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Abstract 

Background Bladder cancer is an epidemic and life-threating urologic carcinoma. Anoikis is a unusual type of pro-
grammed cell death which plays a vital role in tumor survival, invasion and metastasis. Nevertheless, the relationship 
between anoikis and bladder cancer has not been understood thoroughly.

Methods We downloaded the transcriptome and clinical information of BLCA patients from TCGA and GEO data-
bases. Then, we analyzed different expression of anoikis-related genes and established a prognostic model based 
on TCGA database by univariate Cox regression, lasso regression, and multivariate Cox regression. Then the Kaplan–
Meier survival analysis and receiver operating characteristic (ROC) curves were performed. GEO database was used 
for external validation. BLCA patients in TCGA database were divided into two subgroups by non-negative matrix fac-
torization (NMF) classification. Survival analysis, different gene expression, immune cell infiltration and drug sensitivity 
were calculated. Finally, we verified the function of S100A7 in two BLCA cell lines.

Results We developed a prognostic risk model based on three anoikis-related genes including TPM1, RAC3 
and S100A7. The overall survival of BLCA patients in low-risk groups was significantly better than high-risk groups 
in training sets, test sets and external validation sets. Subsequently, the checkpoint and immune cell infiltration 
had significant difference between two groups. Then we identified two subtypes  (CA and  CB) through NMF analysis 
and found CA had better OS and PFS than CB. Besides, the accuracy of risk model was verified by ROC analysis. Finally, 
we identified that knocking down S100A7 gene expression restrained the proliferation and invasion of bladder cancer 
cells.

Conclusion We established and validated a bladder cancer prognostic model consisting of three genes, which can 
effectively evaluate the prognosis of bladder cancer patients. Additionally, through cellular experiments, we dem-
onstrated the significant role of S100A7 in the metastasis and invasion of bladder cancer, suggesting its potential 
as a novel target for future treatments.
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Introduction
In the field of urological tumors, bladder cancer attracts 
the attention of numerous experts and scholars. Not only 
is it one of the most common malignancies, but it also 
has a high.

morbidity and mortality rate [1, 2]. According to sta-
tistics, more than 550,000 people are diagnosed with 
bladder cancer each year, and over 200,000 individuals 
succumb to the disease as a result [3].The majority of 
patients are diagnosed with bladder cancer through hos-
pital examinations prompted by painless gross hematuria 
[4]. Following transurethral resection of bladder tumors, 
patients often require intravesical instillation chemother-
apy [5]. However, there are still many cases of recurrence 
and even progression among patients [6]. Therefore, it 
becomes particularly important to explore biomarkers 
that can effectively evaluate patient prognosis.

Anoikis is a programmed cell death process that is dis-
tinct from apoptosis and autophagy [7]. It occurs when 
cells are unable to establish appropriate interactions with 
the surrounding extracellular matrix [8]. The extracel-
lular matrix contains various cytokines that are critical 
for cell growth, motility, and angiogenesis [9]. Therefore, 
anoikis serves to maintain the integrity of tissues and 
organs by preventing abnormal cell-extracellular matrix 
interactions. Simultaneously, this also implies a close 
connection between anoikis and tumor metastasis and 
invasion. Anoikis resistance means that cancer cells can 
detach from the previous extracellular matrix and survive 
without undergoing cell death. They can then establish 
contact with a new extracellular matrix, leading to the 
implantation and metastasis of tumors in distant organs 
[10].

Bladder cancer is treated differently based on its vari-
ous types. A study involving 172 patients with pure 
in  situ carcinoma suggested that advanced age at diag-
nosis appears to be associated with an increased risk of 
recurrence and progression of pure bladder in  situ car-
cinoma. Elderly patients may not respond effectively 
to Bacillus Calmette-Guérin (BCG) treatment [11]. For 
non-muscle-invasive bladder cancer, transurethral resec-
tion of the bladder tumor remains a primary treatment 
option. Postoperatively, the decision to undergo adjuvant 
therapy depends on the patient’s pathological conditions. 
Treating muscle-invasive bladder cancer is often more 
challenging, and many patients require neoadjuvant 
therapy before surgery is performed upon detection. Not 
all patients tolerate platinum-based therapies. With the 
increasing research on immunotherapy, many patients 
receive immunotherapy before surgery, providing more 
opportunities for surgical interventions [12, 13]. As tech-
nologies like circulating tumor DNA (ctDNA) analysis 
emerge, more effective biomarkers will be identified to 

guide treatment decisions and assess treatment outcomes 
[14].

