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Abstract 

Background Prostate cancer (PCa) is the most prevalent genitourinary malignancy in men, with a significant 
proportion of patients developing biochemical recurrence (BCR) after treatment. The immune microenvironment 
and metabolic alterations have crucial implications for the tumorigenesis and progression of PCa. Therefore, identify-
ing metabolic genes associated with the immune microenvironment holds promise for predicting BCR and improving 
PCa prognosis.

Methods In this study, ssGSEA and hierarchical clustering analysis were first conducted to evaluate and group PCa 
samples, followed by the use of the ESTIMATE and CIBERSORT algorithms to characterize the immunophenotypes 
and tumor microenvironment. The differential metabolic genes (MTGs) between groups were utilized to develop 
a prognostic-related signature. The predictive performance of the signature was assessed by principal compo-
nent analysis (PCA), receiver operating characteristic (ROC) curve analysis, survival analysis, and the TIDE algorithm. 
A miRNA-MTGs regulatory network and predictive nomogram were constructed. Moreover, the expression of prog-
nostic MTGs in PCa was detected by RT‒qPCR.

Results PCa samples from the TCGA cohort were separated into two groups: the immune-low group and immune-
high group. Forty-eight differentially expressed MTGs between the groups were identified, including 37 up-regulated 
and 11 down-regulated MTGs. Subsequently, CEL, CYP3A4, and PDE6G were identified as the genes most strongly asso-
ciated with the BCR of PCa patients and these genes were utilized to establish the MTGs-based prognostic signatures. 
PCA, ROC curves analysis, Kaplan–Meier survival analysis, and the nomogram all showed the good predictive ability 
of the signature regardless of clinical variables. Furthermore, the MTGs-based signature was indicated as a potential 
predictive biomarker for immunotherapy response. Nine miRNAs involved in the regulation of prognostic MTGs 
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were determined. In addition to the CEL gene, the PDE6G and CYP3A4 genes were expressed at higher levels in PCa 
samples.

Conclusions The MTGs-based signature represents a novel approach with promising potential for predicting BCR 
in PCa patients.

Keywords Prostate cancer, Immune microenvironment, Biochemical recurrence, Immune gene, Metabolic genes, 
Prognostic signature

Introduction
The tumor microenvironment (TME) is a complex non-
cancerous component located adjacent to tumor tissue 
that is mainly composed of cellular and acellular parts 
with different proportions and components [1]. The cell 
components mainly included various tumor-infiltrating 
lymphocytes (TILs), endothelial cells, and fibroblasts [2]. 
The acellular components mainly consist of extracellular 
matrix [1]. The heterogeneous cell types within the TME 
can either metabolically cooperate or compete for limited 
nutrients [3]. Additionally, their blood vessels are often 
limited or poorly differentiated, leading to inefficient 
nutrient and oxygen transport, as well as waste removal 
[4]. However, an important characteristic of tumor cells 
compared with normal cells is their high metabolic plas-
ticity. In such cases, the tumor metabolic microenviron-
ment, which is an immunosuppressive environment, 
allows them to adapt more quickly and better to fewer 
nutrients or changing nutritional conditions [5]. Hens-
ley et  al. [6] found that the energy utilization patterns 
of non-small cell lung cancer cells were heterogeneous. 
Specifically, cancer cells in regions rich in vascularization 
could utilize energy sources other than glucose, while the 
cancer cells in regions with low perfusion mainly used 
glucose. Meanwhile, under such adverse conditions in the 
TME, infiltrating immune cells also undergo metabolic 
changes associated with immune tolerance, ultimately 
undermining the effectiveness of the antitumor immune 
response [4]. Therefore, identifying novel communication 
mechanisms within the TME that depend on tumor met-
abolic activity is crucial. Specifically, identifying targets 
that inhibit or alter tumor metabolism to improve the 
availability of nutrients in the TME or regulate immune 
metabolism to promote the inflammatory response, will 
enhance our understanding of tumorigenesis and reveal 
potential therapeutic targets.

Prostate cancer (PCa) is the most prevalent genitou-
rinary tumor among men, with approximately 220,000 
cases reported annually in the United States [7]. Treat-
ment options for low-risk and localized PCa patients 
mainly include active surveillance, radical prostatectomy, 
and radiation therapy, while for higher-risk patients, 
adjuvant androgen deprivation therapy (ADT) is often 
required [8]. However, approximately 25% of patients 

will develop biochemical recurrence (BCR) after these 
treatments [9]. ADT is currently the standard treatment 
for patients with recurrent or metastatic prostate can-
cer, aiming to eliminate circulating androgens that fuel 
prostate cancer growth; however, most patients eventu-
ally develop castration-resistant prostate cancer, which is 
associated with a worse prognosis [7, 10, 11]. Hence, new 
treatment strategies are urgently needed.

Although immunotherapy has shown promise in vari-
ous solid tumors, its efficacy in treating PCa has been 
limited [12]. Immune responses, including multiple 
cytokines in the TME, can significantly influence the 
balance between tumor progression and therapeutic 
response. To understand the dynamic changes in immune 
responses, it is important to consider the characteristics 
of the tumor immune microenvironment (TIME), such as 
the number of immunosuppressive cells and the infiltra-
tion of TILs [13]. The TME of PCa exhibits unique char-
acteristics [14]. For example, high  CD8+ TIL infiltration, 
especially activated TIL infiltration, has been associated 
with improved prognosis in patients with various solid 
tumors [15]. However, the relationship between  CD8+ 
TIL infiltration and the prognosis in PCa patients remains 
unclear. Several studies have shown that high TIL infil-
tration is associated with shorter BCR time and poorer 
clinical outcomes in patients with PCa [16]. In addition, 
a high proportion of  CD4+ and  CD8+ regulatory T cells 
(Tregs) expressing forkhead box P3  (Foxp3+) have been 
observed in the margins and epithelial compartments of 
PCa tumors [17]. Thus, an in-depth understanding of the 
TIME characteristics in PCa, especially changes in tumor 
metabolism in the TIME, will contribute to the develop-
ment of new therapeutic strategies. Herein, we classified 
PCa patients from The Cancer Genome Atlas (TCGA) 
cohort based on their immunophenotype and further 
investigated the changes in metabolic activity, metabo-
lism-related molecular characteristics, and the prognos-
tic potential of these characteristics.

