β = 1.29, 95% CI (0.9, 2.39), P = 0.022), 
and SMM (β = 0.76, 95% CI (0.1, 1.41), P = 0.024). In addi-
tion, we observed interactions for WHR (β = 0.01, 95% CI 
(0.0, 0.02), P = 0.065), WC (β = 2.0, 95% CI (0.13, 3.86), 
P = 0.036), TG (β = 0.1, 95% CI (0.0, 0.20), P = 0.047) 
CRI-I (β = 0.36, 95% CI (0.01, 0.70), P = 0.029)and BFM 
(β = 1.41, 95% CI (−  0.11, 2.94), P = 0.069) in individu-
als with AA genotype, as well as for HDL in those with 
AG (β = − 2.21, 95% CI (− 4.52, 0.10), P = 0.061) and AA 
(β = −  2.38, 95% CI (−  4.52, −  0.24), P = 0.029) (Table  4 
and Fig. 2).

Discussion
To our knowledge, this is the first study to investigate the 
interactions of caveolin gene polymorphisms with DII 
and DIL. Our results indicate that overweight and obese 
women with elevated DII had lower HDL and higher 
CRI-I. Moreover, those with higher DIL scores differed 
significantly in physical activity and DBP. An interaction 
was observed between DII and caveolin gene polymor-
phisms on HDL and CRI variables, while another inter-
action was detected between DII and caveolin on SBP, 
DBP, FFM, SMM, TC, and Insulin. DIL and rs 3,807,792 
CAV-1 polymorphism had a significant interaction on 
BM, FFM, and SMM variables. In addition, an interaction 
was observed on WHR, WC, TG, CRI -I, and BFM.

The DII and DIL have recently received substantial 
attention as these indexes reflect the insulin response 
associated with different food groups [52, 53]. In this 
study, participants with higher DII showed lower HDL 
and higher CRI-I. Nimptsch et al. demonstrated that DII 

and DIL were not associated with glycemic control and 
inflammatory markers. At the same time, there were 
significant positive and negative relationships between 
TG and HDL with these dietary indexes, respectively. 
These relationships intensified with increasing body fat 
[54]. Also, DII and DIL showed a significant negative 
relationship with HDL among obese people [54]. Given 
that CRI-I is obtained from the ratio of TC to HDL, we 
can justify a significant increase in CRI-I as a result of a 
decrease in HDL.

We also found that individuals who were in the third 
DIL score tertile had significantly lower DBP than those 
in the first tertile (77.10 ± 9.21 vs. 79.22 ± 9.2). This may 
be related to differences in protein intake (Table  3.), 
as those who had a higher DIL score (third tertile) also 
reported a higher protein intake (111.91 ± 23.99  g/d vs. 
64.65 ± 16.24  g/d). Based on the results of observational 
studies, high protein consumption is inversely related to 
blood pressure [55]. Moreover, the previous interven-
tional studies showed that higher protein consumption is 
associated with a decrease in SBP and DBP [56, 57]. The 
mechanisms of action are likely related to increases in the 
intake of arginine (which is a precursor to the vasodilator 
nitric oxide), biologically active peptides like angiotensin-
converting enzyme inhibitors, and foods that are corre-
lated with higher protein consumption as well as lower 
blood pressure, such as isoflavonoids and soy protein 
[58].

Based on the previous studies, DII and DIL are asso-
ciated with anthropometric and metabolic indices. 
The DONALD cohort (Dortmund Nutritional and 

Values are mean ±SD for crude model and mean± SE for adjusted model and qualitative variables are presented as n (%)

The one-way analysis of variance (ANOVA) and the analysis of covariance (ANCOVA) was used for comparison of continuous tertiles of DII and tertiles of DIL, and chi-
square for qualitative variables

P-value* obtained from ANCOVA test after adjusted for age, BMI, total energy intake, and physical activity

