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Abstract 

Background  Post-traumatic stress disorder (PTSD), a disease state that has an unclear pathogenesis, imposes a sub-
stantial burden on individuals and society. Traumatic brain injury (TBI) is one of the most significant triggers of PTSD. 
Identifying biomarkers associated with TBI-related PTSD will help researchers to uncover the underlying mechanism 
that drives disease development. Furthermore, it remains to be confirmed whether different types of traumas share 
a common mechanism of action.

Methods  For this study, we screened the eligible data sets from the Gene Expression Omnibus (GEO) data-
base, obtained differentially expressed genes (DEGs) through analysis, conducted functional enrichment analysis 
on the DEGs in order to understand their molecular mechanisms, constructed a PPI network, used various algorithms 
to obtain hub genes, and finally evaluated, validated, and analyzed the diagnostic performance of the hub genes.

Results  A total of 430 upregulated and 992 down-regulated differentially expressed genes were extracted 
from the TBI data set. A total of 1919 upregulated and 851 down-regulated differentially expressed genes were 
extracted from the PTSD data set. Functional enrichment analysis revealed that the differentially expressed genes had 
biological functions linked to molecular regulation, cell signaling transduction, cell metabolic regulation, and immune 
response. After constructing a PPI network and introducing algorithm analysis, the upregulated hub genes were iden-
tified as VNN1, SERPINB2, and ETFDH, and the down-regulated hub genes were identified as FLT3LG, DYRK1A, DCN, 
and FKBP8. In addition, by comparing the data with patients with other types of trauma, it was revealed that PTSD 
showed different molecular processes that are under the influence of different trauma characteristics and responses.

Conclusions  By exploring the role of different types of traumas during the pathogenesis of PTSD, its possible 
molecular mechanisms have been revealed, providing vital information for understanding the complex pathways 
associated with TBI-related PTSD. The data in this study has important implications for the design and development 
of new diagnostic and therapeutic methods needed to treat and manage PTSD.
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Introduction
According to statistics, more than 50 million people 
worldwide suffer from traumatic brain injury (TBI) each 
year, and over the past 30 years, both the incidence and 
prevalence have increased [1, 2]. This type of injury 
imposes a significant burden on global healthcare insti-
tutions. In addition, recent studies have found that TBI 
will evolve over time [3]. Over the past decade, there 
has been a fundamental shift in understanding TBI, as 
experts now recognize it as a chronic condition affect-
ing multiple bodily systems [4]. Patients often experi-
ence persistent cognitive, emotional, and functional 
impairments in their daily lives, greatly impacting their 
quality of life [5]. Among these impairments, post-trau-
matic stress disorder (PTSD) is one of the most typical 
presentations [6, 7]. According to the fifth edition of the 
diagnostic and statistical manual of mental disorders [8], 
PTSD encompasses four symptomatic clusters. These 
include the presence of intrusive memories related to the 
stressful event, persistent avoidance of stimuli associated 
with the event, negative alterations in mood or cognition, 
and hyperarousal or excessive vigilance. These symptoms 
must present within one month following the experience 
of a distressing or traumatic event. However, symptoms 
may have a delayed onset in some cases, occurring years 
later [9]. It is estimated that PTSD affects approximately 
5–10% of the global population, with a gender ratio of 
approximately 1:2, favoring females over males [10]. In 
countries and regions with an internal conflict backdrop, 
the prevalence of PTSD is estimated to be even higher, 
potentially affecting more than 25% of the population 
[11]. PTSD is considered a heterogeneous disorder, with 
multiple pathological pathways believed to be involved in 
its onset and progression. In recent years, various studies 
have been exploring the possible biological mechanisms 
that underlie PTSD. These include the hypothalamic–
pituitary–adrenal (HPA) axis, neurochemical factors, 
autonomic nervous system, inflammation, and immune 
dysregulation, which have all been proposed as potential 
neuroimmune biomarkers for PTSD [12–16]. However, 
recent literature review analyses have shown conflicting 
data on the role of some biomarkers in individuals with 
PTSD [17]. One of the reasons for such discrepancies 
stems from current molecular mechanism research con-
cerning PTSD, which relies primarily on animal experi-
ments that necessitate further investigation using human 
samples [18]. Conversely, the development of the disor-
der also depends on the characteristics of the trauma and 