Materials and methods
PCa data acquisition and preprocessing
We downloaded RNA sequencing data (read counts), 
miRNA sequencing data, somatic mutation data (MAF 
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values), and clinical data containing BCR information 
of PCa patients from the TCGA database (https:// por-
tal. gdc. cancer. gov/). The “edgeR” package was utilized 
to process the read count data, which included taking 
the average of genes with the same gene symbol, exclud-
ing genes whose average expression level was less than 
1, and performing normalization. Next, to find another 
cohort as an external cohort to validate, we downloaded 
the GSE70769 cohort (n = 94) from the Gene Expression 
Omnibus (GEO) database (http:// www. ncbi. nlm. nih. 
gov/ geo/). Subsequently, the robust multiarray analysis 
(RMA) algorithm was applied to the original microarray 
data for background adjustment and normalization.

Single‑sample gene set enrichment analysis (ssGSEA) 
and hierarchical clustering analysis
SsGSEA is a method for comprehensively assessing the 
relative number of immune cells in different samples 
[18]. In this study, the immune characteristics of each 
PCa sample from the TCGA cohort were comprehen-
sively evaluated by the 29 immune gene sets provided in 
the ssGSEA algorithm. Then, following a cluster analy-
sis based on Ward’s linkage and Euclidean distance, PCa 
patients were grouped into low-immunity and high-
immunity groups.

Cell type identification by estimating relative subsets 
of RNA transcripts (CIBERSORT)
The deconvolution algorithm CIBERSORT was used to 
assess the quantity of infiltrating immune cells in each 
sample [19]. Here, we employed this algorithm utilizing 
22 gene sets to evaluate the extent of immune cell infil-
tration in different PCa groups. The parameters were 
set to 1000 permutations, and P < 0.05 was the screening 
standard.

Estimation of the PCa immune microenvironment
The estimation of stromal and immune cells in malig-
nant tumor tissues using expression data (ESTIMATE) is 
a sophisticated method for assessing the extent of tumor 
and normal cell infiltration in each sample [20]. In this 
study, we evaluated the tumor microenvironment of PCa 
samples by using this algorithm and determined the stro-
mal score, immune score, and estimate score.

Identification of differentially expressed metabolic genes 
(MTGs)
Seventy metabolism-related gene sets were obtained 
from a subset of 186 gene sets included in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) sub-
set of canonical pathways via the Gene Set Enrichment 

Analysis (GSEA) website (https:// www. gsea- msigdb. 
org/ gsea/ msigdb/ genes ets. jsp? colle ction= CP: KEGG). 
Moreover, the final expression data were then obtained 
based on the TCGA cohort. Subsequently, the differen-
tially expressed MTGs between the low-immunity and 
high-immunity groups were identified by the “edgeR” 
package. In this study, the selection criteria for differen-
tially expressed MTGs were as follows: |log2 fold change 
(FC)|> 1 and a false discovery rate (FDR) < 0.05.

MTGs‑based prognostic‑related signature
The training set (n = 206) and test set (n = 206) were 
created randomly from the entire TCGA cohort. The 
training set was used to establish the MTGs-based 
prognostic-related signature, while the entire and test 
sets were used to verify the established signature. The 
potential prognostic value of these MTGs was revealed 
by univariate Cox regression analysis. Subsequently, we 
performed least absolute shrinkage and selection opera-
tor (LASSO) and multivariate Cox regression analyses to 
identify the MTGs most strongly associated with progno-
sis. Finally, we calculated the risk score of the prognostic 
signature using the following formula with the β coeffi-
cient of Cox regression analysis and the corresponding 
MTGs expression value:

β and Exp in the above formula represent the regression 
coefficients and expression values of the correspond-
ing genes, respectively. Following the calculation of each 
patient’s risk score, PCa patients in the training set were 
split into two groups (the high-risk and low-risk groups) 
on the basis of the median risk score. The variations in 
BCR between the two groups were compared using 
Kaplan‒Meier survival analysis. The predictive power of 
the MTGs-based prognostic signature was assessed by 
the area under the ROC curves (AUCs) and the receiver 
operating characteristic (ROC) curves. Furthermore, 
the test set, the entire TCGA cohort, and the GSE70769 
cohort were used to validate the stability and reliability of 
the prognostic signature.

Analysis of the prognostic signature and prognostic MTGs 
stratified by different clinical variables
To reveal the prognostic significance of the signature 
among PCa patients under different clinical stratifica-
tions, we carried out Kaplan‒Meier survival analysis. The 
expression levels of the MTGs under stratification were 
also compared with the aim to preliminarily reveal the 
possible role of these MTGs in PCa.

