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Abstract 

Background  Clear-cell renal cell carcinoma (ccRCC) is one of prevalent kidney malignancies with an unfavorable 
prognosis. There is a need for a robust model to predict ccRCC patient survival and guide treatment decisions.

Methods  RNA-seq data and clinical information of ccRCC were obtained from the TCGA and ICGC databases. Expres-
sion profiles of genes related to natural killer (NK) cells were collected from the Immunology Database and Analysis 
Portal database. Key NK cell-related genes were identified using consensus clustering algorithms to classify patients 
into distinct clusters. A NK cell-related risk model was then developed using Least Absolute Shrinkage and Selection 
Operator (LASSO) Cox regression to predict ccRCC patient prognosis. The relationship between the NK cell-related 
risk score and overall survival, clinical features, tumor immune characteristics, as well as response to commonly used 
immunotherapies and chemotherapy, was explored. Finally, the NK cell-related risk score was validated using decision 
tree and nomogram analyses.

Results  ccRCC patients were stratified into 3 molecular clusters based on expression of NK cell-related genes. Signifi-
cant differences were observed among the clusters in terms of prognosis, clinical characteristics, immune infiltration, 
and therapeutic response. Furthermore, six NK cell-related genes (DPYSL3, SLPI, SLC44A4, ZNF521, LIMCH1, and AHR) 
were identified to construct a prognostic model for ccRCC prediction. The high-risk group exhibited poor survival 
outcomes, lower immune cell infiltration, and decreased sensitivity to conventional chemotherapies and immuno-
therapies. Importantly, the quantitative real-time polymerase chain reaction (qRT-PCR) confirmed significantly high 
DPYSL3 expression and low SLC44A4 expression in ACHN cells. Finally, the decision tree and nomogram consistently 
show the dramatic prediction performance of the risk score on the survival outcome of the ccRCC patients.

Conclusions  The six-gene model based on NK cell-related gene expression was validated and found to accu-
rately mirror immune microenvironment and predict clinical outcomes, contributing to enhanced risk stratification 
and therapy response for ccRCC patients.
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Introduction
Clear-cell renal cell carcinoma (ccRCC) represents the 
most prevalent histological subtype of renal cell carci-
noma (RCC), accounting for over 70% of the cases world-
wide [1–5]. With its high invasiveness and recurrence, 
ccRCC annually causes more than 175,000 mortality 
rates worldwide and a poor 5-year survival probability 
of approximately 50% [6–10]. Although partial or radical 
nephrectomy is currently the optimal choice for ccRCC, 
about 25% of patients present with lymph node or dis-
tant metastasis at the first diagnosis and are unable to 
undergo surgery, while over 30% of ccRCC patients 
experience relapse and metastases after surgery [11–
13]. The considerable exploration of prognostic models 
of ccRCC and the wide application of immune check-
point-blocking therapies have gradually shown power-
ful potential and may offer new therapeutic options for 
ccRCC patients [14–18]. Emerging evidence has proven 
that immune cells serve an essential function in ccRCC 
pathogenesis, providing a novel outlook into immuno-
therapy for ccRCC [19–22]. The previously constructed 
immune/stromal scores have indicated a strong asso-
ciation between ccRCC prognosis monitoring and preci-
sion immunotherapy [23]. And the 3 immune infiltration 
patterns of ccRCC showed that ccRCC had the highest 
immune infiltration and T cell infiltration score [24]. 
Importantly, the complete single-cell chromatin chart of 
immune cells in ccRCC assisted us in better understand-
ing immune cell functional states in ccRCC [25]. Mean-
while, several single-cell sequencing analyses provided 
an in-depth knowledge of the immune landscape and 
immune cell infiltration patterns of ccRCC, which con-
tributed to setting a foundation for the theoretical basis 
of targeted therapy [26–28].