individual risk factors [19]. To screen and explore poten-
tial biomarkers as well as the therapeutic targets used 
to treat PTSD that TBI causes, we conducted further 
analysis of the molecular mechanisms of TBI-associated 
PTSD. We utilized publicly available human specimen 
data sets related to TBI and PTSD and identified differ-
entially expressed genes (DEGs) using bioinformatics 
methods. Subsequently, we performed GO and KEGG 
analyses and constructed protein–protein interaction 
(PPI) networks in order to elucidate the functional clas-
sification and the metabolic pathways of the DEGs. 
We also identified potential hub genes. To investigate 
whether different traumatic features can influence the 
molecular mechanisms of PTSD, we introduced a third 
human specimen data set related to fracture injury for 
validation. This allowed us to explore whether differ-
ent traumatic features have shared mechanisms in their 
impact on PTSD, as well as to determine whether TBI-
related PTSD has distinct characteristics that warrant 
further independent research.

Methods
Data set information
The keywords “trauma” and “PTSD” were used as screen-
ing terms to search the GEO database. The search criteria 
were further limited to “Homo sapiens” and “Expression 
profiling by array.” The search results were analyzed indi-
vidually, and the original data set literature that met the 
research criteria was carefully read and reviewed. Finally, 
the GSE223245 and GSE81761 data sets were identified 
as subjects for further research. GSE223245 includes 12 
TBI patients and 4 healthy controls, while GSE81761 
includes 39 PTSD patients and 27 healthy controls. Both 
data sets collected venous blood for gene detection. The 
raw data of both data sets were downloaded using R soft-
ware (version 4.2.1, http://r-​proje​ct.​org/). Then, the “affy” 
package [20] within the R software was used to read the 
raw data of the two data sets used for background correc-
tion and data normalization.

Differential gene expression analysis
The “limma” package [21] was used to analyze the two 
data sets separately. The disease group and control 
group within each data set were labeled. Differentially 
expressed genes between the two groups in each data set 
were obtained by performing comparative analysis. Since 
the molecular mechanisms of PTSD are not yet well 
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understood, in order to screen for more valuable genes, 
the criteria were set as a |log2 (fold-change)|> 0.2 and a 
p value < 0.05 to include genes as differentially expressed 
genes. Those that met these two criteria were consid-
ered to have significant differences. Among the selected 
DEGs, genes with logFC > 0.2 were considered upregu-
lated, while genes with logFC < −  0.2 were considered 
downregulated.

GO and KEGG pathway enrichment analysis
The GO database is a database established by the Gene 
Ontology Consortium and is primarily divided into three 
semantic categories: cellular component (CC), molecular 
function (MF), and biological process (BP). GO enrich-
ment analysis can be used to determine the functions of 
genes and provide preliminary annotations by analyzing 
the sequence information of the genes [22]. The KEGG 
database is a database for systematic analysis of gene 
products and their metabolic pathways in cells and is 
commonly used for metabolic pathway analysis [23]. The 
“clusterProfiler” package in R software [24] is used for 
enrichment analysis of DEGs, followed by the use of the 
“org.Hs.eg.db” package for ID conversion [25]. Finally, 
the “ggplot2” package is used to visualize the enrichment 
analysis results.

PPI network construction
Analysis of the common differentially expressed genes 
obtained from the two data sets is uploaded to the 
STRING database [26] (http://​string-​db.​org/). The 
STRING database is an online database for searching 
known protein–protein interaction relationships, which 
helps in the exploration of core regulatory genes. The 
output results are imported into the Cytoscape software 
[27]. Algorithms are used to explore the potential cor-
relations among these common differentially expressed 
genes.

Hub gene selection
Hub genes play essential roles in biological processes 
and often act as key regulators of other genes in different 
molecular pathways. The Cyto-Hubba plugin [28] in the 
Cytoscape software can identify hub genes within the PPI 
network. To avoid selection bias caused by the different 
algorithms, the hub genes identified by the different algo-
rithms intersect in order to define the final hub genes.