Risk score =

∑n

i=1
Expiβi

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=CP:KEGG
https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=CP:KEGG
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Evaluation of the grouping ability of the signature 
by principal component analysis (PCA)
Based on the expression patterns of the MTGs-based 
prognostic-related signatures, principal component 
analysis (PCA) was employed to effectively decrease the 
number of dimensions, identify the signature, and visu-
alize the high-dimensional data of the training set gene 
expression profile, the test set gene expression profile, all 
MTGs, and the risk signatures.

miRNA‑MTGs regulatory network and functional 
enrichment analysis
After preprocessing and differential analysis of the 
miRNA expression data, we performed a coexpression 
analysis of the prognosis-related MTGs and miRNAs. 
The criteria for relevance were |Cor|> 0.3 and P < 0.001. 
Subsequently, to elucidate the related biological func-
tions and molecular pathways, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis and 
Gene Ontology (GO) analysis were conducted on these 
differentially expressed MTGs by utilizing the “cluster-
Profiler” package.

The potential of the signature to serve as a measure 
of immunotherapy response in PCa patients
The expression patterns of immune checkpoint inhibi-
tor (ICI) genes (CTLA-4, PD-L1, PD1, PD-L2, B7H3, and 
B7H4) in various patient groups were compared based on 
signature stratification. Further research was conducted 
to determine whether the signature affects the clinical 
outcomes of patients with comparable immune check-
point gene expression levels. In the absence of data on 
PCa patients receiving immunotherapy, the predictive 
performance of the tumor response to immunotherapy 
was assessed using the TIDE algorithm created by Jiang 
et  al. [21]; this algorithm was applied to preliminar-
ily evaluate the response rate of PCa patients to immu-
notherapy under signature stratification. Moreover, we 
utilized the “maftools” package to evaluate the mutation 
rate and mutation load in PCa patients stratified accord-
ing to the signature.

Construction and assessment of a predictive nomogram
We conducted Cox regression analyses to determine 
whether this MTGs-based prognostic signature was asso-
ciated with BCR when considering other clinical vari-
ables in PCa patients (such as T stage, N stage, Gleason 
score, and age). A nomogram containing clinical vari-
ables and the risk score was then developed through the 

“rms” R package. Furthermore, we evaluated the accu-
racy of the nomogram (assessing the degree of deviation 
between the predicted and actual values) by calibration 
curve analysis. Moreover, the predictive performance 
and stability of the nomogram were assessed utilizing the 
TCGA and GSE70769 cohorts.

Analysis of the expression of prognostic MTGs in PCa
PCa transcriptome data from the TCGA cohort were 
utilized to compare differences in the expression of prog-
nostic MTGs between tumor and normal tissues. With 
regard to gene expression in tumor cells, the expres-
sion of prognostic MTGs in various PCa cell lines was 
analyzed by the use of Cancer Cell Line Encyclopedia 
(CCLE) database. Furthermore, total RNA was extracted 
from PCa cell samples using a SteadyPure RNA Extrac-
tion Kit (without Lysis Buffer) (Accurate Biotechnol-
ogy, Hunan, China) and reverse transcribed into cDNA, 
followed by cDNA amplification and qPCR detection 
(Yeasen, Shanghai, China). The primer sequences for 
the prognostic MTGs are provided in Additional file  2: 
Table S2.

Results
Immunophenotype and tumor microenvironment of PCa 
patients in the TCGA cohort
Figure  1 presents an overview of this study design. The 
immune characteristics (including the activity or enrich-
ment of immune cells, function, pathway, or checkpoint) 
of 489 PCa samples in the TCGA cohort were compre-
hensively evaluated via the ssGSEA algorithm. After 
hierarchical clustering, the PCa samples were divided 
into two categories: the low-immunity group contain-
ing 265 samples with low immune characteristics, and 
the high-immunity group containing 224 samples with 
high immune characteristics (Fig.  2A). Subsequently, 
we utilized the ESTIMATE algorithm to score the TME 
of each sample in the TCGA cohort and compared 
the TME characteristics between the two groups. The 
StromalScore, ImmuneScore, and ESTIMATEScore 
in the high-immunity group were −308.232 ± 446.419, 
−292.195 ± 486.932, and −600.427 ± 807.535, respec-
tively. While the StromalScore, ImmuneScore, 
and ESTIMATEScore in the low-immunity group 
were −807.462 ± 446.845, −1025.709 ± 250.929, and 
−1833.171 ± 635.311, respectively. Compared to the 
low-immunity group, the high-immunity group exhib-
ited a significant difference in scores, with higher levels 
of stromal cells and immune cell infiltration (Fig. 2C–F). 
Furthermore, the CIBERSORT algorithm showed the 
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difference between the high-immunity group and low-
immunity group in immune cell infiltration (Fig.  2B). 
Specifically, the infiltration levels of regulatory Tregs, 
CD4 memory activated T cells, CD4 memory resting T 
cells, CD8 T cells, plasma cells, memory B cells, naive 
B cells, activated dendritic cells, resting dendritic cells, 
M2 macrophages, monocytes, activated NK cells, rest-
ing NK cells, and resting mast cells exhibited significantly 

different between the two groups. These findings indi-
cated the successful classification of PCa patients based 
on their immunophenotype.

Differentially expressed MTGs analysis
After classifying PCa patients into high-immunity/low-
immunity groups, we further investigated the varia-
tions in metabolic activity between the two groups. We 

Fig. 1 Flowchart of the prognostic signature for PCa
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first identified 1466 MTGs from 70 KEGG metabolic 
gene sets and then obtained the expression data of 1400 
MTGs based on the TCGA cohort (Fig.  3A). Following 
data analysis, we identified 48 MTGs with differential 

expression between the low- and high-immunization 
groups, including 11 downregulated and 37 upregulated 
MTGs. Figure  3B, C display a volcano plot of the 1400 
MTGs and a heatmap of 48 MTGs, respectively.