Model1 adjusted by age, BMI, total energy intake, physical activity

P-value < 0.05 was considered significant

**The collinear variable from the GLM (confounder) was not entered
a LSD test (post hoc), mean the difference between AA and GG
b LSD test (post hoc), mean the difference between AG and GG
c LSD test (post hoc), mean the difference between AG and AA

Table 2 (continued)

Variables Genotypes P-value P-value*

GG(n = 88) AG(n = 78) AA(n = 167)

 Economic status

  Poor 14 (40.0%) 6 (17.1%) 15 (42.9%) 0.21 0.21

  Moderate 82 (52.9%) 36 (23.2%) 37 (23.9%)

  Good 75 (50.3%) 37 (24.8%) 37 (24.8%)

 Job

  Unemployed 120 (50.6%) 52 (21.9%) 65 (27.4%) 0.70 0.75

  Employed 68 (49.6%) 35 (25.5%) 34 (24.8%)
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Table 4 The interaction of rs 3,807,992 genotypes and DII and DIL on metabolic components

Variables Model Genotype DII DIL

β (95%) CI P-value* β (95%) CI P-value*

Body mass (kg) Crude AA 0.23 − 1.63, 2.10 0.805 3.03 0.08, 5.97 0.044

AG − 1.33 − 3.31, 0.65 0.186 1.05 − 2.10, 4.19 0.514

Model 1 AA 0.79 − 1.19, 2.77 0.434 4.14 1.04, 7.25 0.009

AG − 0.75 − 2.94, 1.43 0.500 2.28 − 1.11, 5.66 0.189

Model 2 AA 1.86 − 0.24, 3.97 0.078 2.37 0.19, 4.55 0.033

AG 0.39 − 1.90, 2.68 0.739 1.04 − 1.30, 3.38 0.384

SBP (mmHg) Crude AA 2.13 − 0.21, 4.47 0.074 1.55 − 2.12, 5.23 0.408

AG 0.84 − 1.58, 3.26 0.498 − 0.33 − 4.22, 3.55 0.866

Model 1 AA 2.43 − 0.05, 4.91 0.055 2.62 1.28, 6.51 0.188

AG 0.25 − 2.44, 2.93 0.858 − 0.40 − 4.62, 3.82 0.852

Model 2 AA 2.90 0.29, 5.52 0.030 0.91 − 1.86, 3.68 0.519

AG 1.04 − 1.77, 3.85 0.460 − 0.82 − 3.72, 2.08 0.579

DBP (mmHg) Crude AA 1.51 − 0.18, 3.19 0.079 0.61 − 2.04, 3.26 0.652

AG 1.17 − 0.57, 2.91 0.187 0.09 − 2.71, 2.88 0.952

Model 1 AA 1.31 − 0.46, 3.08 0.148 0.82 − 1.97, 3.61 0.564

AG 0.67 − 1.24, 2.59 0.490 − 0.12 − 3.14, 2.91 0.940

