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Abstract 

Background Kidney cancer is an immunogenic solid tumor, characterized by high tumor burden and infiltration 
of  CD8+ T cells. Although immunotherapy targeting the PD1/CTLA-4 axis has demonstrated excellent clinical efficacy, 
clinical outcomes in most patients are poor.

Methods We used the RNA sequencing data from the GEO database for KIRC GSE121636 and normal kidney tissue 
GSE131685, and performed single-cell analysis for cluster identification, pathway enrichment, and  CD8+ T cell-associ-
ated gene identification. Subsequently, the significance of different  CD8+ T-cell associated gene subtypes was eluci-
dated by consensus clustering, pathway analysis, mutated gene analysis, and KIRC immune microenvironment analy-
sis in the TCGA–KIRC disease cohort. Single gene analysis identified LAG3 as the most critical  CD8+ T-cell-associated 
gene and its function was verified by cell phenotype and immunohistochemistry in KIRC.

Results In the present study,  CD8+ T-cell associated genes in KIRC were screened, including GZMK, CD27, CCL4L2, 
FXYD2, LAG3, RGS1, CST7, DUSP4, CD8A, and TRBV20-1 and an immunological risk prognostic model was constructed 
(risk score =  − 0.291858656434841*GZMK − 0.192758342489394*FXYD2 + 0.625023643446193*LAG3 + 0.1613244
77181591*RGS1 − 0.380169045328895*DUSP4 − 0.107221347575037*TRBV20-1). LAG3 was identified and proved 
as the most critical  CD8+ T cell-associated gene in KIRC.

Conclusion We proposed and constructed an immunological risk prognostic model for  CD8+ T cell-associated genes 
and identified LAG3 as a pivotal gene for KIRC progression and  CD8+ T-cell infiltration. The model comprehensively 
explained the immune microenvironment and provided novel immune-related therapeutic targets and biomarkers 
in KIRC.
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Introduction
Kidney cancer is a common malignancy of the urinary 
system that originates from the renal tubular epithe-
lium. The most common histological subtype of kidney 
cancer is renal cell carcinoma (RCC), accounting for 
approximately 90% [1, 2], including kidney renal clear 
cell carcinoma (KIRC, 70%), papillary RCC (10–15%), 
and chromophobe RCC (5%) [2]. The Global Cancer 
Statistics (2020) stated that RCC accounted for 2.2% of 
newly diagnosed cancers annually, of which 25 to 30% 
of patients were diagnosed as advanced or metastatic 
with a 5-year survival rate of 10%, and 20% to 30% of 
patients having a propensity for recurrence and metas-
tasis after local operation [3–5].

Depending on tumor immunogenic characteristics, 
the systemic treatment of RCC has witnessed signifi-
cant changes in the last 20 years [6]. Traditional immu-
notherapy was predominantly based on interferon 
(IFN)-α and interleukin (IL)-2; however, IFN-α exhibits 
poor efficacy and IL-2 displays high toxicity [7, 8]. The 
subsequent application of vascular endothelial growth 
factor (VEGF), tyrosine kinase inhibitors (TKIs), 
and mammalian target of rapamycin (mTOR) inhibi-
tors has improved the efficacy and safety of RCC sys-
temic treatment [6]. Recently, immunotherapy agents 
targeting programmed death-1 (PD-1)/programmed 
death-ligand 1 (PD-L1) axis alone or a combination 
with anti-cytotoxic T lymphocyte-associated protein 
4 (CTLA-4) monoclonal antibodies or antiangiogenic 
agents has greatly expanded the systemic treatment 
options for RCC [6, 9].