Recently, natural killer (NK) cells have been shown to 
play a critical role in immune surveillance against viruses, 
bacterial infections, and tumors [29–31]. NK cells encode 
both activating and inhibitory receptors and further inte-
grate diverse signaling pathways to exert correspond-
ing functional outcomes, especially in the production 
of cytokines and chemokines [32–34]. The significant 
advances in NK-cell biology and the gradual unveiling 
of molecular mechanisms have provided novel strategies 
involving the regulation of NK activation and cancer cell 
recognition, which are considered as important for can-
cer immunotherapy [35–39]. Moreover, immune cell-
based prognostic models have been widely explored in 
clinical settings for guiding cancer management [40–42]. 
An increasing number of NK cell-related genes are being 
widely studied for their important roles in various types 
of tumors. For example, NKG2D, NKp30, and NKp46 
trigger cytotoxic effects by binding to ligands on the 
surface of tumor cells, thus exerting anti-tumor effects 

[43–45]. And NK cells are recognized as a significant 
prognostic factor for multiple cancers. In gastric cancer, 
researchers have found that abnormal percentage of NK 
cell in peripheral blood predicts patients’ poor survival 
rates [46]. In triple-negative breast cancer, a 5-NK cell-
related gene model also exhibit powerful value for prog-
nosis prediction and immunotherapy evaluation [47]. 
However, there is currently no comprehensive under-
standing on the role of NK cell-related genes in ccRCC.

Therefore, the objective of this study is to investigate 
the role of NK cells in the carcinogenesis process of 
ccRCC, and to evaluate the potential value of targeting 
NK cell-related genes for optimizing risk stratification 
and predicting treatment efficacy in ccRCC. We esti-
mated associations between the expression features and 
functional features of NK cell-related genes with ccRCC, 
and constructed a prognostic risk model to estimate the 
tumor immune microenvironment, predict prognosis, 
explore the treatment response, and allow for risk stratifi-
cation. Our findings can aid in accurate therapeutic deci-
sions being made for ccRCC patients.

Materials and methods
Data collection and processing
The transcriptome RNA-sequencing (RNA-seq) data and 
relevant clinical information on ccRCC were retrieved 
from TCGA-KIRC project of the Cancer Genome Atlas 
(TCGA) database (https://​portal.​gdc.​cancer.​gov/​proje​
cts/​TCGA-​KIRC). Total 134 genes associated with natu-
ral killer cells were obtained from the Immunology Data-
base and Analysis Portal (ImmPort) database (https://​
www.​immpo​rt.​org/​home) [48]. The RECA-EU database 
of the International Cancer Genome Consortium (ICGC) 
database was searched to obtain the corresponding RNA-
seq data and clinical information (https://​dcc.​icgc.​org/​
proje​cts/​RECA-​EU) as validation set.

Cell culture and qRT‑PCR analysis
Human ccRCC ACHN cells and kidney proximal tubu-
lar epithelial (HK2) cells were cultivated in Dulbecco’s 
modified Eagle’s medium (DMEM) with 10% fetal bovine 
serum (FBS) and 1% penicillin–streptomycin. All cells 
were cultured under humidified conditions at 5% CO2 
and at 37  °C. We conducted a qRT-PCR to quantify the 
expression of the genes selected to be used in the model. 
Total RNA was obtained from the cultured cells using 
TRIzol reagent (Invitrogen, CA, USA). The PrimeScript™ 
RT reagent kit (Takara, Shiga, Japan) was applied to 
reverse transcribe the RNA into complementary DNA 
(cDNA), following the manufacturer’s instructions [49]. 
Sequences of all primers used are presented in Additional 
file 1: Table S1. The experiments on each gene were per-
formed in triplicate and the average cycle threshold (Ct) 

https://portal.gdc.cancer.gov/projects/TCGA-KIRC
https://portal.gdc.cancer.gov/projects/TCGA-KIRC
https://www.immport.org/home
https://www.immport.org/home
https://dcc.icgc.org/projects/RECA-EU
https://dcc.icgc.org/projects/RECA-EU
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was computed. The mRNA levels were normalized to 
that of the housekeeping gene, GAPDH, using the 2−ΔΔCt 
method.