Fig. 2 The tumor microenvironment and immunophenotype of patients with PCa in the TCGA cohort. A The ssGSEA algorithm and hierarchical 
cluster analysis were used to determine the immune characteristics and tumor microenvironment landscape of PCa patients. B Differences 
in the infiltration of 22 immune cells between the low-immunity and high-immunity groups were determined based on the CIBERSORT algorithm. 
The violin plot displays the ImmuneScore (C), StromalScore (D), EstimateScore (E), TumourPurity (F) between the low-immunity and high-immunity 
groups
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Establishment and assessment of an MTGs‑based 
prognostic signature
The prognostic significance of the differentially 
expressed MTGs in PCa patients was investigated. Test 
(n = 206) and training (n = 206) groups of PCa patients 
from the entire TCGA cohort were created using the 
“caret” R package. Subsequently, we performed univari-
ate Cox regression analysis for the MTGs with differ-
ential expression, revealing that 5 MTGs, CA6, CEL, 
CYP3A4, KYNU, and PDE6G, were associated with 

Fig. 3 Analysis of differentially expressed MTGs between the low-immunity and high-immunity groups. A Venn diagram of intersecting genes 
between PCa and metabolism based on immunophenotype. B Volcano plot of differentially expressed MTGs. Red represents upregulated MTGs and 
green represents downregulated MTGs. C Heatmap of 48 differentially expressed MTGs

Table 1 Multivariate Cox regression analysis to identify 
prognosis-related metabolic genes

* Coef: coefficient

Gene Coef* Exp(coef) se(coef) z Pr( >|z|)

CEL 0.1033 1.1088 0.1023 1.0096 0.3127

CYP3A4 0.2630 1.3008 0.1181 2.2278 0.0259

PDE6G 0.3849 1.4695 0.1963 1.9613 0.0498
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BCR. Additionally, LASSO regression analysis was con-
ducted on the above 5 MTGs through “glmnet” package 
for further filtering. Additional file  1: Figure S1A pre-
sents the trajectory changes in these 5 MTGs according 
to LASSO regression analysis. Additional file 1: Figure 
S1B shows the model built by using the cross-validation 
method. All 5 of these MTGs were proved to be closely 
related to BCR in PCa. Afterward, further multivariate 
Cox regression analysis identified the three most prog-
nostically relevant MTGs: CEL, CYP3A4, and PDE6G 
(Table 1).

We calculated the risk score for the prognostic signa-
ture with the use of the β coefficient from Cox regres-
sion analysis and the corresponding MTGs expression 
values, according to the formula below:

Risk score = (0.1033*Exp CEL) + (0.2630*Exp 
CYP3A4) + (0.3849*Exp PDE6G).

Then, a low-risk group (n = 103) and a high-risk group 
(n = 103) were generated in the training group based on 
the calculated median risk score. PCa patients in the 

high-risk group showed a worse prognosis than did those 
in the low-risk group, as indicated by survival analy-
sis (P = 3.01e-04; Fig. 4A). ROC curve analysis was then 
performed to evaluate the predictive performance of the 
MTGs-based signature, and the area under the curve 
(AUC) for BCR at 1 year, 3 years, and 5 years were 0.637, 
0.720, and 0.772, respectively (Fig. 4B). Figure 4C shows 
the BCR distribution of PCa patients assessed by the risk 
score, and Fig. 4D displays a heatmap of the expression of 
the three prognostic MTGs. Furthermore, the same for-
mula was applied to calculate risk scores in the test group 
(Fig. 4E–H), the GSE70769 cohort (Fig. 5A–D), and the 
entire TCGA cohort (Fig. 5E–H). The predictive perfor-
mance of the signature was assessed by survival and ROC 
curve analysis, and similar results were observed across 
the different cohorts. These results demonstrated that 
our MTGs-based signature had high predictive perfor-
mance and could accurately distinguish PCa patients at 
risk of BCR.

Fig. 4 Risk score analysis of the prognostic signature based on training and test subsets. A Kaplan–Meier survival curve analysis of BCRs 
between the high- and low-risk groups in the training subset. B 1-year, 3-year, and 5-year ROC curves of PCa patients in the training subset. C Risk 
score and survival status of each PCa patient in the training subset. D Heatmap of prognostic MTGs expression based on the risk score and clinical 
characteristics in the training subset. E Kaplan–Meier survival curve analysis of BCR between the high- and low-risk groups in the test subset. F 
1-year, 3-year, and 5-year ROC curves of PCa patients in the test subset. G Risk score and survival status of each PCa patient in the test subset. H 
Heatmap of prognostic MTGs expression based on the risk score and clinical characteristics of the test subset
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Stratified analysis of the prognostic signature 
and prognostic MTGs
To investigate whether different clinical variables affect 
the prognostic significance of the signature, survival 
analysis in PCa patients stratified by these variables was 
conducted. The results consistently demonstrated that 
PCa patients in the high-risk group presented a less 
favorable outcome across various stratification levels 
(Fig. 6). And the signature was suggested to accurately 
predict BCR in PCa patients regardless of other clini-
cal variables. Furthermore, we additionally explored 
the potential role of these prognostic MTGs in PCa 
patients stratified according to different clinical varia-
bles. The expression levels of PDE6G and CYP3A4 were 
significantly correlated with the Gleason score. Moreo-
ver, the level of PDE6G expression showed a significant 
correlation with N stage. However, no significant asso-
ciations between prognostic MTGs and age or T stage 
were observed (Table 2).