Preliminary analysis of hub genes
The PANTHER Classification System [29] (http://​panth​
erdb.​org/) can be used to classify proteins (and their 
genes). It is a comprehensive and annotated gene family 
system database. The Human Protein Atlas [30] (https://​
www.​prote​inatl​as.​org/) is a public database for querying 

gene expression profiles in different human organs. It can 
provide a list of the basic RNA and protein expression 
levels of specific genes. Selecting the “brain” section of 
the database, we compared the transcriptome data of 13 
major brain regions to classify human brain regions and 
display the standardized RNA expression levels of the 13 
brain regions. We can conduct a preliminary analysis of 
the hub genes using these two commonly utilized public 
databases.

Diagnostic performance of hub genes
ROC curve analysis was conducted on each hub gene 
data set to assess the diagnostic performance of hub 
genes. The area under the ROC curve (AUC) of the hub 
genes was calculated using the “pROC” package in R soft-
ware. This analysis evaluated the accuracy of diagnosis 
and the ability to recognize diseases.

Validation of hub genes
PTSD is a heterogeneous disease with multiple patho-
physiological pathways potentially involved in its onset 
and progression. It requires expanding the data set of 
the different types of trauma to assess whether different 
events trigger distinct pathophysiological responses [17]. 
A recent prospective study also indicated a significantly 
higher proportion of PTSD occurrence after a TBI com-
pared to other injuries, such as fractures [31]. Therefore, 
in order to differentiate the molecular mechanisms that 
underlie the impact of different trauma characteristics on 
PTSD, we introduced a third human specimen data set 
focusing on fracture injuries for validation. This valida-
tion aims to explore whether different trauma character-
istics have common mechanisms affecting PTSD and to 
confirm if the specificity of PTSD related to TBI warrants 
further independent research.

Results
Differential expression gene screening
After data processing of the two data sets, in the 
GSE223245 TBI data set, there was a total of 430 genes 
identified as upregulated DEGs that met the criteria of 
the log2(fold-change) > 0.2 and a p value < 0.05. In addi-
tion, 992 genes were identified as down-regulated DEGs 
that met the log2 (fold-change) criteria < 0.2 and a p 
value < 0.05. In the GSE81761 PTSD data set, there were 
a total of 1919 genes identified as upregulated DEGs that 
met the criteria of the log2 (fold-change) > 0.2 and a p 
value < 0.05 and 851 genes identified as down-regulated 
DEGs that met the criteria of the log2 (fold-change) < 0.2 
and a p value < 0.05. The volcano plot was used to 
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visualize the screening results of the differential expres-
sion genes (Fig. 1).

GO and KEGG pathway enrichment analysis
The “clusterProfiler” package was used to perform GO 
and KEGG pathway enrichment analysis on the TBI and 
PTSD data sets independently. The results showed that 
in the GSE223245 TBI data set, the DEGs were primar-
ily enriched in biological processes (BP) such as viral life 
cycle regulation (GO:1903900), protein autophospho-
rylation (GO:0046777), the immune response-regulating 
signaling pathway (GO:0002764), viral process regulation 
(GO:0050792), and peptidyl-tyrosine phosphorylation 
(GO:0018108). In terms of molecular functions (MF), the 
DEGs were primarily associated with phosphatidylser-
ine binding (GO:0001786), modified amino acid binding 
(GO:0072341), nuclease activity (GO:0004518), exode-
oxyribonuclease activity (GO:0004529), and exodeoxyri-
bonuclease activity that produces 5’-phosphomonoesters 
(GO:0016895). The enriched KEGG pathways were 
related to Th1 and Th2 cell differentiation (hsa04658) as 
well as pantothenate and CoA biosynthesis (hsa00770). 
In the GSE81761 PTSD data set, the DEGs were pre-
dominantly enriched in BP such as proteasomal protein 
catabolic processes (GO:0010498), proteasome-medi-
ated ubiquitin-dependent protein catabolic processes 
(GO:0043161), mRNA processing (GO:0006397), positive 
regulation of cellular catabolic processes (GO:0031331), 
and the regulation of cellular protein catabolic pro-
cesses (GO:1903362). In terms of cellular components 
(CC), the focus was on methyltransferase complexes 
(GO:0034708), ubiquitin ligase complexes (GO:0000151), 