Identification of NK cell‑related genes specific to ccRCC 
prognosis and the establishment of a molecular cluster
A univariate Cox regression model analysis was per-
formed on the TCGA database to select prognostic genes 
among the NK cell-related genes using the R package sur-
vival “coxph” function. Then, the R package, ‘Consensus-
ClusterPlus’, was used to construct a consistency matrix 
and classify the ccRCC samples in TCGA dataset into 
distinct molecular clusters. The optimal number of clus-
tering was identified using the cumulative distribution 
function (CDF) curve [50]. Kaplan–Meier survival analy-
sis was performed to estimate the prognosis of patients in 
each molecular cluster.

Relationships between molecular clusters and clinical 
features, immune infiltration, and treatment response
Moreover, we also explored the distribution of clini-
cal-pathological features among the distinct molecular 
clusters using a Chi-square test and one-way analysis of 
variance (ANOVA) using SPSS version 20.0 (SPSS Inc., 
Chicago, IL). To describe the differences of immune cell 
infiltration and the abundance of stromal cells in each 
distinct cluster, we implemented the R package, microen-
vironment cell populations-counter (MCP-counter) [51], 
single-sample gene set enrichment analysis (ssGSEA) 
[52], as well as the Estimation of Stromal and Immune 
cells in Malignant Tumors using Expression data (ESTI-
MATE) algorithm [53]. Meanwhile, we assessed the 
immunotherapeutic response of each cluster to immune 
checkpoint blockade (ICB) using the Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm [54]. In 
addition, IC50 concentrations were also assessed using 
the R package, ‘pRRophetic’, to measure the sensitivity of 
the ccRCC patients in each cluster to several chemother-
apeutic agents in the GDSC database (Genomics of Drug 
Sensitivity in Cancer, https://​www.​cance​rrxge​ne.​org/).

Establishment of a NK cell‑related model
Based on the above molecular clusters, we performed 
differential gene expression (DGE) analysis on each cou-
ple of clusters using the R package, ‘limma’. The selec-
tion criteria were log fold change (FC) > 1 and adjusted 
p-value < 0.05. Then, we took the intersection between 
the significantly differential expressed NK cell-related 
genes (DE-NKRGs) of each cluster. The univariate Cox 
analysis was used to identify the DE-NKRGs with a 
threshold of p < 0.001. To construct the prognostic model, 
least absolute shrinkage and selection operator (LASSO) 
regression were performed on the TCGA database using 

the R package, ‘glmnet’. Based on the minimum criteria, 
the optimal tuning parameter λ and coefficients were cal-
culated through tenfold cross-validation. The multivari-
able stepwise Cox regression model was further used to 
identify parameter values using the Akaike information 
criterion (AIC). Then, a prognostic gene model was con-
structed based on the linear combination of the LASSO 
regression coefficient (β) weighted by its mRNA expres-
sion level. The patients were divided into high-risk or 
low-risk groups based on the median score. Meanwhile, 
the ROC curve was constructed using the R package, 
‘time ROC’ to estimate model performance. The Kaplan–
Meier (KM) curve was analyzed using the R package, 
‘survival’ to analyze the outcomes of both groups. Finally, 
we used the ICGC database to validate the prognostic 
value and robustness of the model.

Relationships between risk score and clinical 
characteristics, immune infiltration, and therapeutic effects
The relationships between the risk score and multiple 
clinical factors, including neoadjuvant status, sex, and 
age, were estimated. Subsequently, we employed the 
MCP-counter method to compare the degree of immune 
cell infiltration between the high- and low-risk groups of 
the TCGA cohort. It is generally known that differences 
in the expression of immune checkpoint genes influ-
ence the response after immune checkpoint inhibitor 
treatment in malignant tumors. Therefore, we evaluated 
differences in the expression levels of the immune check-
points downloaded from the HisgAtlas database (http://​
biokb.​ncpsb.​org/​HisgA​tlas/) between two risky groups 
[55]. The TIDE algorithm was further used to analyze the 
efficacy of immunotherapy. To explore the sensitivity to 
different types of treatments in each risk group of TCGA 
cohort, ridge regression was applied to assess the IC50 of 
the chemotherapy drugs.