Although the application of immune checkpoint 
inhibitors (ICIs) as tumor therapeutics has led to major 
improvements in the RCC systemic treatment, most 
patients fail to achieve a durable complete response 
(CR). This could be because RCC is significantly differ-
ent from other solid tumors in immunogenic features, 
has a high mutational burden and  CD8+ T cell infiltra-
tion, and is associated with poor prognosis [10, 11]. 
 CD8+ T cells constitute the major anti-tumor effective 
cells in the tumor microenvironment (TME) and exert 
cytotoxic effects. However, their function is impaired by 
immunosuppressive cells or molecules in the TME [12]. 
Up-regulation of co-suppressor molecules, including 
PD1 and CTLA-4, on the surface of  CD8+ T cells bind to 
relevant ligands, ultimately causing  CD8+ T cell exhaus-
tion [13, 14]. Therefore, blocking PD-1-mediated inhibi-
tory signaling by monoclonal antibodies could reverse 
 CD8+ T cell exhaustion, thereby hindering tumor pro-
gression. However, this contradicted  CD8+ T cell charac-
teristics in RCC [10, 11, 15]. Recent studies have reported 
that the timing of PD-1 inhibition could negatively affect 
T-cell priming and memory  CD8+ T cell formation, thus 

contributing to more appropriate timings in RCC immu-
notherapy [16, 17].

No relevant studies are available to explore the func-
tion of  CD8+ T cell-associated gene sets in the KIRC and 
its TME. The high accuracy and specificity of single-cell 
RNA sequencing allows analysis of the functional sta-
tus of  CD8+ T cells and the expression of its associated 
genes using the single-cell sequencing data of immune-
infiltrated KIRC (GSE121636 [18]) and normal kidney 
(GSE131685 [19]). In the present study, we developed a 
 CD8+ T cell-associated immunological risk prognos-
tic model using  CD8+ T cell-associated marker genes 
obtained from single-cell sequencing analysis to predict 
the survival status, tumor immune microenvironment, 
and immunotherapy responsiveness of KIRC patients, 
thereby providing a potential target and predictive evi-
dence for immunotherapy.

Materials
Single‑cell data filtration, pre‑processing, and cluster 
identification
The single-cell sequencing data of KIRC GSE121636 [18] 
and normal kidney GSE131685 [19] were screened using 
the Gene Expression Omnibus (GEO) database (https:// 
www. ncbi. nlm. nih. gov/ geo/). See Table 1 for details. The 
Seurat package was used to generate objects and filter out 
poor-quality cells. The standard data pre-processing pro-
cesses were performed and percentages of gene numbers, 
cell counts, and mitochondrial sequencing counts were 
calculated. The filtering criteria were genes with less than 
only three cells detected and disregarded cells with less 
than 200 detected gene numbers. Cells with less than 200 
or more than 2500 genes detected and those with high 
mitochondrial content (> 10%) were filtered out as well. 
We scaled the UMI counts using a scale factor of 10,000 
to normalize the library size effect of each cell. Follow-
ing the log transformation of data, other factors, includ-
ing “percent.mt,” “nCount_RNA,” and “nFeature_RNA” 
were corrected for variation regression using the Scale-
Data function in Seurat (v3.0.2). The corrected normal-
ized data metric was applied to standard analysis. The top 
50 variable genes were extracted for principal component 
analysis (PCA). The top 10 principal components were 
retained for UMAP visualization and clustering. Cell 
clustering was performed using the FindClusters func-
tion (resolution = 0.5) included in the Seurat R package.

Differential expression and survival prognosis analysis
The “Survival R package” was used to analyze differential 
expression, overall survival (OS), disease-specific sur-
vival, and progression-free survival of  CD8+ T cell-asso-
ciated genes based on single-cell sequencing and assays. 
Furthermore, we established the correlation between key 
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genes and clinicopathological features of KIRC and con-
structed a prognostic nomogram and calibration curve in 
the TCGA–KIRC cohort.

Consensus clustering
A cluster analysis was performed using the “Consensus 
Cluster Plus R Package” [20] and agglomerative PAM 
clustering with a 1-Pearson correlation distances and 
resampling 80% of the samples for 10 repetitions. The 
optimal number of clusters was determined using the 
empirical cumulative distribution function plot.

Identification of differentially expressed genes (DEGs)
Differential mRNA expression between subtypes was 
studied using the Limma package (version: 3.40.2). The 
screening criteria were adjusted as p < 0.05 and |fold 
change| > 2.

Functional enrichment analysis and gene set enrichment 
analysis (GSEA)
The “clusterProfiler” package was used to evaluate the 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses of different  CD8+ T cell-
associated subtypes, with q-value and p-value thresholds 
of < 0.05. Moreover, the difference in gene sets between 
high and low expression of  CD8+ T cell-associated genes 
was further assessed using the gene set enrichment anal-
ysis (GSEA) software (http:// www. broad insti tute. org/ 
gsea/ index. jsp).