PCA analysis further revealed the grouping ability 
of the MTGs‑based signature
We used PCA to effectively reduce dimensions, with 
the aim to explore the distribution of discrepancies 
between the two groups of patients in the training set 
gene expression profile, the test set gene expression 
profile, all MTGs, and the risk signature. The distribu-
tions of patients in the low- and high-risk groups were 
relatively scattered, as presented in Fig.  7A–C. How-
ever, based on our risk signature, high/low-risk PCa 
patients were separated into two distinct directions 
(Fig.  7D). The results indicated that the model could 
correctly distinguish PCa patients at risk of BCR.

miRNA‑MTGs regulatory network and functional 
enrichment analysis
miRNAs are small noncoding RNAs that prevent protein 
translation or induce posttranscriptional inhibition by 
targeting messenger RNA (mRNA) [22]. They have been 

Fig. 5 Risk score analysis of the prognostic signature based on the GSE70769 and entire TCGA cohorts. A Kaplan–Meier survival curve analysis 
of BCRs between the high- and low-risk groups in the GSE70769 cohort. B 1-year, 3-year, and 5-year ROC curves of PCa patients in the GSE70769 
cohort. C Risk score and survival status of each PCa patient in the GSE70769 cohort. D Heatmap of prognostic MTGs expression based on the risk 
score and clinical characteristics in the GSE70769 cohort. E Kaplan–Meier survival curve analysis of BCRs between the high- and low-risk groups 
in the entire TCGA cohort. F 1-year, 3-year, and 5-year ROC curves of PCa patients in the entire TCGA cohort. G Risk score and survival status of each 
PCa patient in the entire TCGA cohort. H Heatmap of prognostic MTGs expression based on the risk score and clinical characteristics in the entire 
TCGA cohort



Page 10 of 19Hu et al. European Journal of Medical Research           (2024) 29:92 

found to be involved in the regulation of almost all can-
cer characteristics. Recently, the role of miRNAs in the 
regulation of tumor metabolism has attracted increas-
ing attention [23]. Studies have shown that miRNAs 
can directly regulate the expression of metabolic trans-
porters [24] or metabolic enzymes [25] and indirectly 
modulate metabolic activity by regulating the expres-
sion of major transcription factors or signaling proteins 
in metabolic pathways [26]. Therefore, in this study, 
given the important role of miRNAs in tumor metabolic 
reprogramming, we deeply explored the miRNA-MTGs 
regulatory network in PCa. We downloaded miRNA 
sequencing data for PCa patients from the TCGA data-
base, which included 499 tumor samples and 52 nor-
mal samples. After differential expression analysis, 194 
dysregulated miRNAs were obtained, among which 118 

were upregulated and 76 were downregulated. A heat-
map of the differentially expressed miRNAs is shown 
in Fig.  8A. Afterward, we conducted a coexpression 
study on the prognostic MTGs and miRNAs with dif-
ferential expression and identified 9 miRNAs involved 
in the regulation of prognostic MTGs, namely, has-miR-
1224-5p, has-miR-184, has-miR-592, has-miR-190b-5p, 
has-miR-146a-3p, has-miR-146b-5p, has-miR-3614-3p, 
has-miR-3614-5p, and has-miR-7702. Figure 8B presents 
the Sankey plot of the miRNA-MTGs regulatory net-
work. All the miRNAs positively regulated the expres-
sion of MTGs, and the specific regulatory relationships 
are shown in Additional file 2: Table S1. The above results 
indicated that these miRNAs may regulate tumor growth 
in PCa, which is worthy of more research.

Fig. 6 Kaplan–Meier survival curve analysis of BCRs stratified by different clinical parameters. A Age ≤ 65. B Age > 65. C Gleason score 6–7 (3 + 4). D 
Gleason score 7(4 + 3)-10. E T stage 1–2. F T stage3-4. G N stage0. H M stage0

Table 2 Relationships between prognosis-related metabolic genes and clinicopathologic parameters

Gene Age Gleason T stage N stage Title 4

 ≤ 65  > 65 6−7 (3 + 4) 7 (4 + 3)−10 T1‑T2 T3‑T4 N0 N1

N 297 115 158 254 318 92 293 67 Data

CEL t 0.274 1.649 0.555 0.268 Data

P 0.784 0.100 0.579 0.789 Data

PDE6G t 1.963 4.171 0.201 2.950 Data

P 0.050  < 0.001 0.841 0.003 Data

CYP3A4 t 0.134 2.476 0.231 0.868 Data

P 0.893 0.014 0.817 0.386 Data
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Furthermore, to explore the cellular functions and 
underlying mechanisms of these 48 differentially 
expressed MTGs, GO and KEGG enrichment analyses 
were conducted. Biological process analysis revealed that 
the differentially expressed MTGs were mainly involved 
in the organic acid catabolic process, cellular amino acid 
catabolic process, aromatic amino acid family metabolic 
process, and small molecule catabolic process. Regard-
ing the cellular component, the differentially expressed 
MTGs were primarily associated with components such 
as the photoreceptor outer segment membrane, mast 
cell granule, and the phosphatidylinositol 3-kinase com-
plex. The molecular function analysis revealed that the 
differentially expressed MTGs primarily exhibited trans-
ferase activity, transferring glycosyl groups, heme bind-
ing, and oxidoreductase activity, acting on paired donors, 
with incorporation or reduction of molecular oxygen 
(Fig.  8C). And the KEGG analysis showed that the dif-
ferentially expressed MTGs were mainly enriched in 
pentose and glucuronate interconversions, pantothenate 

and CoA biosynthesis, steroid hormone biosynthesis, and 
tryptophan metabolism (Fig. 8D).