Predictive decision‑tree model and nomogram 
construction
To explore the importance of the risk score and clinical 
factors, 4 clinical factors, age, gender, grade, and TNM 
stage, were extracted from the above analysis and used as 
input features, and were used along with the risk score to 
construct the decision tree model using R package, ‘rpart’. 
Univariate and multivariate Cox regression analyses were 
further performed to identify significant prognostic fac-
tors for ccRCC. Furthermore, the nomogram model, 
which integrated clinical features (age, gender, and tumor 
stage) and the risk score, was constructed using the R 
package, ‘rms’, to clearly and precisely predict the 1-, 3-, 
and 5-year outcomes of the patients [56]. Subsequently, 
the calibration curves were used to test the performance 
of the nomogram against the actual survival rate. Finally, 

https://www.cancerrxgene.org/
http://biokb.ncpsb.org/HisgAtlas/
http://biokb.ncpsb.org/HisgAtlas/
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time-dependent (tROC) analysis was performed using 
the R package, ‘survivalROC’ to estimate the predictive 
power of the nomogram, stage, grade, TNM stage, age, 
and risk score [57].

Statistical analysis
Statistical analyses were performed using R version 4.0.4 
and SPSS 26.0 software, while figures were drawn using 
GraphPad Prism 8.4.2 software. Differences between 
groups were compared using the Wilcoxon test or 
Kruskal–Wallis test. A p value < 0.05 was considered to 
indicate statistical significance in all analyses.

Results
Molecular clusters of ccRCC based on the NK cell‑related 
genes
First, univariate Cox regression analysis was used to 
screen the NK cell-related genes that were significantly 
associated with the prognosis of ccRCC data obtained 
from the TCGA database. Overall, 55 genes were selected 
based on their prognostic value, including 18 hazard-
ous genes and 37 protective genes (Fig.  1a). Based on 
the expression levels of these 55 genes, we conducted a 

consensus clustering analysis on the ccRCC patients to 
better understand the role of the NK cell-related genes 
in ccRCC. We continuously increased the clustering vari-
able k from 2 to 9, and found that k = 3 produced the ideal 
cumulative distribution function (CDF) value and delta 
area (Fig.  1b, c). Therefore, the patients in the TCGA 
cohort were divided into 3 clusters of NK-related genes: 
C1, C2, and C3 (Fig. 1d). KM analysis illustrated that C2 
genes increased overall survival (OS) and that the C3 
patients had relatively poorer outcomes (Fig. 1e).

Comparison of clinical features, immune characteristics 
of TME, and the therapeutic response between the 3 
molecular clusters
The distribution of clinical features among the 3 clusters 
showed that differences exist based on the stage, grade, 
T stage, M stage, age, and gender of the 3 clusters in the 
TCGA database. Patients younger than 60 years with less 
advanced tumor stages were more concentrated in the 
C2 cluster (Additional file 1: Fig. S1A). Additionally, the 
interaction between the tumor immune microenviron-
ment and cancer cells determined cancer progression 
and the efficacy of immunotherapy. The MCP-Counter 