Somatic mutation and immune landscape analysis
The KIRC somatic mutation data were obtained from 
the TCGA GDC data portal, and waterfall plots were 
created using the “Maftools” package. The relative per-
centages of different immune cell types were determined 
using the ESTIMATE and xCell algorithms, and the rela-
tive percentages of immune cell types between the two 
subtypes were compared by landscape plots. Moreover, 
TISIDB (http:// cis. hku. hk/ TISIDB/ index. php) was used 
to further evaluate the correlation between two subtypes 
and different immune indicators, including lympho-
cytes, immune inhibitors, immunostimulators, major 
histocompatibility (MHC) molecules, chemokines, and 
chemokine receptors.

Construction of  CD8+ T cell‑associated risk signature
Regression analysis was performed using the Lasso–
Cox method via the glmnet package. A tenfold cross-
validation was set up to obtain the optimal model. The 
prognostic significance of genes involved was assessed 
using the Cox method, and the relationship between 
different risk scores and patient follow-up time, events, 

and changes in the expression of individual genes was 
analyzed.

Cell lines and cell culture
Human renal cancer cell lines (786-O and ACHN) were 
cultured in Dulbecco’s modified Eagle medium (DMEM; 
Gibco Thermo Fisher Scientific, USA), containing 10% 
fetal bovine serum (Lonsera, Uruguay), and 1% penicil-
lin–streptomycin solution (Keygen, China). All cell lines 
were purchased from the Shanghai Institutes for Biologi-
cal Sciences and incubated in 95% humidified air at 37 °C 
and 5%  CO2.

RNA extraction and RT‑PCR
The RNA was extracted using the RNA extraction kit 
(Takara Kusatsu, Japan), and the Hiscript II First-Strand 
cDNA Synthesis Kit was used to synthesize the comple-
mentary DNA (Vazyme, China). Reverse transcriptase-
polymerase chain reaction (RT-PCR) was performed 
using the MonAmpTM SYBR Green qPCR Mix (Monad 
Biotech, China).

Small interfering RNA
The small interfering RNAs (siRNAs) against the LAG3 
gene were designed and synthesized by GenePharma Co. 
(China).

Cell proliferation and colony formation assays
For the cell proliferation assay, 1000 cells were seeded 
into 96-well plates for 0  h to 120  h, and 10 µL of the 
cell counting kit-8 (Keygen, China) solution was added 
per well. After a 2 h incubation at 37 °C, optical density 
at 450  nm (OD 450  nm) was measured using a micro-
plate reader (Bio-Tek, USA). For the colony formation 
assay, cells were seeded into 6-well plates at a density of 
1–2 × 10 [3] cells/well and incubated for 10 to 14  days 
at 37  °C. Next, the cells were washed using phosphate-
buffered saline, fixed with 4% polyformaldehyde (Service 
Bio, China), and stained with 0.1% crystal violet solu-
tion (Keygen, China). Colonies containing > 50 cells were 
counted using the ImageJ 2X software 2.1.4.7 (Rawak 
Software Inc., Germany).

Wound healing and transwell assay
For the wound healing assay, cells were inoculated into 
6-well plates and treated with si-/nc-LAG3. A straight 
scratch was created on the plate with a sterilized needle 
tip when the cell density was approximately 70%. The cell 
wound edge was marked and imaged under a microscope 
at the starting time point. After 0 h to 24 h, the migrated 
distance was measured and the wound closure per-
centage was calculated. For transwell assays, cells were 
inoculated into a 24-well transwell cell apical chamber 

http://www.broadinstitute.org/gsea/index.jsp
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containing the matrix gel (BD, USA) for evaluating inva-
sion and gel-free for migration. The bottom and upper 
chambers contained the RPMI medium and fetal bovine 
serum-free medium, respectively. Cells invading the bot-
tom chambers were fixed with 4% polyformaldehyde, 
stained with 0.1% crystal violet solution, counted, and 
imaged under a microscope.