nuclear speck (GO:0016607), spindle pole (GO:0000922), 
and nuclear pore nuclear baskets (GO:0044615). MF 
was associated with transcription coregulator activ-
ity (GO:0003712) and transcription coactivator activity 
(GO:0003713). The enrichment analysis results indicate 
that the BPs, CCs, and MFs are associated with differ-
ent biological pathways, including molecular regulation, 
cell signaling transduction, cell metabolic regulation, and 
immune response, suggesting further refinement and 
classification to facilitate more in-depth research. Visu-
alization was performed using circular plots (Fig.  2) to 
present the enrichment results clearly. The enrichment 
results of all the data sets were listed in a ternary table 
format (Tables 1, 2).

PPI network construction
The overlapping upregulated and downregulated DEGs 
from the two data sets were analyzed separately using 
the “VennDiagram” package (Fig.  3A). This resulted 
in 17 commonly upregulated DEGs and 36 commonly 
downregulated DEGs. These genes were uploaded to 
the STRING database to construct the PPI network. The 
generated data was then exported and imported into 
the Cytoscape software to visualize and analyze the PPI 
network, resulting in a graphical representation of PPI 
(Fig. 3B, C).

Hub gene selection
The Cyto-Hubba plugin in the Cytoscape software is 
a widely used network visualization tool that allows 
for the discovery of key target information for various 
types of biological data, such as gene regulation and 

Fig. 1  DEGs in the two data sets. A Volcano plot of GSE223245; red represents upregulated genes, blue represents downregulated genes, and gray 
represents nonsignificantly expressed genes. B Volcano plot of GSE81761. The criteria for statistically significant differences in DEGs were adjusted 
|log2(FC)|> 0.2 and p.adj < 0.05 in expression
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Fig. 2  GO terms and KEGG pathway enrichment. A Details of GO terms and KEGG pathway enrichment in GSE223245. The inner ring is a bar plot 
where the height of the bar indicates the significance of the term (− log10 p value), and color corresponds to the z score. The outer ring displays 
scatterplots of the expression levels (logFC) for the genes in each term. B Details of GO terms and KEGG pathway enrichment in GSE81761

Table 1  Details of GO terms and KEGG pathway enrichment in GSE223245

Ontology ID Description GeneRatio BgRatio p value p. adjust z score

BP GO:1903900 Regulation of viral life cycle 24/1132 139/18800 2.72e-06 0.0145 − 3.266

BP GO:0046777 Protein autophosphorylation 31/1132 224/18800 1.28e-05 0.0290 − 3.4125

BP GO:0002764 Immune response-regulating signaling pathway 53/1132 482/18800 1.64e-05 0.0290 − 5.3571

BP GO:0050792 Regulation of viral process 24/1132 159/18800 2.86e-05 0.0355 − 3.266

BP GO:0018108 Peptidyl-tyrosine phosphorylation 43/1132 373/18800 3.34e-05 0.0355 − 3.2025

MF GO:0001786 Phosphatidylserine binding 15/1161 60/18410 3.28e-06 0.0031 − 1.291

MF GO:0072341 Modified amino acid binding 18/1161 93/18410 1.74e-05 0.0083 − 0.94281

MF GO:0004518 Nuclease activity 27/1161 204/18410 0.0002 0.0668 − 3.2717

MF GO:0004529 Exodeoxyribonuclease activity 7/1161 24/18410 0.0005 0.0997 − 2.6458

MF GO:0016895 Exodeoxyribonuclease activity, producing 
5ʹ-phosphomonoesters

7/1161 24/18410 0.0005 0.0997 − 2.6458

KEGG hsa04658 Th1 and Th2 cell differentiation 18/522 92/8164 1.65e-05 0.0052 − 3.7712

KEGG hsa00770 Pantothenate and CoA biosynthesis 7/522 21/8164 0.0002 0.0353 − 0.37796