Platinum-based chemotherapy is a crucial therapeu-
tic approach for bladder cancer, yet the survival benefits 
for patients are relatively modest, with only about 15% 
achieving long-term relief [15]. Consequently, with the 
advent of immune checkpoint inhibitors, an increas-
ing number of immunotherapeutic drugs are being 
developed, and more treatment targets are being iden-
tified [16]. Fibroblast growth factor receptor (FGFR) 
has emerged as a potential therapeutic target, entering 
clinical trials and bringing new hope for advanced can-
cer patients [17]. In this article, we delve into the crucial 
role of anoikis resistance in bladder cancer, examining 
its interplay with immune checkpoints and the immune 
microenvironment. This exploration provides new theo-
retical and experimental foundations for the develop-
ment of novel drugs.

Materials and methods
Data collection
The transcriptomic data and clinical information of blad-
der cancer patients were downloaded from TCGA and 
GEO databases. The TCGA database included 19 nor-
mal individuals and 412 tumor patients. Through lit-
erature search and Genecards database ((https:// www. 
genec ards. org/) exploration, a total of 652 anoikis-related 
genes were identified. Genes exhibiting a false discovery 
rate (FDR) less than 0.05 and a log fold change (log FC) 
greater than 1 were defined as differentially expressed 
genes.

A total of 281 bladder cancer patients’ and 68 nor-
mal individuals’ information were downloaded from the 
GEO database (GSE13507 and GSE31684). These data 
were utilized as the validation cohort for the prognostic 
assessment model. Additionally, the IMvigor210 cohort 
information was also obtained to evaluate the efficacy of 
immune therapy in different risk groups of patients.

Construction of prognostic signature based on anoikis 
‑related genes
First, we merged the expression matrix of differentially 
expressed genes with the patients’ survival data. Subse-
quently, the patients in the TCGA database were ran-
domly divided into control and validation groups in a 1:1 
ratio. Univariate regression analysis was performed to 
identify genes associated with prognosis, and visualiza-
tion was carried out using R packages “survival” and “for-
est plot”. CNV frequency was also conducted. Next, lasso 
regression analysis and multivariable regression analysis 
were employed to optimize the prognostic risk model. 
The risk score for each sample was calculated using the 
following formula, where “coef” represents the regression 

https://www.genecards.org/
https://www.genecards.org/
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coefficients obtained from the multivariate Cox regres-
sion analysis, and “X” represents the expression levels of 
risk genes.

The patients were divided into low-risk group (LRG) and 
high-risk group (HRG) based on the median risk score. 
The survival status, expression levels of risk genes, and 
risk scores of patients in different risk groups were visual-
ized. The overall survival rate and progression-free sur-
vival (PFS) were depicted using Kaplan–Meier curves for 
different risk groups.

Establishment of the nomogram
We quantified different risk factors to assess patient 
prognosis. Receiver operating characteristic (ROC) anal-
ysis was performed on the risk score and clinical variables 
at 1, 3, and 5 years to determine the optimal prognostic 
indicators. The “rms” package in R was utilized to estab-
lish the analysis framework, and the visualization was 
accomplished using the “regplot” function. The model’s 
consistency was evaluated using calibration curves.

Consensus clustering analysis
Based on the genes selected from the risk model, we 
performed unsupervised consensus clustering on the 
patients in the TCGA cohort using the R package “Con-
sensusClusterPlus” [18]. The clustering results were 
validated using principal component analysis (PCA). 
Kaplan–Meier survival curves were used to visualize the 
overall survival (OS) rates of patients in different clusters.

GSVA and ssGSEA analysis
Using the R package "GSVA," we analyzed the KEGG 
pathways between different clusters to investigate the 
biological process differences among subgroups [19]. The 
ssGSEA algorithm was employed to study the relation-
ship of immune cell infiltration between different sub-
groups. The R package "ggplot2" was used to visualize the 
infiltration of immune cells in different subgroups.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis were employed to explore 
functional analysis (adjusted p value < 0.05). Besides, 
based on the molecular feature databases such as KEGG 
and HALLMARK gene sets, we implemented Gene Set 
Enrichment Analysis (GSEA) to identify molecular and 
biological differences between different cohorts [20] 
(https:// www. gsea- msigdb. org/ gsea/ msigdb).

Risk score =
∑n

i=1

(

Coefi× Xi
)

The correlation between risk stratification and clinical 
variables
The distribution of clinical variables, including age, gen-
der, grade, stage, and TNM staging, among different 
groups of patients can be visualized. Additionally, the 
gene expression from the risk model for different patients 
can be presented using a heatmap. Further analysis was 
conducted focusing on T stage and stage, and the propor-
tion of patients in each clinical variable subgroup can be 
displayed.