Tissue samples and tissue microarrays
Formalin-fixed and paraffin-embedded prostate cancer 
tissue samples were collected from patients who under-
went radical nephrectomy in the affiliated Zhongda Hos-
pital of Southeast University, China, from April 2020 to 
November 2021. The study samples were from patients 
with KIRC, and the pathological diagnosis was confirmed 
by at least two pathologists. With the tumor as the center, 
normal tissues adjacent to the tumor were used as study 
materials, and two pairs of tissue microarrays were cre-
ated with a 0.6 mm diameter.

Immunohistochemistry
Formalin-fixed and paraffin-embedded tissue was 
dewaxed and dehydrated using xylene and serially-diluted 
ethanol. The tissue sections were incubated at 121 ℃ in 
an autoclave for 5  min to extract the antigen, following 
which these were incubated with anti-LAG3-monoclonal 

antibody at 4 ℃ overnight, and the bound antibody (Pro-
teintech) was incubated at 37 ℃ for 30 min.

Statistical analysis
The statistical analysis was performed using the R soft-
ware (version 4.0.2). Multivariate Cox regression analy-
ses were used to evaluate the prognostic significance. 
When p < 0.05 or log-rank p < 0.05, the difference was 
significant.

Results
Identification of  CD8+ T cell‑associated gene subgroups 
by single‑cell analysis
We used the GEO database to screen a single-cell 
sequencing dataset about KIRC GSE121636 [18], includ-
ing subsets GSE3440844, GSE3440845, and GSE3440846, 
as well as the normal kidney single-cell sequencing 
dataset GSE131685 [18], including subsets, namely, 
GSE4145204 and GSEE4145205. The correlation between 
the pre-filtered (Fig. 1B) and post-filtered (Fig. 1C) base 
data was analyzed by excluding cells with less than 200 or 
more than 2500 genes detected and cells with mitochon-
drial content > 10% (Fig. 1A). The analysis suggested that 
the cells were more highly active and that the sequencing 
depth was not near saturation after data filtration. Gene 
clusters with a high degree of variation were obtained 

Fig. 1 Pre-procession of single-cell sequencing data. A Genetic data, molecule numbers, and mitochondrial genome percentage in each cell. B 
Correlation between the primary data before filtration. C Correlation between primary data after filtration. D RPCA plot after the removal of batch 
effects. E Highly variable genes
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by the PCA analysis and displayed PCA plots of PC1 
and PC2 after combining to remove the batch effects 
(Fig. 1D), as well as obtain the top 10 highly variable fea-
tures (HVGs) in 2000 HVGs including S100A8, S100A9, 
JCHAIN, APOC1, TPSAB1, DEFB1, TPSB2, C1QB, 
C1QC, and SEPP1 (Fig. 1E).

The HVGs obtained above were included in the PCA 
analysis and 50 highly variable gene clusters were 
obtained using the ElbowPlot function and visualized 
by JackStrawPlot (Fig. 2A). Subsequently, KIRC cells and 
normal kidney tissue cells were divided into 14 clusters 
using the UMAP dimensionality degradation method 

(Fig.  2B). The top 10 genes in 14 clusters (Additional 
file 1: Table S1) were automatically matched to each cell 
type in the kidney tissue [21], ultimately obtaining eight 
different cell subtypes including the epithelium,  CD8+ T 
cells, B cells, mast cells, NKT cells, neutrophils, Tregs, 
and plasma cells (Fig. 2C). A comparison of the original 
UMAP cluster with the artificially annotated cell cluster 
(Fig. 2B–C) revealed that B cells, NKT cells, neutrophils, 
and plasma cells were differentially expressed in KIRC 
and normal kidney tissue cells, with NKT cells being rela-
tively highly expressed in KIRC (Fig.  2D). This analysis 
further revealed that the epithelial cells and mast cells 