Model 2 AA 2.00 0.19, 3.82 0.031 − 0.70 − 2.63, 1.23 0.478

AG 1.53 − 0.42, 3.48 0.125 − 1.03 − 3.05, 0.99 0.318

BMI (kg/m2) Crude AA − 0.09 − 0.73, 0.56 0.786 0.41 − 0.60, 1.43 0.425

AG − 0.37 − 1.05, 0.31 0.286 0.01 − 1.07, 1.10 0.981

Model 1 AA 0.06 − 0.61, 0.73 0.858 0.86 − 0.19, 1.91 0.110

AG − 0.23 − 0.96, 0.51 0.544 0.48 − 0.67, 1.63 0.416

Model 2 AA 0.36 − 0.36, 1.08 0.327 0.44 − 0.31, 1.187 0.254

AG 0.10 − 0.68, 0.89 0.796 0.26 − 0.54, 1.064 0.523

WHR (cm) Crude AA − 0.14 − 1.09, 0.80 0.764 − 0.84 − 2.33, 0.65 0.268

AG − 0.15 − 1.15, 0.85 0.768 − 0.87 − 2.46, 0.72 0.284

Model 1 AA 0.00 − 0.01, 0.01 0.660 0.01 − 0.01, 0.02 0.209

AG 0.00 − 0.01, 0.01 0.538 0.00 − 0.01, 0.02 0.618

Model 2 AA 0.01 0.00, 0.02 0.195 0.01 0.00, 0.02 0.065

AG 0.00 − 0.01, 0.01 0.916 0.00 − 0.01, 0.02 0.414

WC (cm) Crude AA − 0.14 − 1.09, 0.80 0.761 1.70 − 0.82, 4.23 0.186

AG − 0.15 − 1.15, 0.85 0.772 0.37 − 2.33, 3.06 0.790

Model 1 AA 0.55 − 1.13, 2.23 0.519 2.88 0.24, 5.52 0.031

AG − 0.44 − 2.29, 1.41 0.644 1.76 − 1.12, 4.64 0.231

Model 2 AA 1.51 − 0.29, 3.31 0.099 2.00 0.13, 3.86 0.036

AG 0.40 − 1.55, 2.36 0.685 1.13 − 0.87, 3.13 0.267

BFM (kg) Crude AA 0.00 − 1.31, 1.31 0.996 0.61 − 2.04, 3.26 0.270

AG − 0.62 − 2.01, 0.77 0.379 0.09 − 2.71, 2.88 0.730

Model 1 AA 0.47 − 0.89, 1.83 0.499 2.07 − 0.07, 4.21 0.058

AG 0.08 − 1.42, 1.58 0.920 1.66 − 0.67, 4.00 0.163

Model 2 AA 1.06 − 0.41, 2.54 0.157 1.41 − 0.11, 2.94 0.069

AG 0.67 − 0.93, 2.27 0.411 1.19 − 0.45, 2.82 0.156

FFM (kg) Crude AA 0.47 − 0.45, 1.39 0.319 2.28 0.84, 3.71 0.002

AG − 0.38 − 1.36, 0.59 0.443 1.22 − 0.32, 2.75 0.110

Model 1 AA 0.59 − 0.41, 1.60 0.248 2.55 0.98,4.11 0.001

AG − 0.43 − 1.54, 0.67 0.443 1.26 − 0.45, 2.97 0.149

Model 2 AA 1.10 0.04, 2.17 0.042 1.29 0.19, 2.39 0.022

AG 0.16 − 0.99, 1.32 0.785 0.35 − 0.83, 1.53 0.560
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Table 4 (continued)