Fig. 1  Development of molecular clusters based on the expression of NK cell-related gene in ccRCC using the TCGA database. A Univariate 
Cox analysis of 134 NK cell-related genes. B CDF curves for k ranging from 2 to 9. C Corresponding change in the area under the CDF curve. D 
Consensus clustering matrix for the optimal, k = 3. E Kaplan–Meier survival analysis of patients in cluster 1, cluster 2, and cluster 3
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algorithm was applied to identify the degree of infil-
tration of 10 immune cells and it was found that the 
immune scores were highest in the C2 cluster (Addi-
tional file 1: Fig. S1B). Through the ESTIMATE method, 
we also found significant differences in the infiltration of 
stromal and immune cells into tumor tissues. The results 
revealed that the C2 cluster possessed higher stromal and 
immune scores (Additional file  1: Fig. S1C). Based on 
these immune features, we determined the expression of 
immune checkpoint genes and most immune checkpoint 
genes were found to be highly expressed in the C2 cluster 
(Additional file  1: Fig. S1D). To further evaluate patient 
populations that may benefit from immunotherapy, the 
TIDE algorithm found that the C3 cluster had a higher 
TIDE score than the other 2 clusters (Additional file  1: 
Fig. S1E). The C2 cluster was found to be more sensitive 
to traditional chemotherapies, such as rapamycin, suni-
tinib, paclitaxel, sorafenib, crizotinib, and AKT inhibitor 
VIII (Additional file 1: Fig. S1F).

Determination of crucial NK cell‑related genes
We conducted differential gene expression analyses 
separately on each pair of clusters using the “limma” 
R package and obtained 1183 common differentially 
expressed NK-related genes (DE-NKRGs) for the inter-
section between the results. Furthermore, univariate 
COX regression analysis of the DE-NKRGs indicated 
that 518 genes were mainly involved in patient progno-
sis and included 3 risk-related genes and 515 protective 
genes (Fig.  2a). Then, the LASSO Cox regression was 
employed to shrink the scope of the genes and the model 
was found to be optimal when the value of lambda was 
0. 0473 (Fig.  2b, c). The expression of 6 genes included 
2 risk-related genes (DPYSL3 and SLPI) and 4 protective 
genes (SLC44A4, ZNF521, LIMCH1, and AHR) was esti-
mated in two cell lines by qRT-PCR (Fig. 2d). The qRT-
PCR results exhibited that the risk-related gene DPYSL3 
was highly expressed and the protective gene SLC44A4 
was lowly expressed in ACHN cells, which was consist-
ent with expectations. Meanwhile, ZNF521, LIMCH1, 
and AHR expression were upregulated in the ACHN 
cells compared with the HK2 cells. The SLPI expression 
was no clear difference between ACHN and HK2 cells 
(Fig. 2e).

Construction of a NK cell‑related risk signature
The selected 6 DE-NKRGs were incorporated 
into the risk score: risk score = − 0.375*LIMCH1-
0 . 3 8 4 * A H R - 0 . 2 8 7 * Z N F 5 2 1  +  0 . 4 1 2 * D P Y S L 3 -
0.137*SLC44A4 + 0.121*SLPI. Based on the median 
value, we separated the patients into low-risk and high-
risk groups. It was observed that patients with a high-
risk score had a poorer prognosis than that those with a 

low-risk score (Fig. 3a) [58]. The ROC analysis was con-
ducted to analyze the prognostic efficiency of the risk 
score. The AUC of the TCGA cohort reached 0.78,95 
after 1  year, 0.74,95 after 3  years, and 0.75,95 after 
5 years. Similarly, the AUC of the ICGC cohort achieved 
0.7,95 after 1  year, 0.69,95 after 3  years, and 0.66,95 
after 5 years. Kaplan–Meier analyses of both TCGA and 
ICGC cohorts consistently showed that low-risk patients 
tended to have a more favorable outcome (Fig. 3b).

Relationship between the risk score and clinical features, 
immune microenvironment, and treatment response
We further analyzed the distribution of the clinical fea-
tures of patients in the TCGA cohort [59]. A remarkable 
difference exists between the 2 groups in terms of tumor 
stage. The C2 cluster showed a significantly lower risk 
score (Additional file 1: Fig. S2A). To elucidate the rela-
tionship between the risk score and the immune micro-
environment of ccRCC, the MCP-counter tool was used 
to investigate differences in the infiltration of 10 immune 
cells between the high- and low-risk groups. The results 
highlighted that the low-risk group had a higher level 
of immune cell infiltration (Additional file  1: Fig. S2B) 
[60]. Moreover, we performed TIDE analysis to further 
explore the clinical utility of the risk score. The low-risk 
group possessed a lower TIDE score compared with the 
high-risk group (Additional file 1: Fig. S2C). In addition, 
patients in the low-risk group exhibited a higher degree 
of sensitivity to conventional drugs, such as rapamycin, 
sunitinib, sorafenib, crizotinib, and AKT inhibitor VIII 
(Additional file 1: Fig. S2D).