Fig. 2 Identification of sub-groups in single-cell analysis in KIRC. A Determination of the principal components using ElbowPlot and JackStrawPlot() 
functions. B Cell cluster plotting using UMAP. C Cell cluster plotting after manual annotation of the top 10 marker genes. Plots of the distribution 
of shared cells (D) and unique cells (E) in normal kidney tissues and kidney cancer. F Metabolic pathways of normal kidney tissue and kidney cancer. 
G Metabolic pathways of different immune cells
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were specific to the normal kidney tissue, whereas Tregs 
and  CD8+ T cells were specific to KIRC, with  CD8+ T 
cells exhibiting the highest expression (Fig. 2E). Moreo-
ver, different metabolic pathways between KIRC and 
normal kidney tissue were analyzed, with the KIRC tis-
sue mostly enriched in DNA_replication, Tumor_prolif-
eration_signature, Tumor_inflammation_signature, and 
IL-10_anti-inflammation_signaling_pathway, whereas 
the normal kidney tissue was enriched in MYC_targets, 
ECM-related_genes, and Cellular_response_to_hyposis 
(Fig. 2F). The artificially annotated cell clusters were used 
to study the metabolic pathways of each cell, with  CD8+ 
T cell metabolic functions mostly enriched in Tumor_
proliferation_signature, Tumor_inflammation_signa-
ture, G2M_checkpoint, and DNA_replication (Fig.  2G), 
whose metabolic functions overlapped highly with those 
of KIRC. The above analysis indicated that  CD8+ T cells 
could be an essential immune cell population in the for-
mation, progression, and immune response to KIRC.

Identification of  CD8+ T cell‑associated subtypes 
by consensus clustering
The above single-cell sequencing analysis revealed that 
the top 10  CD8+ T cell-associated genes differentially 
expressed in KIRC were GZMK, CD27, CCL4L2, FXYD2, 
LAG3, RGS1, CST7, DUSP4, CD8A, and TRBV20-1 
(Additional file  1: Table  S1). Subsequently, we verified 
the differential expression of these genes in the TCGA–
KIRC cohort by heat map (Fig.  3A), paired differential 
expression analysis (Fig.  3B), and unpaired differential 
expression analysis (Fig.  3C). The results suggested that 
their expression was statistically significant in KIRC 
versus paracancerous tissues. Among these, GZMK, 
CD27, CCL4L2, LAG3, RGS1, CST7, DUSP4, CD8A, and 
TRBV20-1 were highly expressed in KIRC and were con-
sidered oncogenes, whereas FXYD2 was lowly expressed. 
The differential expression of the above genes in cancer 
and normal tissues was further validated using the HPA 
database (https:// www. prote inatl as. org), which was con-
sistent with the TCGA–KIRC cohort analysis. However, 
the database did not have immunohistochemical plots 
for CCL4L2, DUSP4, and TRBV20-1 (Additional file  3: 
Figure S1, Additional file  2: Table  S2). Moreover, the 
number of clusters with the highest average consistency 
within the group was K = 2 (Fig.  3D), and the distribu-
tion curve was the greatest at K = 2 (Fig. 3E). Therefore, 
K = 2 was selected to perform clustering, and the con-
sistent cluster (K = 2) is depicted in Fig.  3F, with 231 
KIRC patients in subtype C1 and 276 KIRC patients in 
subtype C2. Differential expression and OS analyses of 
the top 10  CD8+ T cell-associated genes in C1 and C2 
subtypes further revealed that GZMK, CD27, CCL4L2, 
LAG3, RGS1, CST7, DUSP4, CD8A, and TRBV20-1 were 

highly expressed in the C2 subtype, whereas FXYD2 was 
highly expressed in the C1 subtype (Fig. 3G). The OS was 
shorter in the C2 subtype compared to the C1 subtype 
(Fig.  3H). These results were similar to the differential 
expression analysis of the TCGA–KIRC cohort, indi-
cating that the C2 subtype was the oncogenic group for 
KIRC.