The signature serves as a potential indicator 
of immunotherapy response in PCa patients
ICI genes can modulate immune infiltration in the TME, 
as shown in previous studies [27]. The differences in 
the expression of ICI genes (B7H3, B7H4, CTLA-4, PD-
L1, PD-L2, and PD1) among the different groups strati-
fied by signature were compared with the aim to further 
explore the impact of ICI genes on MTGs in the context 
of immune infiltration. These ICI genes in the high-risk 
group were shown to be expressed at significantly higher 
levels (Fig.  9A–F), which is in line with earlier research 
demonstrating a link between adverse outcomes and high 
expression of ICI genes [27]. Furthermore, in the patients 
with comparable expression of ICI genes, the effect of the 
signature on clinical outcomes was investigated. Patients 
with high PD-1 expression and low risk demonstrated 
improved outcomes compared with those with high PD-1 

Fig. 7 The grouping ability of the MTGs-based signature determined by PCA. A PCA based on the training set gene expression profile. B PCA based 
on the test set gene expression profile. C PCA based on all the MTGs. D PCA based on the risk signature
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expression and high risk, while patients with low PD-1 
expression and low risk showed improved outcomes com-
pared with those with low PD-1 expression and high risk 
(P < 0.001, Fig.  9G). Comparable results were found in 
other ICI genes (P < 0.001, Fig. 9H–L). Moreover, patients 
in the high-risk group exhibited lower response rates to 
immunotherapy, as revealed by TIDE analysis (P = 0.004, 
Fig. 9M). According to the aforementioned findings, the 
prognostic signature might serve as a possible predictive 
indicator for immunotherapy response.

Next, somatic mutation data from the TCGA cohort 
of PCa patients were obtained, processed, and analyzed 
by the “maftools” R package. We showed driver genes 
with mutations in at least 3% of the samples in the two 
groups. Notably, the high-risk group presented a higher 
frequency of driver gene mutations (Fig. 10A, B). Con-
sidering that TP53, TTN, and SPOP have the highest 
mutation frequency, the association between muta-
tions in these genes and PCa patient prognosis was 
then explored. Strikingly, patients with low-risk scores 
and TP53 mutations exhibited significantly better out-
comes than did those with high-risk scores and TP53 

mutations, while patients with low-risk scores and 
wild-type TP53 demonstrated significantly better out-
comes than did those with wild-type TP53 and high-
risk scores (P < 0.001; Fig.  10C). Interestingly, patients 
who had TP53 mutations and low-risk (or high-risk) 
scores had similar prognoses to patients who had wild-
type TP53 and low-risk (or high-risk) scores. Simi-
lar results were found in other driver genes (P < 0.001; 
Fig. 10D, E). The above findings demonstrated that the 
MTGs-based signature may have greater prognostic 
significance than the mutation status of TP53, TTN, or 
SPOP.

Construction and assessment of a predictive nomogram
Cox regression analyses were performed on common 
clinical variables and risk scores to explore the connec-
tion between the prognostic signatures of PCa patients 
and outcomes. Univariate Cox regression analysis 
showed that the Gleason score, risk score, N stage, and T 
stage were significant prognostic factors associated with 
BCR (P < 0.001, Fig.  11A). while risk score (P = 0.004), 
T stage (P = 0.002), and Gleason score (P = 0.005) were 

Fig. 8 miRNA-MTGs regulatory network and functional enrichment analysis. A Heatmap of differentially expressed miRNAs between PCa tumor 
and normal tissues. Red represents the tumor group, and green represents the normal group. B A Sankey plot of the differentially expressed 
miRNAs and prognostic MTGs regulatory networks. C GO enrichment analysis of the differentially expressed MTGs; D KEGG enrichment analysis 
of the differentially expressed MTGs
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independent predictive markers connected to BCR 
according to the multivariate Cox regression (Fig.  11B). 
Subsequently, a nomogram including common clinical 
variables and the risk score was constructed to quanti-
tatively forecast BCR rates in PCa patients. The nomo-
gram is shown in Fig.  11C. The calibration curves at 
various time points revealed that the nomogram has high 
prediction accuracy (Fig.  11D–F). To further confirm 
the predictive power of the nomogram, the TCGA and 
GSE70769 cohorts were used for analysis. The prognosis 
of PCa patients in the high-risk group exhibited worse in 
the survival analysis (P = 1.44e-08; Fig. 11G). In addition, 
ROC curve analysis was employed to assess the predic-
tive performance of the nomogram, and the AUCs for 
BCR at 1 year, 3 years and 5 years were 0.756, 0.749, and 
0.789, respectively (Fig.  11H). A similar predictive per-
formance was observed in the GSE70769 cohort accord-
ing to the nomogram (Fig.  11I, J). The aforementioned 
findings suggested that the signature-based nomogram 
showed better predictive performance.

Expression analysis of prognostic MTGs in PCa
It was a good predictive approach for the MTGs-based 
prognostic signature to identify BCR in PCa patients 
from the above analysis. Nevertheless, the underlying 
association between the development of PCa and the 
expression of prognostic MTGs has not been determined. 
The comparisons between tumor tissue and normal tis-
sue showed that PDE6G and CYP3A4 expression, but not 
CEL expression, in PCa tissue was considerably higher 
than that in normal prostate tissue (Fig. 12A). Similarly, 
gene expression profiling analysis of various prostate can-
cer cell lines from the CCLE database demonstrated that, 
compared with that in the benign prostatic hyperplasia 
cell line BPH-1, CEL gene expression was decreased in 
most prostate cancer cells, while PDE6G and CYP3A4 
gene expression was increased (Fig.  12B). Consistently, 
RT‒PCR revealed similar expression patterns of the 
CEL, PDE6G, and CYP3A4 genes in most PCa cell lines 
(Fig. 12C). The above results suggested that the differen-
tial expression of prognostic MTGs between normal and 
tumor tissues might play a vital role in PCa development.