Table 2  Details of GO terms and KEGG pathway enrichment in GSE81761

Ontology ID Description GeneRatio BgRatio p value p. adjust z score

BP GO:0010498 Proteasomal protein catabolic process 91/1964 496/18800 5.79e-08 0.0003 5.1366

BP GO:0043161 Proteasome-mediated ubiquitin-dependent 
protein catabolic process

76/1964 414/18800 6.94e-07 0.0020 5.0471

BP GO:0006397 mRNA processing 85/1964 500/18800 4.08e-06 0.0080 5.9656

BP GO:0031331 Positive regulation of cellular catabolic process 76/1964 449/18800 1.52e-05 0.0224 3.2118

BP GO:1903362 Regulation of cellular protein catabolic process 48/1964 258/18800 5.26e-05 0.0619 2.0207

CC GO:0034708 Methyltransferase complex 25/2047 92/19594 5.38e-06 0.0025 4.6

CC GO:0000151 Ubiquitin ligase complex 57/2047 302/19594 7.09e-06 0.0025 5.1657

CC GO:0016607 Nuclear speck 69/2047 411/19594 4.85e-05 0.0095 4.9358

CC GO:0000922 Spindle pole 35/2047 169/19594 5.81e-05 0.0095 4.5638

CC GO:0044615 Nuclear pore nuclear basket 7/2047 12/19594 6.62e-05 0.0095 1.8898

MF GO:0003712 Transcription coregulator activity 85/2017 497/18410 1.96e-05 0.0216 4.4471

MF GO:0003713 Transcription coactivator activity 50/2017 266/18410 9.47e-05 0.0522 3.3941
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signal transduction. The plugin assigns a value to each 
gene using topological network algorithms and ranks 
them to identify the hub genes. In order to avoid bias 
caused by different topological analysis methods, four 

methods were used for analysis: MCC, DMNC, MNC, 
and EPC. The results were then merged and analyzed 
using the “VennDiagram” package, resulting in the 
identification of the hub genes (Fig.  4). The upregu-
lated hub genes identified were VNN1, SERPINB2, and 

Fig. 3  Venn diagram and PPI network. A The Venn diagram shows the co-DEGs of the two data sets. B A PPI network was constructed using 
coupregulated genes. C A PPI network was constructed using codownregulated genes

Fig. 4  The hub genes were merged by the MCC, DMNC, MNC, and EPC algorithms. A VNN1, SERPINB2 and ETFDH were upregulated hub genes. B 
FLT3LG, DYRK1A, DCN and FKBP8 were downregulated hub genes
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ETFDH, while the downregulated hub genes identified 
were FLT3LG, DYRK1A, DCN, and FKBP8.

Preliminary analysis of hub genes
First, the hub genes were subjected to a one-stop annota-
tion analysis using the PANTHER Classification System 
(http://​panth​erdb.​org/) to obtain an initial understand-
ing of their functions (Table  3). Considering that the 
hub genes may exhibit differential expression in differ-
ent brain regions during cranial brain injury processing, 
the Human Protein Atlas database (https://​www.​prote​
inatl​as.​org/) was used to compile the basic RNA and pro-
tein expression levels of the hub genes. These expression 
levels were then displayed across different brain regions 
based on standardized RNA expression levels. The color 
coding was based on the brain regions, and the bar chart 
depicts the highest expression levels within the included 
subregions (Fig. 5).

Diagnostic performance of hub genes
To validate the diagnostic performance of the hub genes, 
we conducted a ROC curve analysis based on the two 
GEO data sets (Fig.  6). The results showed that, except 
for DCN, all of the hub genes exhibited good diagnos-
tic performance within the TBI data set. Considering 
that the gene expression differences between the PTSD 
patients and the normal controls may be relatively small, 
thus, the diagnostic performance of the hub genes within 
the PTSD data set may not be as expected. However, 
the results indicated that the area under the ROC curve 
for all of the hub genes in the PTSD data set was > 60%. 
Therefore, we believe that the selected hub genes from 

this study are key genes in the pathogenesis of TBI-
related PTSD and possess a significantly high diagnostic 
value.