Immune cell infiltration, immune microenvironment, 
and genetic alterations analysis
The ESTIMATE algorithm can be used to estimate the 
immune cell infiltration in different patient groups. 
Information on somatic cell alterations can be down-
loaded from the TCGA database. The top 15 genes with 
the highest mutation frequency can be visualized using 
R package “Maftools”. Based on the occurrence risk 
of tumor mutational burden (TMB) and sample risk 
grouping, the patients can be classified into four major 
categories, and their survival rates can be calculated 
to construct survival curves. The correlation between 
risk score and immune cell infiltration can be analyzed 
using various methods such as XCELL, TIMER, QUAN-
TISEQ, MCP COUNTER, EPIC, CIBERSORT, and CIB-
ERSORT-ABS. These methods can provide insights into 
the relationship between risk score and the abundance 
or proportions of immune infiltrating cells in the tumor 
microenvironment.

Prediction of immunotherapy response and drug 
sensitivity
We assessed the expression of immune checkpoint-
related genes in different risk groups of patients. Fur-
thermore, we evaluated the tumor immunogenicity and 
response to different immune checkpoint drugs in high-
risk and low-risk samples based on the Immune Phe-
notype Score (IPS). Using the R package “prophetiC,” 
we predicted the sensitivity of patients in different risk 
groups to different drugs, providing new insights and 
approaches for personalized treatment of bladder cancer.

Cell culture
We selected UMUC-3 and T24 for further experimen-
tal validation. Cells were cultured in DMEM and RPMI-
1640 medium plus 10% fetal bovine serum respectively, 
at 37  °C in a 5% CO2 environment. Subsequently, two 
siRNAs were applied to knock down expression level 
of S100A7. The siRNA sequences were as follows: si-
S100A7-1: 5′-CCA GAC GUG AUG ACA AGA UTT-3′, 

https://www.gsea-msigdb.org/gsea/msigdb


Page 4 of 15Wang et al. European Journal of Medical Research           (2024) 29:52 

si-S100A7-2: 5′-5′-CAA AUU ACC UCG CCG AUG 
UTT-3′.

Cell viability assay
Cells were transfected in a six-well plate. After transfec-
tion, the transfected cells were collected and counted. 
Approximately 3000 cells were seeded into a 96-well 
plate, and cell viability at different time points was 
observed using the CCK-8 assay, following the manufac-
turer’s recommended protocol.

EdU analysis
T24 and UMUC3 cells were seeded into a glass bottom 
cell culture dish (NEST), and siRNA transfection was 
performed. After 48 h of continued incubation, the cul-
ture medium was removed, and EdU was added for an 
additional 2  h. The cells were then stained using para-
formaldehyde according to the manufacturer’s instruc-
tions for subsequent staining. Imaging was performed 
using a confocal microscope, and cell counting was con-
ducted using ImageJ for analysis.

Wound healing assay
T24 and UMUC3 cells were seeded into a 6-well plate 
and subjected to siRNA transfection. When the cells 
reached approximately 100% confluence, a wound was 
created in the cell monolayer using a 10µL pipette tip. 
The medium was then replaced with serum-free culture 
medium and incubated in a cell culture incubator. Images 
were captured at 0 and 48 h under a microscope to record 
the wound healing process. ImageJ was used to analyze 
the extent of wound closure.

Transwell assay
Transfected cells were collected and subsequently cen-
trifuged. After centrifugation, cells were resuspended in 
serum-free RPMI-1640 or DMEM medium and cultured 
on the upper surface of Transwell chambers, while the 
lower chamber contained medium supplemented with 
FBS. After 24  h, residual cells on the upper membrane 
surface were gently wiped off using a cotton swab. Cells 
adhering to the lower membrane were fixed with 4% 
paraformaldehyde and stained with crystal violet. Subse-
quently, cells were photographed using an optical micro-
scope. Finally, cell analysis was performed using ImageJ.

Fig. 1 The flowchart illustrating the methodology of this study
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Results
Expression of anoikis‑related genes and construction 
of a prognostic model
The overall experimental design workflow for this study 
is illustrated in Fig. 1.