Fig. 9 The potential of the signature as an indicator of immunotherapy response in PCa patients. Distribution of PD-1 (A), PD-L1 (B), PD-L2 (C), 
CTLA4 (D), B7H3 (E), and B7H4 (F) expression in the high and low-risk groups. Kaplan–Meier survival curves for the four patient groups stratified 
by risk score and PD-1 (G), PD-L1 (H), PD-L2 (I), CTLA4 (J), B7H3 (K), and B7H4 (L) expression. M The response rate to immunotherapy in the TCGA 
cohort of PCa patients based on the TIDE algorithm
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Discussion
Tumor growth and progression are characterized by 
the intricate interplay between various cell types, form-
ing complex networks that influence each other’s func-
tions and metabolic reprogramming [28]. For instance, 
tumor-surrounding adipocytes can regulate the func-
tion of tumor cells and their response to drugs. In PCa, 
it has been reported that IGF-1 secreted by periprostatic 
adipose tissue (PPAT) reduces the response of PCa cells 
to docetaxel through a TUBB2B-dependent mechanism 
[29]. Similarly, PPAT-released TGF-β enhanced PCa 
cell migration by upregulating the expression of con-
nective tissue growth factor [30]. The crosstalk between 
PPAT and PCa cells could affect cancer progression [31]. 
Additionally, immune cells and metabolic reprogram-
ming play a crucial role in cancer progression [32]. To 
perform their necessary functions, immune cells can 
be fine-tuned in the microenvironment for metabolic 
instrumentalization. For example, macrophages exhibit 
distinct metabolic pathways during the activation of M1 
and M2 macrophages. Specifically, M1 macrophages pri-
marily rely on fatty acid biosynthesis, pentose phosphate 

pathway, and anaerobic glycolysis to support anabolic 
processes, while M2 macrophages predominantly uti-
lize oxidative phosphorylation for catabolic processes 
to maintain their needs [33]. Therefore, understanding 
how metabolism regulates the differentiation, function, 
and plasticity of immune cells, as well as how intracel-
lular metabolism affects the function of immune cells, 
has emerged as the focus of current research. Moreover, 
despite the good efficacy of certain monoclonal antibod-
ies in some cancer patients, the response rates remain 
modest and short-lived. This limited response might be 
attributed to the multiple mechanisms that inhibit anti-
tumor immune function in adverse tumor environments 
and metabolism [34, 35]. It is recognized that the func-
tion of immune cells could be affected by the metabolic 
changes occurring in cancer cells, which contribute to 
tumor immune escape, so increasing attention has been 
directed toward developing immunotherapy strategies 
that target metabolic pathways [36]. For example, com-
bining IDO inhibitors with checkpoint blockade therapy 
has shown promising results in clinical trials [37]. It is 
worth noting that not all combination treatments are 

Fig. 10 Mutation differences between high- and low-risk patients in the TCGA cohort. A The waterfall plot shows mutation information for genes 
that were mutated in at least 3% of the samples in the high-risk group. B The waterfall plot shows mutation information for genes that were 
mutated in at least 3% of the samples in the low-risk group. Kaplan–Meier survival curves for the four patient groups stratified by risk score, TP53 
mutation status (C), TTN mutation status (D), and SPOP mutation status (E)
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better than treatment alone, as a meta-analysis showed 
that the combination of androgen receptor-axis-targeted 
(ARAT) agents and docetaxel did not have a significant 
overall survival benefit compared with ARAT agents [38].

In our study, we investigated metabolic alterations 
based on the immune background of PCa patients. We 
identified 48 differentially expressed MTGs between 
the low-immunity and high-immunity groups. Func-
tional enrichment analysis revealed that these MTGs 
were involved primarily in amino acid metabolism, glu-
cose metabolism, drug metabolism, lipid synthesis, 
and the biosynthesis of coenzymes. Bioenergetics and 
metabolism are the core to meet the multiple nutritional 
requirements of malignant tumor cells [39]. In this case, 

fermentation glycolysis or the “Warburg effect”, despite 
the low production of ATP/glucose molecules, is best 
suited for the production of anabolic precursors required 
for the rapid differentiation of embryonic tissue and 
tumors [40].

Next, we performed Cox and LASSO regression anal-
yses on these MTGs, and three MTGs, namely, CEL, 
CYP3A4, and PDE6G, were identified as the genes that 
were most strongly correlated with prognosis. The human 
carboxyl ester lipase (CEL) gene encodes a digestive 
enzyme that is involved primarily in the hydrolysis and 
absorption of cholesterol and fat-soluble vitamins [41]. 
Dalva et  al. [42] found that copy number variation and 
variable-number tandem repeat length polymorphisms 