Building a survival decision tree and a predictive 
nomogram to predict ccRCC survival
Additionally, validated the prognostic model using 
decision tree analysis integrating risk score and clin-
icopathological features, including age, gender, T stage, 
N stage, M stage, stage, and grade. Age, stage, grade, 
and risk score were entered as inputs into the survival 
decision tree to obtain 7 risk subgroups (Fig. 4a). Sur-
vival analyses also revealed statistically significant dif-
ferences between the 7 risk subgroups (Fig.  4b). Next, 
we used univariate and multivariate Cox regression 
analyses and found that the risk score was the most sig-
nificant factor for the prediction of ccRCC prognosis 
(Fig. 4c, d). To create a clinical approach for the prog-
nostic estimation of ccRCC patients, the factors men-
tioned in the decision tree analysis were further applied 
to construct a nomogram (Fig.  4e). The results of the 
nomogram showed that the risk score had a dramatic 
influence on the survival prediction of ccRCC patients. 
The calibration plots for 1-year, 3-year, and 5-year 
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survival probabilities showed high consistency between 
the results of the constructed nomogram and actual 
clinical conditions (Fig. 4f ). Moreover, the tROC curves 
with high AUC values above 0.7 indicated that the 
nomogram and risk score provided an accurate predic-
tion of ccRCC prognosis (Fig.  4g). These results dem-
onstrate the favorable predictive value of our risk score.

Discussion
Emerging evidence suggests that NK cells play essential 
and dual roles in diverse disease models such as infec-
tion, transplantation, autoimmunity, as well as cancer. 
Studies have reported that NK cells function as crucial 
components of tumor immunosurveillance, exerting a 
potent cytolytic effect by recognizing ligands presented 
on tumor cells and inducing the involvement of a series 

Fig. 2  Construction and validation of a NK cell-related risk score model. A Univariate COX regression analysis of the DE-NKRGs in the TCGA 
database. B LASSO coefficient profiles. C Lambda selection through tenfold cross-validation. D Coefficient of the 6 screened genes. E Expression 
profiles of DPYSL3, SLPI, SLC44A4, ZNF521, LIMCH1, and AHR in the ACHN cells and HK2 cells.
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of NK activating receptors [61, 62]. For ccRCC, immune-
based therapies (including targeted PD-1/PD-L1) have 
emerged as the main management modality since it has 
a restricted response to conventional chemotherapy [63–
65]. Thus, a more comprehensive understanding of the 
features of immune cells of ccRCC patients is imperative 
for developing effective and improved immunotherapies 
[25].

Research has uncovered the heterogeneity of infiltrat-
ing NK cells in ccRCC, revealing their intricate asso-
ciation with tumor metastasis and differences in the 
efficacy of immunotherapy [66]. Sierra et  al. observed 
an increased expression of PD-L1 on NK cells and a cor-
responding high infiltration inccRCC, which paradoxi-
cally correlated with worsen survival outcomes of ccRCC 
patients [67]. Ziblat et  al. found that tumor-infiltrating 
NK cells (TINK) in ccRCC represent an activated resi-
dency phenotype, contributing to desensitizing NK cells 
to tumor cells and further limiting their anti-tumor effect 
[68].