Validation of hub genes
To speculate whether different trauma characteristics 
affect the molecular mechanisms of PTSD, we introduced 
a third data set for validation due to the involvement of 
different biological pathways containing different trauma 
characteristics[19]. Using the same selection criteria as 
before, we selected the GSE93138 fracture data set as 
the validation data set. After preprocessing the raw data, 
screening DEGs, constructing PPI networks, and identi-
fying hub genes, we obtained the upregulated hub genes 
in the fracture and PTSD data sets: RBX1, COMMD8, 
COMMD6, DCUN1D1, DCUN1D5, TCEB1, COPS2, 
and CUL3. The downregulated hub genes identified 
were CD79B, CD79A, CD40, PAX5, FCER2, HNRNPH1, 
G3BP1, IL2RG, SRRM2, and APP. By comparing the hub 
genes between the different groups, it was observed that 
for PTSD, the target genes involved in the various trauma 
mechanisms are not identical. Thus, it can be reasonably 
inferred that there are differences in the molecular mech-
anisms during the occurrence and development of PTSD 
under different trauma characteristics. This also explains 
why some biomarkers show contradictory results in 
PTSD patients [17]. These validation results suggest that 
researchers should pay attention to the effects of the 
trauma characteristics when studying the mechanisms of 
PTSD, thus providing an increase in best practices used 
in guiding clinical practice and research.

Table 3  The PANTHER classification system of hub genes

Gene Gene name Gene ID PANTHER Family/Subfamily PANTHER protein class

VNN1 Pantetheinase HUMAN|HGNC = 12,705|Uni-
ProtKB = O95497

PANTETHEINASE (PTHR10609:SF16) Hydrolase

SERPINB2 Plasminogen activator inhibitor 2 HUMAN|HGNC = 8584|Uni-
ProtKB = P05120

PLASMINOGEN ACTIVATOR INHIBI-
TOR 2 (PTHR11461:SF61)

Protease inhibitor

ETFDH Electron transfer flavoprotein–
ubiquinone oxidoreductase, 
mitochondrial

HUMAN|HGNC = 3483|Uni-
ProtKB = Q16134

ELECTRON TRANSFER FLAVO-
PROTEIN-UBIQUINONE OXIDORE-
DUCTASE, MITOCHONDRIAL 
(PTHR10617:SF107)

Oxidoreductase

FLT3LG Fms-related tyrosine kinase 3 ligand HUMAN|HGNC = 3766|Uni-
ProtKB = P49771

FMS-RELATED TYROSINE KINASE 3 
LIGAND (PTHR11032:SF1)

Cytokine

DYRK1A Dual specificity tyrosine–phospho-
rylation-regulated kinase 1A

HUMAN|HGNC = 3091|Uni-
ProtKB = Q13627

DUAL SPECIFICITY TYROSINE-PHOS-
PHORYLATION-REGULATED KINASE 
1A (PTHR24058:SF121)

Protein modifying enzyme

DCN Decorin HUMAN|HGNC = 2705|Uni-
ProtKB = P07585

DECORIN (PTHR45712:SF14) –

FKBP8 Peptidyl-prolyl cis–trans isomerase 
FKBP8

HUMAN|HGNC = 3724|Uni-
ProtKB = Q14318

PEPTIDYL-PROLYL CIS–TRANS 
ISOMERASE FKBP8 (PTHR46512:SF3)

Chaperone

http://pantherdb.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/


Page 8 of 13Qi et al. European Journal of Medical Research           (2024) 29:44 

Discussion
PTSD is a chronic mental disorder that leads to a 
decrease in patient quality of life and an increase in 
economic burden. Exposure to traumatic stressors is a 
triggering factor in the development of PTSD [32]. The 
first-line intervention for patients with PTSD is psycho-
logical therapy, either trauma-focused or non-trauma-
focused [18]. However, these psychological therapies 
share common issues, such as prolonged treatment 
duration and significant individual variation. Many 
patients are unable to eliminate PTSD symptoms even 
after receiving treatment, leading to poor adherence to 
long-term therapy [33]. Currently, there are no specific 
drugs that have been proven to be effective in treating 
PTSD [34]. The two first-line medications approved 
by the US FDA for the clinical treatment of PTSD are 
sertraline and paroxetine; both are selective serotonin 
reuptake inhibitors (SSRIs), which are commonly used 