Fig. 11 Prognostic significance of different clinical parameters in the TCGA cohort and the construction of a nomogram. A Univariate Cox 
regression analysis of the risk score and clinical parameters. B Multivariate Cox regression analysis of the risk score and clinical parameters. C 
Nomogram for predicting the 1-year, 3-year, and 5-year BCRs of PCa patients. D, E, F Calibration curves of the nomogram for predicting BCR at 1, 3, 
and 5 years. G Kaplan–Meier survival curve analysis of BCRs between the high- and low-risk groups in the TCGA cohort based on the nomogram. 
H 1-year, 3-year, and 5-year ROC curves of PCa patients in the TCGA cohort based on the nomogram. I Kaplan–Meier survival curve analysis of BCRs 
between the high- and low-risk groups in the GSE70769 cohort based on the nomogram. J 1-year, 3-year, and 5-year ROC curves of PCa patients 
in the GSE70769 cohort based on the nomogram
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in the CEL gene were risk factors for pancreatic cancer. 
And our study showed that the CEL gene is expressed 
at low levels in PCa. CYP3A4, a member of the CYP450 
family, has been implicated in the occurrence and pro-
gression of various diseases. It has been reported that 
polymorphisms in the CYP3A4 gene affect the expression 
level and activity of CYP3A4 and potentially contribute 
to carcinogenesis [43]. Moreover, CYP3A4 is involved 
in the synthesis of epoxyeicosatenoic acids (EETs) and 

facilitates the growth of breast cancer cells via STAT3 
activation mediated by EET [44]. In addition, Fujimura 
et  al. [45] found that an increased Gleason score in 
human PCa was linked to reduced CYP3A4 expression, 
and decreased CYP3A4 expression considerably reduced 
cancer-specific survival. Consistently, the CYP3A4 gene 
was highly expressed in most PCa cell lines, which was 
demonstrated by analyzing public databases and RT–
PCR results. PDE6G, a member of the PDE6 family, is 

Fig. 12 Expression analysis of prognostic MTGs in PCa. A The differential expression of CEL, PDE6G, and CYP3A4 in PCa tissue from the TCGA 
database. B The relative expression of CEL, PDE6G, and CYP3A4 in prostate cell lines from the CCLE database. C The relative expression of CEL, PDE6G, 
and CYP3A4 in prostate cell lines was determined via RT‒PCR
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a cGMP-specific phosphodiesterase that regulates the 
specificity of cAMP or cGMP as a substrate [46]. Dong 
et al. [47] demonstrated that the PDE6 expression level in 
human breast cancer cells was abnormal. Similarly, in our 
investigation, the PDE6G gene was indicated to be highly 
expressed in PCa. The aforementioned findings indi-
cated that the three prognostic MTGs might influence 
the occurrence and progression of PCa, but their specific 
mechanisms need further experimental verification.

A prognostic-related signature was then constructed 
based on the three MTGs to predict BCR in PCa 
patients. We stratified PCa patients based on differ-
ent clinical variables, such as the Gleason score, age, 
M stage, N stage, and T stage, to verify the independ-
ent predictive performance of the signature. Further 
stratified analysis indicated the predictive power of 
the MTGs-based prognostic signature for BCR in PCa 
patients, regardless of clinical variables. Our findings 
demonstrated that the 3-MTGs signature had good 
accuracy in distinguishing PCa patients with BCR.

miRNAs, which act as oncogenic and tumor suppres-
sor molecules, are essential for tumorigenesis and pro-
gression. Studies have shown that many miRNAs exert 
their effects on diverse metabolic molecules and path-
ways, which may be the key pathways for energy recom-
bination in tumor cells [48]. Some miRNAs have been 
found to promote the metabolic reprogramming of 
tumor cells by responding to metabolic signals, thereby 
modulating cellular conditions and inducing specific 
phenotypes [49]. In this study, we identified 9 upstream 
miRNAs involved in the regulation of prognostic MTGs 
that may influence the occurrence and progression of 
PCa, but further experiments are warranted. Addition-
ally, our study revealed that the expression levels of 
common ICI genes were significantly different between 
the signature-based low- and high-risk groups. More-
over, we analyzed the difference in immunotherapy 
response between the two groups based on the TIDE 
algorithm. TIDE prediction score, as an immunother-
apy prediction algorithm, has been widely used, and its 
predictive function has been successfully verified [21]. 
Collectively, these findings suggested that our signa-
ture holds promise as a reliable immune biomarker for 
tumor therapy.

In addition to the methods used above, an artificial 
neural network (ANN) model is also another useful 
approach to identify and validate PCa biomarkers, which 
facilitate personalized management of PCa [50]. For 
example, the ANN model based on clinical tests such as 
the prostate health index, Proclarix blood test, or mul-
tiparametric magnetic resonance had high accuracy in 

the recognition of progressive PCa at initial diagnosis 
[51, 52]. Therefore, the ANN model combining the three 
prognostic MTGs and PCa biomarkers in clinical tests 
may identify new tools with increased accuracy for per-
sonalized management of PCa.

Overall, our MTGs-based signature offers a novel 
quantitative approach for the prediction of PCa patient 
prognosis. The results also provide valuable insights for 
further investigations into the mechanisms and processes 
underlying metabolic alterations in the immune microen-
vironment of PCa. However, there are several limitations 
to our study. First, to validate our research, our model 
needs prospective cohorts and more external data. Sec-
ond, the specific roles of the three prognostic MTGs and 
the underlying mechanisms require further experimental 
exploration.

Conclusions
In this study, based on the immune background of PCa 
patients, we comprehensively explored the cytologi-
cal functions and biological mechanisms of MTGs and 
constructed a prognostic-related signature that could 
independently predict BCR in PCa patients. Our study 
provides clues for the prediction of PCa patients prog-
nosis and may help elucidate metabolic processes and 
mechanisms within the immune microenvironment of 
PCa. Moreover, the predictive signature demonstrated 
high sensitivity in identifying PCa patients who are 
likely to have a favorable response to immunotherapy.
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