We initiated our study by retrieving and collecting 
anoikis-related genes from the Genecard and Harmoni-
zome databases. In the Genecard database, we selected 
genes with a correlation greater than 0.4. Subsequently, 
we defined genes with log FC > 1 and Fdr < 0.05 as dif-
ferentially expressed genes (DEGs) and identified DEGs 
related to anoikis in normal individuals and bladder can-
cer patients. A total of 57 DEGs were identified, consist-
ing of 29 upregulated and 28 downregulated genes. We 
then selected the top 50 DEGs with the largest differences 
to generate a heatmap and volcano plot (Fig. 2A, B).

Following this, we subjected these DEGs to univari-
ate Cox regression analysis and identified 13 genes that 
were associated with bladder cancer (Fig. 2C). To con-
struct a predictive model and assess its accuracy, we 
randomly divided the TCGA data into training and 
internal validation sets in a 1:1 ratio, The clinical infor-
mation between the two patient groups showed no 
statistically significant differences (Additional file  1: 
Table  S1). Using LASSO Cox regression analysis, we 
established a prognostic gene model for bladder can-
cer patients as shown in Fig.  2D and Additional file 1: 
Figure S1A. Ultimately, we constructed the prognostic 
model using TPM1, RAC3, and S100A7, and calculated 
the risk scores as formula mentioned before.

Fig. 2 Establishment of prognostic model for BCa. A The heatmap of differentially expressed ARGs. B The volcano plot of differentially expressed 
ARGs. C Cox regression of ARGs associated with prognosis. D Cross-validation for variable selection in LASSO analysis
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Internal validation and external validation 
of the prognostic model
In TCGA, patients in both the training and validation 
sets were stratified into high-risk and low-risk groups 
using the risk model. As shown in Fig. 3A–C, patients 
in the high-risk group exhibited poorer prognoses in 
training set (p = 0.002), validation set (p = 0.01) and all 
TCGA set (p < 0.001). Furthermore, from the scatter 
plot and heatmap of patient risk scores, it is evident 
that the high-risk group has a higher number of deaths 
compared to the low-risk group and all three genes are 
highly expressed in the high-risk group. (Fig. 3D–I). To 
further validate the accuracy of our model, we sepa-
rately investigated the impact of the three genes on the 
prognosis of bladder cancer patients. Survival curves 
revealed that high expression of all three genes was 

associated with adverse outcomes in Fig.  3J–L (TPM1 
p < 0.001; RAC3 p < 0.001; S100A7 p = 0.005).

We merged GSE13507 and GSE31684 datasets into 
a single dataset for external validation. Using the risk 
model calculation formula, we stratified bladder cancer 
patients from the GEO dataset into high-risk and low-
risk groups. Survival curve analysis in Fig. 3M revealed 
that patients in the high-risk group had significantly 
worse prognoses (p = 0.016), consistent with our find-
ings in the TCGA database. Additionally, we investi-
gated the impact of the risk model on Progression-Free 
Survival (PFS) in bladder cancer patients using the 
TCGA database. The results in Fig.  3N showed that 
patients in the high-risk group had shorter PFS 
(p = 0.003).

Fig. 3 Prognosis of the risk model in different cohorts. The Kaplan-Meier curves, survival status and the heatmap of 3 ARGs in train cohort A, D, G, 
test cohort B, E, H and all TCGA cohort C, F, I. J–L Impact of each model gene on patient survival. M The Kaplan-Meier curve in GEO cohort. N The 
Kaplan-Meier curve of PFS.
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Determination of independent prognostic indicators
We verified whether our prognostic model can serve as 
an independent prognostic factor for bladder cancer 
patients by conducting univariate Cox regression and 
multivariate Cox regression analyses. We conducted 
separate analyses for the training set, validation set, and 
the entire TCGA cohort. In the training set shown in 
Fig. 4A, B, both univariate and multivariate Cox regres-
sion analyses indicated that age, stage, and the risk model 
were independent prognostic factors. Similar results 
were obtained in the training set (Fig.  4C, D) and the 
entire TCGA cohort (Additional file  1: Figure S1B, C). 
The Additional file S1: Fig.  2A–F display the impact of 
different risk factors on survival. This suggests that our 
prognostic risk model can be applied as an independent 
prognostic factor in bladder cancer patients.

Construction of nomogram
To provide more individualized guidance and prognos-
tic assessment for bladder cancer patients, we developed 
a nomogram. This nomogram shown in Fig.  4E incor-
porates our prognostic model along with other clinical 
indicators to assign scores to different bladder cancer 
patients. These scores are then used to predict the 1-year, 
3-year, and 5-year survival rates of the patients. To vali-
date the accuracy of the nomogram, we introduced a 
calibration curve (Fig. 4F–H). The results showed a close 
alignment between our model’s predictions and the 
actual survival rates of the patients, indicating that our 
nomogram is highly accurate and can provide valuable 
guidance for clinical treatment.