To identify NK cell-related prognostic biomarkers 
for ccRCC, we initially identified three prognostic clus-
ters based on NK cell-related gene expression from the 
TCGA and ICGC databases. Bioinformatics analysis of 
ccRCC revealed distinct clinicopathological character-
istics, prognosis, immune infiltration properties, and 
therapeutic responses among these three NK cell-related 
clusters. Risk scores have been proven to allow clinicians 
to adopt more personalized clinical approaches and facil-
itate prognostic outcomes as high-throughput genomic 
technologies become increasingly integrated into clini-
cal practice [69–72]. Zhang et al. structured a risk score 
model for oral squamous cell carcinoma based on the 
expression of the Shelterin complex gene (SG) to evaluate 
the prognosis and immunotherapy responses of patients 
[73]. Additionally, Cao et al. identified a risk model based 
on immune-related gene signatures to predict prog-
nosis and guide individualized therapies for advanced 

RCC [74]. Considering the distinctive characteristics of 
the molecular clusters, we constructed a six-gene based 
NK-related risk score model to explore the association 
between NK-related genes and ccRCC development. 
Our research reported that the high-risk score group sig-
nificantly implicated poorer outcomes, advanced clinical 
stages, reduced immune cell infiltration, and increased 
insensitivity to anti-tumor immune responses. Given its 
role in representing the clinical decision-making pro-
cesses, we implemented a decision tree model to further 
validate the performance of risk scores. Importantly, we 
indicated that a proposed nomogram integrating risk 
scores with clinical characteristics showed superior effec-
tive predictive efficacy for ccRCC prognosis.

Recent advancements in imaging technology and 
genomics have significantly aided clinical physicians in 
stratifying risk, selecting treatment plans, developing 
follow-up strategies, and predicting patient outcomes 
for various diseases. The combination of radiomics fea-
tures and genomic data has demonstrated promising 
applications in clinical settings, such as RCC [75, 76]. In 
this study, we primarily analyzed NK cell-related gene 
expression in ccRCC and established a corresponding 
prognostic model. We validated the model’s robustness 
and efficacy by utilizing public ccRCC patient databases. 
Based on individual risk characteristics, the model can be 
utilized to stratify patients, predict treatment responses, 
and evaluate clinical prognoses. Further integration of 
our prognostic model with radiomics offers a meaningful 
direction for future research. By combining clinical radi-
ological information of ccRCC patients, our model holds 
potential to provide more personalized risk assessment, 
elevated diagnostic accuracy, and refined treatment plans 
and follow-up strategies for patients.

However, our research has several limitations. First, 
the gene expression data used in our study were obtained 
from online platforms, and there is a lack of data from 
our own center to validate the constructed prognostic 

Fig. 3  Exploration of the correlation of risk score with ccRCC prognosis. A Kaplan–Meier analysis and ROC curves at 1, 3, and 5 years 
of high- and low-risk groups in TCGA database. B Kaplan–Meier analysis and ROC curves at 1, 3, and 5 years of high- and low-risk groups in ICGC 
database
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model. Second, we focused only on 6 genes with the most 
significant correlation with ccRCC prognosis to estab-
lish the model. Although we found evidence supporting 
the importance of the expression and prognosis of these 
6 genes, their functional mechanisms during ccRCC 

development are worthy of further experimental studies 
and validation in  vivo. The qRT-PCR merely confirmed 
the mRNA expression profiles of the 6 genes and further 
analysis is needed to expand the exploration of 6 genes at 
the protein level and also on the animal models.

Fig. 4  Establishment of a decision tree and nomogram by combining the risk score and clinical features of TCGA database. A Framework 
of a decision tree. B Survival analysis of the 7 clusters obtained using the decision tree. C Results of the univariate Cox analysis. D Results 
of the multivariate Cox analysis. E The nomogram constructed to predict the survival probabilities. F Calibration curves of the nomogram. G The 
tROC curves of the nomogram.
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Conclusion
Taken together, we identified three distinct molecular 
clusters and proposed a generalized and robust prognos-
tic model for ccRCC based on NK-related gene signa-
tures. The risk score was confirmed to exert a powerful 
role for the prediction of ccRCC prognosis and can pro-
vide more appropriate guidance for the treatment of 
ccRCC patients.
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