as antidepressants [35]. However, these medications 
have issues such as low efficacy rates, delayed onset of 
action, and significant adverse effects [36]. Therefore, 
conducting in-depth research on the pathogenesis of 
PTSD, identifying new potential treatment targets, and 
exploring novel treatment strategies are of significant 
importance in improving the treatment outcomes for 
PTSD patients. In recent years, there has been increased 
attention surrounding PTSD biomarker research [37]. 
These biomarkers may aid in screening and support-
ing early detection of PTSD, as well as identifying 
drug targets that will lead to timely intervention and 
better outcomes for individuals suffering from PTSD 
[38–40]. Based on our research findings, we have iden-
tified VNN1, SERPINB2, and ETFDH as upregulated 
hub genes and FLT3LG, DYRK1A, DCN, and FKBP8 as 
downregulated hub genes associated with PTSD follow-
ing TBI. According to the review of previous literature, 

Fig. 5  The Human Protein Atlas was used to analyze the hub genes. Regional classification in the human brain by comparing transcriptome data 
aggregated to 13 major regions of the brain. Normalized RNA expression levels shown for the 13 brain regions. Color coding is based on brain 
region, and the bar shows the highest expression among the subregions included. A VNN1 B SERPINB2 C ETFDH D FLT3LG E DYRK1A F DCN G 
FKBP8
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Vanin-1 (VNN1) is a glycosylphosphatidylinositol-
anchored pantetheinase that catalyzes the hydrolysis of 
pantetheine into cysteamine and pantothenic acid [41]. 
Studies have shown that VNN1 plays a role in oxida-
tive stress, inflammation, and cell migration [42–45]. 
In addition, VNN1’s cysteamine pantetheinase activ-
ity contributes to local tissue adaptation, injury resil-
ience, and tissue stress tolerance [46]. A recent study 
demonstrated that gene knockout of VNN1 prevented 

organ damage from progressing from acute to chronic 
stages [47]. These mechanistic studies and animal 
experiments provide theoretical support for the role of 
VNN1 in PTSD. Serpin family B member 2 (SERPINB2), 
also known as plasminogen activator inhibitor-2 (PAI-
2), is an inhibitor of the extracellular protease plas-
minogen activator and is expressed in various cell 
types [48]. SERPINB2 participates in multiple cellular 
functions, including cell survival, cell differentiation, 

Fig. 6  GEO data set was used to verify the diagnostic performance of the hub genes. A ROC curve of hub genes in the GSE223245 data set. B ROC 
curve of hub genes in the GSE81761 data set
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inflammation, immunity, cell adhesion, migration, and 
extracellular matrix remodeling in multiple disease 
states via its interactions with intra and extracellular 
proteins [49–51]. Despite extensive research on SER-
PINB2, no consensus exists on its pathophysiological 
functions [52]. However, a recent study suggests that 
the downregulation of SERPINB2 may have potential 
therapeutic value in relieving chronic visceral pain syn-
dromes, such as chronic pelvic pain syndrome within 
the urological system [53]. This improvement in chronic 
pain-related conditions also suggests that SERPINB2 
may hold some value in the treatment of PTSD. Elec-
tron transfer flavoprotein dehydrogenase (ETFDH), also 
known as ETF–ubiquinone oxidoreductase (ETF–QO), 
is a protein located in the inner mitochondrial mem-
brane and plays a central role in the electron transfer 
system [54]. It is closely associated with Multiple Acyl-
CoA Dehydrogenase Deficiency (MADD). However, 
recent studies have also found that ETFDH plays an 
important role in the development of several diseases 
[55, 56], suggesting the need for future research in 
order to explore its association with biological pathways 
that drive PTSD.Fms-related receptor tyrosine kinase 
3 ligand (FLT3LG) is a growth factor that binds to and 
forms non-covalent dimers with FLT3 (CD135), acting 
as an agonist [57]. FLT3LG stimulates the differentiation 
and proliferation of dendritic cells [58] and has a poten-
tial therapeutic value in treating autoimmune diseases 
and tumors [57, 59]. However, there is relatively limited 
research on FLT3LG, and further exploration is needed 
regarding its expression levels, functions, and clinical 
value in various diseases [60]. Dual-specificity tyros-
ine phosphorylation regulated kinase 1A (DYRK1A) 
is an evolutionarily conserved protein kinase and the 
most extensively studied member of the dual-specificity 
tyrosine-regulated kinase (DYRK) family. Studies have 
shown that it is involved in the development of many 
diseases, and both low and high expression levels of 
the DYRK1A protein contribute significantly to disease 
pathology [61]. A recent study suggests that elevated 
plasma levels of DYRK1A might help prevent neurode-
generative diseases [62], highlighting the potential value 
of this target in detecting, monitoring, and manag-
ing neurodegenerative disorders. As PTSD is a chronic 
mental disorder, there is a theoretical basis to further 
explore the role of DYRK1A in neuropsychiatric disor-
ders. Decorin (DCN) is an extracellular matrix protein 
belonging to the family of small leucine-rich proteogly-
cans. As a multifunctional molecule, DCN assembles 
the extracellular matrix and regulates the biological 
activity of cellular growth factors. Studies [63–67] have 
shown that DCN acts as a ligand for various cytokines 