Variables Model Genotype DII DIL

β (95%) CI P-value* β (95%) CI P-value*

SMM (kg) Crude AA 0.27 − 0.27, 0.82 0.328 1.32 0.46, 2.17 0.003

AG − 0.21 − 0.79, 0.37 0.488 0.72 − 0.19, 1.63 0.122

Model 1 AA 0.35 − 0.25, 0.95 0.254 1.48 0.55, 2.41 0.002

AG − 0.24 − 0.90, 0.42 0.476 0.74 − 0.28, 1.76 0.156

Model 2 AA 0.66 0.03, 1.30 0.040 0.76 0.10, 1.41 0.024

AG 0.12 − 0.57, 0.81 0.731 0.21 − 0.49, 0.92 0.553

FBS (mg/dl) Crude AA 0.64 − 1.18, 2.45 0.492 0.82 − 2.08, 3.72 0.581

AG − 0.31 − 2.23, 1.60 0.748 − 0.61 − 3.70, 2.49 0.701

Model 1 AA 0.66 − 1.27, 2.59 0.501 0.72 − 2.36, 3.79 0.649

AG − 0.19 − 2.32, 1.93 0.859 − 0.56 − 3.96, 2.85 0.749

Model 2 AA 0.68 − 1.38, 2.75 0.516 0.50 − 1.62, 2.62 0.643

AG 0.22 − 2.03, 2.47 0.847 0.16 − 2.13, 2.45 0.890

Cholestrol(mg/dl) Crude AA 0.64 − 1.18, 2.45 0.865 − 4.30 − 14.84, 6.23 0.424

AG − 0.31 − 2.23, 1.60 0.341 − 6.74 − 17.98, 4.51 0.240

Model 1 AA 3.63 − 3.42, 10.68 0.313 0.72 − 2.36, 3.79 0.414

AG 0.86 − 6.91, 8.62 0.829 − 0.56 − 3.96, 2.85 0.392

Model 2 AA 6.95 − 0.47, 14.37 0.067 − 1.76 − 9.38, 5.87 0.652

AG 0.22 − 2.03, 2.47 0.396 − 4.31 − 12.55, 3.92 0.305

TG (mg/dl) Crude AA 0.03 − 0.05, 0.12 0.416 0.03 − 0.10, 0.16 0.635

AG − 0.01 − 0.10, 0.07 0.784 − 0.01 − 0.15, 0.13 0.923

Model 1 AA 0.06 − 0.03, 0.14 0.203 0.06 − 0.08, 0.20 0.370

AG 0.03 − 0.07, 0.13 0.540 0.05 − 0.10, 0.20 0.531

Model 2 AA 0.07 − 0.02, 0.16 0.147 0.10 0.00, 0.20 0.047

AG 0.03 − 0.07, 0.14 0.512 0.07 − 0.03, 0.18 0.171

HDL (mg/dl) Crude AA − 2.41 − 4.28, − 0.54 0.011 − 1.94 − 4.94, 1.06 0.204

AG − 2.31 − 4.27, − 0.34 0.021 − 1.97 − 5.18, 1.23 0.227

Model 1 AA − 2.46 − 4.37, − 0.55 0.013 − 1.91 − 4.99, 1.17 0.224

AG − 2.67 − 4.77, − 0.56 0.012 − 2.26 − 5.66, 1.15 0.194

Model 2 AA − 2.95 − 5.02, − 0.87 0.006 − 2.38 − 4.52, − 0.24 0.029

AG − 2.70 − 4.96, − 0.44 0.019 − 2.21 − 4.52, 0.10 0.061

LDL (mg/dl) Crude AA − 2.49 − 6.87, 1.90 0.266 − 1.42 − 8.42, 5.57 0.691

AG − 2.70 − 7.32, 1.91 0.251 − 2.06 − 9.52, 5.41 0.589

Model 1 AA − 2.67 − 7.31, 1.97 0.260 − 2.18 − 9.58, 5.21 0.563

AG − 2.13 − 7.24, 2.99 0.415 − 1.47 − 9.66, 6.71 0.724

Model 2 AA − 1.52 − 6.30, 3.25 0.532 − 2.55 − 10.04, 4.94 0.505

AG − 1.33 − 6.52, 3.87 0.617 − 2.01 − 10.36, 6.34 0.637

CRI-I Crude AA 0.48 0.21, 0.75 0.001 0.14 − 0.31, 0.58 0.553

AG 0.29 0.00, 0.58 0.051 0.01 − 0.46, 0.49 0.957

Model 1 AA 0.52 0.22, 0.82 0.001 0.14 − 0.35, 0.63 0.584

AG 0.36 0.03, 0.70 0.032 0.07 − 0.48, 0.61 0.806

Model 2 AA 0.67 0.34, 1.00  < 0.001 0.36 0.01, 0.70 0.042

AG 0.41 0.05, 0.77 0.024 0.13 − 0.24, 0.51 0.482
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Anthropometric Longitudinally Designed Study) meas-
ured the relationship between food intake recorded 
during adolescence and anthropometric indices in 
adulthood. This investigation found that higher DII 
and DIL during adolescence are associated with higher 
body fat percentage in adulthood [59]. However, no 
such relationship was detected with BMI, hyperinsu-
linemia, and insulin resistance [59]. In a cohort study 
with a population of 927 males and females, higher DII 
was associated with an elevated risk of insulin resist-
ance during a three-year follow-up [15]. High DII 
stimulates insulin secretion in various ways, such as 
inhibiting fat oxidation, facilitating carbohydrate oxi-