Clustering and analysis of molecular subgroups
We performed cluster analysis of bladder cancer 
patients from TCGA based on the model genes using 
the ‘ConsensusClusterPlus’ R package, which resulted 
in the classification of patients into two groups, A and 
B (Fig. 5A). Survival analysis shown in Fig. 5B revealed 
that bladder cancer patients in Group B had signifi-
cantly worse survival outcomes compared to Group 
A (p = 0.015). The Sankey diagram results show that 
patients belonging to the low-risk group and Cluster 
A have a better prognosis (Fig.  5C). Subsequently, we 
conducted principal component analysis (PCA) and 
found clear differentiation between the two groups 
(Additional file 1: Figure S3A, B).

Following the identification of survival differences 
between the two groups, we applied Gene Set Varia-
tion Analysis (GSVA) to further analyze the patients 
(Fig.  5D). The results indicated significant pathway 
differences between the two groups, with the top 50 
pathways presented in the form of a heatmap. Gene Set 
Enrichment Analysis (GSEA) was also applied, reveal-
ing that the ’metabolism of xenobiotics by cytochrome 
P450’ pathway was significantly activated in Group A 
patients (Fig.  5E). In contrast, pathways activated in 
Group B patients included ‘Cytokine–receptor inter-
actions,’ ‘Hematopoietic cell lineage,’ ‘JAK/STAT path-
way,’ and ’Leishmania infection.’ (Fig. 5F) The activation 
of these pathways in Group B patients may be associ-
ated with adverse prognostic outcomes. Meanwhile, 
there were significant differences in immune cell scores 
among patients in different subgroups (Fig. 5G).

Fig. 4 Determination of independent prognostic factors and nomogram. A, B The univariate and multivariate Cox regression analyses in training 
set. C, D The univariate and multivariate Cox regression analyses in test set. E The establish of nomogram. F–H The calibration curve which illustrates 
the consistency between actual outcomes and predictions
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Correlations between clinicopathological features 
in different groups
We utilized a heatmap to assess the clinical-patholog-
ical characteristics of patients in different prognostic 
risk groups, as shown in Fig. 6A. The results indicated 
that there were no statistically significant differences 
in age and gender between the high-risk and low-risk 
groups. However, significant differences were observed 
in tumor stage, grade, and TNM classification between 
the two groups. Subsequently, we conducted further 
analysis of tumor stage (Additional file 1: Figure S4) and 
T classification, revealing that high-risk group patients 
had significantly higher tumor stage (p = 0.001), and 
there was a higher proportion of T3 and T4 patients 
in the high-risk group with statistical significance 
(p = 0.014).

Functional analysis between two groups
To further investigate the differences between the high 
and low-risk groups, we employed the “limma” package 
with criteria of |logFC|> 1 and fdr < 0.05. This analysis 
identified a total of 326 differentially expressed genes, of 
which 61 genes were upregulated in the low-risk group, 
while 265 genes were upregulated in the high-risk group 
(Additional file 1: Table S2).

Gene Ontology (GO) analysis shown in Fig. 6B revealed 
that in the Biological Process (BP) category, differen-
tially expressed genes were primarily associated with 
extracellular matrix organization, extracellular struc-
ture organization, and external encapsulating structure 
organization. In the Cellular Component (CC) category, 
these genes were mainly related to the collagen-contain-
ing extracellular matrix. In the Molecular Function (MF) 
category, enriched differentially expressed genes were 

Fig. 5 Subgroups determination and analysis. A The discrimination is most pronounced when the k = 2. B The Kaplan–Meier curve of OS 
between two subgroups. C Sankey diagram illustrating the relationship between patient high/low-risk grouping, subgroups, and prognosis. D GSVA 
between two clusters. E–F GSEA between two clusters. G Different immune cell scores between two clusters

Fig. 6 Different clinical, pathological characteristics and richness analysis. A The Clinical correlation analysis. B The different richness of molecular 
biological processes (BP), cellular components (CC), and molecular functions (MF) through GO analysis. C The different richness pathways via KEGG 
analysis
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primarily associated with extracellular matrix structural 
constituents. Additionally, KEGG pathway enrichment 
analysis indicated a close association of these differen-
tially expressed genes with the Focal adhesion and PI3K-
Akt signaling pathways (Fig. 6C).