and growth factors by directly or indirectly interact-
ing with signaling molecules involved in cell growth, 
differentiation, proliferation, adhesion, and migration. 
The multifunctional nature of DCN makes it a potential 
therapeutic target for various diseases and shows prom-
ising clinical and research applications [68]. FKBP prolyl 
isomerase 8 (FKBP8) is a member of the FK506-binding 
protein family, usually found in the mitochondria and 
the endoplasmic reticulum. FKBP8 plays a critical role 
in cellular functions, including protein transport and 
folding [69]. It has been found that FKBP8 plays a vital 
role in intracellular transport, protein folding, cell apop-
tosis, cell growth, and differentiation. It also participates 
in various cellular processes associated with immune 
regulatory effects [69, 70]. It is worth further investi-
gation into whether FKBP8 plays a role in the occur-
rence and development of PTSD. At the same time, it 
should be emphasized that gene expression is generally 
regulated at transcription and translation levels. The 
correlation between the expression levels of mRNA 
and its corresponding protein depends on many regu-
latory factors and metabolic processes. The transcrip-
tion process from DNA to mRNA and then to protein 
involves a set of expression regulation mechanisms that 
drive mRNA formation and include regulatory activi-
ties such as post-transcriptional regulation, epigenetic 
modifications (such as DNA methylation), and post-
translational regulation. The abundance of mRNA and 
protein expression may not be consistent, and the dif-
ferences between the two can also suggest more biologi-
cal significance and regulatory mechanisms. Therefore, 
a detailed exploration of the specific biological gene 
expression processes is needed.

One of the limitations of our study is that only two data 
sets were included in this article. If there is bias in these 
two data sets, it may affect the results of the analysis. At 
the same time, the results of potential biomarkers and 
therapeutic targets screened by bioinformatics can only 
be used for theoretical guidance to facilitate researchers’ 
design of future clinical trials. Another limitation is that 
we did not analyze factors such as race, gender, educa-
tion level, and dietary habits that may affect outcomes. 
However, the results of this study can be seen as a supple-
mental and validating contribution to existing theories. 
It informs researchers of the potential biological mech-
anisms and pathways that need to be considered in all 
areas of PTSD research. This can aid in developing inter-
vention strategies that target these biomarkers as well as 
the related biological pathways. Our study also has the 
potential to help expand the pharmacological approaches 
used to prevent and treat individuals who experience 
traumatic stress.
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Conclusions
This study utilized a bioinformatic analytic approach 
to screen potential biomarkers and therapeutic targets 
(VNN1, SERPINB2, ETFDH, FLT3LG, DYRK1A, DCN, 
FKBP8) related to PTSD due to TBI. The validation con-
firmed the potential value of these targets. In addition, 
by comparing data with other trauma-type patients, it 
was found that PTSD exhibits different mechanisms 
under the influence of different trauma characteristics. 
This provides new insights into the pathophysiology of 
PTSD as well as valuable references for future clinical 
practice.
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