dation, increasing fat storage, and promoting obesity 
[60]. Studies have shown that diets that reduce insulin 
secretion can effectively control chronic diseases and 
improve body composition [15, 61]. In a study by Sad-
eghi et  al., DII and DIL were associated with a higher 
risk of metabolic syndrome in women, while no associ-
ation was observed in men [16]. In agreement with this 
study, Shoaa et  al. concluded that DII was positively 
associated with abdominal obesity in women [14]. 
The current study was conducted on women only, and 
consequently, body composition and appetite may be 
attributed to gonadal steroids [62]. Indeed, changes in 
estrogen concentrations may alter hypothalamic path-
ways, subsequently affecting the production of various 
hormones that affect appetite [63].

According to our results, the consumption of macro-
nutrients and micronutrients was significantly and posi-
tively associated with DII and DIL scores. Participants in 
our study with greater DII and DIL scores had a higher 
consumption of carbohydrates, protein, fat, vitamin B1, 
vitamin B6, magnesium, iron, etc., which was similar to 
the study of Sadeghi et al. [16]. Carbohydrates are well-
established as the main factor in insulin secretion. How-
ever, evidence also supports the effects of proteins and 
fats in this process [17–19]. Indeed, these 3 macronutri-
ents were significantly greater in those who had higher 
DII and DIL scores. Some minerals and vitamins, such as 
iron, magnesium, and phosphorus, which were also sig-
nificant in our results, are also involved in insulin signal-
ing [64]. Vitamin D plays a role in insulin secretion and 
signaling [65], but participants who had a higher DII 
score had a lower intake of vitamin D, which is probably 
due to the limited food sources of this vitamin in Iran 
[66].

The pathogenesis of the metabolic syndrome and 
its components may be influenced by interactions 
between genes and nutrients [67]. In the present study, 
those with the AA genotype had a significantly greater 
height, FFM, SMM, and CRI-I and lower plasma insu-
lin concentrations than the population with the refer-
ence genotype (GG). Recently, certain genetic strains 
of CAV-1 have been associated with insulin resistance 
and hypertriglyceridemia [68]. Increased expression of 

Table 4 (continued)

Variables Model Genotype DII DIL

β (95%) CI P-value* β (95%) CI P-value*

CRI− II Crude AA 0.08 − 0.03, 0.19 0.133 0.10 − 0.07, 0.27 0.248

AG 0.06 − 0.05, 0.17 0.291 0.07 − 0.11, 0.25 0.442

Model 1 AA 0.08 − 0.03, 0.20 0.170 0.09 − 0.10, 0.27 0.370

AG 0.09 − 0.04, 0.22 0.101 0.10 − 0.11, 0.30 0.362

Model 2 AA 0.14 0.01, 0.26 0.030 0.04 − 0.09, 0.16 0.561

AG 0.10 − 0.03, 0.24 0.137 − 0.01 − 0.14, 0.13 0.917

Insulin (mIU/ml) Crude AA − 0.01 − 0.07, 0.04 0.616 0.01 − 0.08, 0.11 0.756

AG − 0.05 − 0.11, 0.01 0.076 − 0.04 − 0.12, 0.05 0.427

Model 1 AA − 0.03 − 0.08, 0.03 0.326 − 0.01 − 0.10, 0.08 0.835

AG − 0.06 − 0.12, 0.00 0.051 − 0.06 − 0.15, 0.04 0.241

Model 2 AA − 0.04 − 0.10, 0.02 0.229 − 0.03 − 0.10, 0.04 0.459

AG − 0.07 − 0.14, − 0.03 0.042 − 0.06 − 0.13, 0.01 0.115

Model 1: adjusted for age, BMI, physical activity, and total energy intake

Model 2: MODEL 1+ adjusted for economic status, education level, marital status, Housing situation, number of family members, thyroid status, smoking, and job