Differences in immune cell infiltration and immune 
checkpoint expression
To investigate whether there are differences in immune 
cell infiltration between high-risk and low-risk group 
patients, we conducted an analysis using CIBERSORT. 
As depicted in the bar charts and violin plots in Fig. 7A, 
B, there were notable differences in the infiltration of 
various immune cells between the two groups. Plasma 
cells, T cells CD8, T cells CD4 memory activated, T cells 
regulatory (Tregs), and Eosinophils were significantly 
increased in the low-risk group, while Macrophages M0 
and Macrophages M2 were markedly elevated in the 
high-risk group. This suggests that increased infiltration 
of macrophages, especially the M2 subtype, might be 
associated with adverse prognostic outcomes, although 
further experiments are needed to validate this. Sub-
sequent correlation analysis revealed that T cells CD4 
memory resting, neutrophils, macrophages M2, and 
macrophages M0 were positively correlated with the risk 
score. The correlations between different immune cells, 

model genes, and risk scores are detailed in the Addi-
tional file 1: Figure S5.

The ESTIMATE results indicate that patients in the 
high-risk group exhibit higher stromal, immune, and 
ESTIMATE scores compared to the low-risk group 
(Fig.  7C). Given the significant differences in immune 
cell infiltration between different groups of patients, 
we also analyzed the expression of immune checkpoint 
markers in these groups (Fig.  7D). The results showed 
that the majority of immune checkpoint markers, such 
as CTLA4, PDCD1, were highly expressed in high-risk 
group patients. Interestingly, only TNFRSF14 exhibited a 
negative correlation with the risk score, indicating higher 
expression in low-risk group patients.

Tumor mutation analysis, immunotherapy and drug 
sensitivity between two groups
The tumor mutation analysis results indicate significant 
differences in gene mutation profiles between the high-
risk and low-risk groups in Fig.  8A, B. In the high-risk 
group, TP53 had the highest mutation frequency at 58%, 
followed by TTN at 42%. Conversely, in the low-risk 
group, the situation was markedly different, with TTN 
having the highest mutation frequency at 43%, and TP53 
mutation frequency decreasing to 39%. This suggests that 

Fig. 7 Analysis of different immune cell infiltrations. A, B The different immune cell infiltrations between high and low risk groups. C The estimate 
score between high and low risk groups. D The different expression of immune checkpoint markers
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the high mutation rate of TP53 may be associated with a 
high-risk score and poor prognosis.

Although there is no difference in tumor muta-
tion burden (TMB) between the high-risk and 

low-risk groups, survival analysis results indicate 
that high-risk patients with low TMB have a poorer 
prognosis (Fig.  8C). In the low-risk group, both IPS 
and IPS-CTLA4 scores are comparatively higher 

Fig. 8 Somatic mutation characteristics and immunotherapy analysis. A, B The different somatic mutation characteristics in different risk groups. C 
The Kaplan–Meier survival curves between the four different groups. D–G The different IPS scores in different groups

Fig. 9 The pivotal role of S100A7. A Copy number variations of different prognostic genes. B Circus plot illustrating the mutation positions 
of different prognostic genes. C The different expression of S100A7 in different cancers. D The expression of S100A7 between normal and tumor 
tissues. E, F The correlation among the expressions of CTLA4, PDCD1, and S100A7. G The relationship between different immune subtypes 
and S100A7
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(Fig. 8D–G). Drug sensitivity is explained in the Addi-
tional file 1.

Determine the key role of S100A7
First, we performed copy number variation (CNV) 
analysis on the 13 pathogenic genes identified through 
single-factor Cox regression. As shown in Fig.  9A, we 
found that S100A7 had the highest copy number gain. 
Additionally, we used a circular plot to label the posi-
tions of these genes on the chromosome (Fig.  9B). 
Pan-cancer analysis reveals a significant upregula-
tion of S100A7 expression in various cancers, includ-
ing bladder cancer (Fig.  9C). Furthermore, analysis in 
the GEPIA database revealed that S100A7 is highly 
expressed in tumor cells (Fig.  9D). TISIDB database 
analysis indicated a positive and statistically significant 
correlation between S100A7 and immune checkpoint-
related genes CTLA4 and PDCD1 (Fig.  9E, F). Fig-
ure 9G indicated that there is also a strong connection 
between the immune microenvironment and S100A7. 
Bladder cancer patients were classified into six immune 
subtypes, which may assist in categorizing different 
types of bladder cancer based on immune responses. 
Based on these results, we speculate that S100A7 may 
have a relationship with the immune microenviron-
ment, which in turn affects tumor development and 
treatment response.