GG genotype has 0 risk allele, AG genotype has one, and AA genotype has two risk allele

GG genotype is considered as a reference group

*Significant level in the crude model and after adjustment by Model 1 and 2

For interactions, p < 0.1 was considered significant
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CAV-1 is linked to the minor allele A [69], and reduced 
expression of CAV-1 can influence aldosterone and 
mineralocorticoid receptor signaling in various path-
ways connected to glycemia and dyslipidemia [70, 71]. 
Because of the key role of CAV-1 in pancreatic beta 
cells, it is well established that CAV-1 is involved in 

energy metabolism disorders such as insulin resistance 
and hypertriglyceridemia [72].

A significant interaction between HDL and CRI-I 
variables was observed in the present study between 
the rs 3,807,992 variant of the caveolin-1 gene and DII. 
For DIL, the interaction was significant between body 

Fig. 1 Interaction between Cav-1 genotype with dietary insulin index (DII) on: A Body Mass, B Systolic Blood Pressure(SBP), C Diastolic Blood 
Pressure(DBP), D Fat Free Mass(FFM), E Skeletal Muscle Mass(SMM), F Total Cholesterol (TC), G High-Density Lipoprotein (HDL), H CRI-I, I CRI-II, J 
insulin
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composition variables such as body mass, SMM, and 
FFM. Abaj et al. found that overweight and obese women 
who carried the A allele had higher BMI, and lower TC, 
HDL, and LDL. The significant interactions we identified 
between DIL and the rs3807992 CAV-1 polymorphism 
about body composition variables, including BM, FFM, 
SMM, WHR, WC, TG, and BFM, underscore the impor-
tance of considering genetic influences when assessing 
the impact of dietary factors on body composition. Our 
findings highlight a significant interaction between die-
tary inflammation, as quantified by DII, and CAV-1 in 
modulating metabolic health. This interaction sheds light 
on the complex mechanisms underpinning metabolic 
disorders in overweight and obese women. The study’s 
implications extend to clinical practice, suggesting that 
dietary interventions tailored to individual genetic pro-
files may enhance metabolic outcomes. Furthermore, 
our research paves the way for future studies exploring 
the gene-diet interface in metabolic health. In addition, 
those with higher adherence to a healthy diet pattern 
had higher HDL and lower hs-CRP concentrations [67], 

which is consistent with the results of our investigation. 
In another study by Abaj et al., it was found that consum-
ing more PUFAs could weaken the association between 
rs 3,807,992 and metabolic syndrome while consuming 
saturated fatty acids reinforces this association [45]. Diet 
and nutrients can alter metabolic biomarkers by interact-
ing with caveola-related cellular signaling [73]. Increas-
ing the expression of CAV-1 by reducing the production 
of nitric oxide (NO) leads to long-term exposure to glu-
cose, which plays an important role in strengthening the 
inflammatory pathways [74]. Diets with a lower inflam-
matory load can transport CAV-1 from the caveola to the 
cytoplasm and impede the inhibitory effects of CAV-1 
on endothelial nitric oxide synthase (eNOS) and HDL 
receptors [75]. Sodium and potassium can also affect the 
binding of eNOS to the caveola membrane, so changing 
these two nutrients in diets can also affect the function 
of CAV-1 [76]. Pojoga et al. found that CAV-1 deficiency 
was associated with high blood pressure, hyperglycemia, 
and decreased vasoconstriction [77]. A study showed 
that CAV-1(+ / +) mice on a high-cholesterol diet had 