To further explore the regulatory mechanisms 
involved, we identified seven potential transcrip-
tion factors (TFs) that could potentially regulate the 
expression of S100A7 (Table  1). Differential analysis 
revealed that only SATB1 exhibited significant differ-
ences between normal and tumor patients (Additional 
file  1: Table  S3). This suggests that SATB1 may play a 
crucial role in the regulation of S100A7, although fur-
ther experimental validation is needed. In conclusion, 
S100A7 plays a significant role in bladder cancer, and as 
such, we have selected it for further experimental vali-
dation and analysis.

Cellular Experiments Validating the Role of S100A7
We selected two small interfering RNAs (siRNAs) for 
transfection into T24 and UMUC-3 bladder cancer cell 
lines to validate the impact of S100A7 on tumor cells. 
Subsequently, we conducted CCK-8 and EdU assays on 
transfected cells. The results in Fig. 10A revealed that the 
proliferation capacity of cells was notably reduced after 
S100A7 knockdown. The EdU assay shown in Fig. 10B, C 
also indicated a significant decrease in the percentage of 
green fluorescent-positive cells after transfection. Scratch 
assays in Fig. 10D demonstrated that the migration ability 
of tumor cells was substantially decreased upon S100A7 
silencing. Transwell experiments further confirmed that, 
compared to non-knockdown cells, S100A7-silenced 
cells exhibited significantly reduced migration capabili-
ties (Fig.  10E, F). These in  vitro experimental findings 
underscore the significant role of S100A7 in tumor cell 
proliferation and migration, suggesting its potential as a 
therapeutic target in future bladder cancer treatments.

Discussion
Bladder cancer is a highly recurrent and invasive tumor, 
with a very low 5-year overall survival rate for patients 
with metastatic bladder cancer [21]. Anoikis, a form of 
programmed cell death, prevents detached cells from 
adhering to inappropriate locations and developing 
abnormally, making it a crucial cellular defense mecha-
nism [22]. It can be triggered through various intracel-
lular pathways, including DNA damage and endoplasmic 
reticulum stress, as well as extrinsic pathways [23, 24]. 
Some researchers consider anoikis induction as a poten-
tial hallmark of cancer cells, as it can promote tumor 
invasion, metastasis, and resistance to therapies [25–27]. 
Therefore, we established a prognostic risk model related 
to anoikis to predict the prognosis of bladder cancer 
patients and aid in the development of potential thera-
peutic strategies. Furthermore, we conducted in-depth 
research into the role of anoikis-related gene S100A7 in 
bladder cancer, particularly its impact on cell prolifera-
tion and invasion.

In this study, we initiated an analysis of anoikis-
related genes in normal and bladder cancer tissues. The 
results revealed elevated expression of multiple anoikis-
related genes in bladder cancer, consistent with previous 
research and indicating a potential association between 
anoikis and bladder cancer prognosis [28, 29], suggest-
ing therapeutic significance. Subsequently, employing 
COX regression and LASSO regression analyses, we 
established a prognostic model for anoikis-related out-
comes involving three genes (TPM1, RAC3, S100A7). 
Further analysis of this model demonstrated significant 
discriminative ability in the TCGA internal training 

Table 1 The potential transcription factors for S100A7

Gene TF

S100A7 ZNF750

GRHL1

STAT1

SATB1

GRHL3

FOXN1

ASCL1
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set (p = 0.002), validation set (p = 0.01), overall TCGA 
cohort (p < 0.001), and external GEO validation cohort 
(p = 0.016). These findings underscored the substan-
tial impact of anoikis on the overall survival of cancer 
patients. Indeed, the role of anoikis has been extensively 
investigated in patients with hepatocellular carcinoma 
[30], prostate cancer [31, 32], gastric cancer [33, 34], and 
other malignancies [35–37]. This study aims to further 
contribute to the understanding of the role of anoikis in 
bladder cancer patients, thereby addressing a gap in the 
current research on this topic in bladder cancer.

The TPM1 gene is considered a member of the tumor-
related protein family, originally known as the tropo-
myosin family [38]. It regulates tumor-specific variations 
by modulating stress fibers and modifying the actin 

cytoskeleton through the aggregation of actin filaments 
[39]. The correlation between RAC3 and poor progno-
sis in bladder cancer has been established [40]. Cheng 
and his colleagues found that elevated RAC3 expres-
sion is associated with adverse clinical outcomes and an 
increased tumor immune response [41]. This may explain 
the higher immune scores and elevated expression of 
immune checkpoint genes observed in the high-risk 
group. Furthermore, Professor Wang’s team discovered 
that knocking down RAC3 can inhibit the proliferation 
and invasion of bladder cancer cells without inducing 
apoptosis. The underlying mechanism involves RAC3’s 
regulation of the PI3K/AKT/mTOR pathway to modulate 
autophagy, influencing the biological activity of bladder 
cancer cells [42, 43]. Similar findings were observed in 

Fig. 10 Cellular experiments of S100A7. A CCK8 experiments in T24 and UMUC-3 cell lines. B, C EdU analysis in T24 and UMUC-3 cell lines. D Wound 
healing experiments in two bladder cancer cell lines. E Transwell experiments in two bladder cancer cell lines
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our study, as indicated by KEGG analysis showing sig-
nificant differences in the enrichment of the PI3K/AKT 
pathway between high and low-risk groups. This sug-
gests that RAC3 may impact the progression of bladder 
cancer by modulating autophagy through the PI3K/AKT 
pathway.

In this study, we delved further into the role of S100A7 
in bladder cancer cells. Our pan-cancer analysis revealed 
elevated expression of S100A7 in various cancer cells, 
including bladder cancer. TISIDB analysis indicated a 
correlation between high S100A7 expression and adverse 
outcomes in bladder cancer patients, suggesting a close 
association with tumor progression. Under pathological 
conditions, increased intracellular expression of S100A7 
was linked to enhanced tumor cell proliferation and 
migration [44]. Once secreted, S100A7 might act as a 
mediator in the interaction between tumor cells and the 
tumor microenvironment. Secreted S100A7 can bind to 
receptors such as the receptor for advanced glycation 
end products (RAGE) and Toll-like receptor 4 (TLR4), 
exerting paracrine effects to promote immune cell 
recruitment and endothelial cell proliferation [45, 46]. 
Moreover, elevated expression of S100A7 was observed 
in bladder cancer patients with muscle-invasive tumors, 
thus piquing our interest. Therefore, we employed two 
siRNAs to downregulate the expression of S100A7 in T24 
and UMUC-3 cells. The results indicated that reducing 
the expression of S100A7 led to a significant inhibition of 
bladder cancer cell proliferation and invasion. After the 
suppression of S100A7 expression, its binding with JAB1 
and activation of the RAGE/S100A7 axis were reduced. 
Consequently, the activation of cancer-related signaling 
pathways such as AKT, ERK, AP-1, STAT3, and NF-kB 
was inhibited, leading to a blockade in tumor prolifera-
tion and invasion capabilities [44, 45].

With the advancement of machine learning, radiog-
enomics is gaining increasing recognition. In the con-
text of renal cancer, the use of non-invasive diagnostic 
methods such as CT or MRI [47], combined with genetic 
analysis of disease-relevant factors, provides more pre-
cise guidance for clinical diagnosis, treatment selection, 
and prognosis assessment [48]. The application of artifi-
cial intelligence has propelled disease diagnosis to new 
heights, enabling the accurate identification of subtle 
differences in images such as CT and MRI and precise 
identification of tumor subtypes that are challenging to 
distinguish [49]. This significantly enhances the effective-
ness and accuracy of diagnosis.

The close association between apoptosis dysregula-
tion and the prognosis of bladder cancer suggests that 
conducting relevant genetic tests aids in understanding 
patient prognosis and facilitates personalized treatment 

selection. Of particular note is the close integration of 
our model with immunotherapy, allowing the selec-
tion of different therapeutic agents based on individual 
patient differences. In future treatments, the combina-
tion of artificial intelligence and radiogenomics, estab-
lishing a radiogenomics approach that integrates 
apoptosis dysregulation with imaging, will play a cru-
cial role in the diagnosis, treatment selection, and prog-
nosis evaluation of bladder cancer.

At the same time, it is undeniable that our study has 
its limitations. Firstly, our cohort studies are based 
on public databases and do not include our hospital’s 
cohort. Secondly, the regulatory mechanism of S100A7 
on the proliferation and migration capabilities of blad-
der cancer cells was not further investigated.

Overall, our study reveals the significant role of 
anoikis in bladder cancer. Moreover, we have success-
fully established a stable and accurate prognostic model 
that can predict patient outcomes and provide valu-
able insights for the effective use of immunotherapy 
and drugs. Additionally, our data analysis and in  vitro 
experiments have identified a promising therapeutic 
target for bladder cancer treatment, namely S100A7. 
These findings are meaningful and have the potential to 
advance the field of BLCA research, possibly improving 
treatment outcomes for patients.
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