Fig. 1 continued



Page 17 of 21Amiri khosroshahi et al. European Journal of Medical Research           (2024) 29:74  

less TC and TG than CAV-1 (- / -) mice [78]. Thus, the 
expression of CAV-1 can be tightly associated with the 
intake of some macro and micronutrients in a dietary 
pattern which may also affect several metabolic compo-
nents. The observed interactions between DII, CAV-1, 

and various metabolic parameters, such as HDL, CRI-I, 
SBP, DBP, FFM, SMM, TC, and insulin, provide insight 
into the interplay of dietary choices and genetic factors 
in shaping metabolic outcomes. The interaction between 
DII and CAV-1 highlights the potential role of dietary 

Fig. 2 Interaction between CAV-1 genotype with Dietary Insulin Load (DIL) on: A Body Mass, B Waist Hip Ratio (WHR), C Waist Circumference (WC), 
D Fat Free Mass (FFM), E Body Fat Mass(BFM), F High Density Lipoprotein (HDL), G Triglyceride (TG), H CRI-I, I Skeletal Muscle Mass (SMM)
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insulin response in modulating insulin sensitivity and 
related metabolic components. Elevated DII scores were 
associated with lower HDL and higher CRI-I, indicating 
that the dietary insulin response may play a crucial role 
in lipid profiles and cardiovascular risk.

CAV-1 is involved in insulin secretion, insulin resist-
ance, and insulin signaling [74] by mediating insulin 
receptors [79]. These receptors are mainly located in 
areas of the plasma membrane rich in caveolae and 
cav-1 and play an important role in insulin signaling 
and secretion [80, 81]. A homozygous polymorphism 
in the CAV-1 gene can cause congenital generalized 
human lipodystrophy type 3 (CGL3), which causes 
severe IR [82]. CAV-1 variants are also associated with 
IR [83]. During IR, the insulin receptor detaches from 
cav-1, and insulin signaling is disrupted, leading to a 
decreased Glucose transporter type 4 (GLUT 4) trans-
port to the membrane, which reduces insulin sensitivity 
and glucose uptake [81]. The CAV-1 gene is located in 
region 7q 31, area 7q 31, and its vicinity is associated 
with IR, blood pressure, and some vascular conditions 

[79–86]. The above may be a mechanism for the role of 
caveolin in hyperinsulinemia. Hyperinsulinemia causes 
a rise in DII and DIL scores, which logically explains 
our current outcomes.

In summary, our study contributes to a growing body of 
evidence highlighting the dynamic relationship between 
dietary indices, genetic factors, and metabolic markers. 
Understanding how DII and DIL interact with CAV-1 and 
impact metabolic outcomes is a crucial step toward more 
precise dietary interventions and prevention strategies for 
individuals at risk of metabolic abnormalities. Our find-
ings underscore the potential clinical relevance of this 
gene-diet interaction and provide a foundation for further 
research in the field. This was the first study to examine 
gene interaction with DII and DIL among overweight and 
obese women. Despite its novelty, our study has certain 
limitations. Due to the cross-sectional design of the study, 
any causality cannot be argued. Further studies are needed 
to determine the exact interaction of the caveolin gene 
with DII and DIL. Performing clinical trials to establish 
the effects of diets with low DII and DIL on caveolin gene 

Fig. 2 continued
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expression and metabolic components will help expand 
knowledge on this topic.

Conclusions
In summary, the results of this study demonstrate that 
overweight and obese women who had high DII and DIL 
scores, as well as those who were at risk for the caveolin 
gene allele (a), had higher body mass, FFM, SMM, TC, and 
CRI, as well as lower HDL concentrations. In addition, DII 
had a positive interaction with SBP, DBP, and CRI -II, and 
a negative interaction with insulin. A positive correlation 
with WHR, WC, BFM, and TG for DIL was also observed. 
These outcomes indicate that those who carry the caveo-
lin rs3807992 (A) allele and have greater DII and DIL are 
at higher risk for cardiovascular disease and metabolic 
syndrome.
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