Identification of differentially expressed genes and signal 
pathways in different  CD8+ T cell‑associated subtypes
The above analysis revealed a poor prognosis in the onco-
genic subtype (C2), whereas the low expression sub-
type (C1) of  CD8+ T cell-associated genes had a better 
prognosis. Consequently, we identified key DEGs and 
signaling pathways in each subtype to understand the 
molecular mechanisms. A total of 507 abnormally regu-
lated genes were identified, including 15 up-regulated 
and 492 down-regulated genes (Fig.  4A–B). Because of 
a few up-regulated genes, we only performed the KEGG 
analysis on down-regulated genes and identified them to 
be mostly enriched in cytokine–cytokine receptor inter-
action, primary immunodeficiency, T cell receptor sign-
aling pathway, cell adhesion molecules (CAMs), antigen 
processing and presentation, and chemokine signaling 
pathway (Fig.  4C). The up-regulated genes were largely 
enriched in glutamate and leukotriene activities, includ-
ing hypoglycin A gamma-glutamyl transpeptidase activ-
ity, leukotriene C4 gamma-glutamyl transferase activity, 
and glutathione hydrolase activity (Fig.  4D). However, 
the down-regulated genes majorly corresponded to 
immune-related activities, including immune system 
processes, immune responses, and adaptive immune 
responses (Fig. 4E). Moreover, the GSEA analysis further 
suggested that C1 and C2 subtypes significantly differed 
in gene set enrichment in immune cells (T cell receptor 
signaling pathway, antigen processing and presentation, 
natural killer cell-mediated cytotoxicity, B cell receptor 
signaling pathway, and leukocyte transendothelial migra-
tion) (Fig. 4F) and oncogenic pathways (VEGF signaling 
pathway, P53 signaling pathway, DNA replication, apop-
tosis, and pathways in cancer) (Fig.  4G). These results 
suggested significant differences in gene expression and 
related pathway enrichment between C1 and C2 sub-
types, which could be the underlying mechanism leading 
to the different prognosis of KIRC.

Somatic mutations and tumor microenvironment 
landscape in C1 and C2 subtypes
Different somatic mutation profiles were observed 
between different  CD8+ T cell-associated subtypes, and 
the top five genes with high mutation frequencies in the 
C1 subtype were VHL (55.9%), PBRM1 (50.4%), TTN 
(24.4%), MTOR (11.0%), and BAP1 (9.4%) (Fig. 4H). The 

https://www.proteinatlas.org
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Fig. 3 Identification of  CD8+ T cell-associated subtypes by consensus clustering. A Gene expression profiles of 10  CD8+ T cell-associated genes 
in the TCGA–KIRC cohort. Paired (B) and unpaired (C) expression analyses of 10  CD8+ T cell-associated genes. Sample cluster consistency (D) 
and area under the distribution curve (E) for K from 2 to 10. F Consistent cluster (K = 2) of 10 genes. G Expression profiles of 10  CD8+ T cell-associated 
genes in different subtypes. H Kaplan–Meier curves for OS in C1 and C2 subtypes. C1 was a low-expression subtype of  CD8+ T cell-associated genes 
and C2 was a high-expression subtype
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top five genes in the C2 subtype with high mutation fre-
quencies were VHL (67.2%), PBRM1 (50.4%), SETD2 
(23.2%), TTN (20.8%), and BAP1 (16.8%) (Fig.  4I). This 
indicated that the mutation frequency in the oncogenic 
C2 subtype was higher, especially in VHL and BAP1 than 
in the C1 subtype.

Because the study was based on  CD8+ T cells, which 
could potentially influence the activation or silencing of 
tumor immune responses, we analyzed the tumor immune 
microenvironment in two subtypes. The StromaScore, 
ImmuneScore, ESTIMATEScore, and Microenviron-
mentScore were higher in the C2 subtype compared to 
the C1 subtype (Fig.  5A–C, 5F–G) although the xCell 
algorithm’s StromaScore subgroup type was not mean-
ingful (Fig.  5E). Next, the infiltration differential map 
of 64 immune cell types was assessed by xCell with the 
LM64 signature matrix (Fig.  5D). The quantitative analy-
sis indicated that the aDC,  CD8+ T cells,  CD8+ Tcm, 

macrophages, NKTs, Th1 cells, and Th2 cells in the C2 
subtype were significantly higher than those in the C1 sub-
type, whereas monocytes and smooth muscle cells were 
lower than those in the C1 subtype (Fig. 5H). Subsequently, 
a comprehensive analysis of the immune gene correla-
tion between different subtypes revealed that the expres-
sion of both immune checkpoint-related genes and MHC 
molecules was significantly higher in the C2 subtype than 
in the C1 subtype (Fig. 5I–J). For immunostimulators and 
chemokines, the expression of CD27, CD48, ICOS, CCL5, 
CXCL9, and CXCL10 in the C2 subtype was significantly 
higher than in the C1 subtype (Fig. 5K–L).

Construction and validation of  CD8+ T cell‑associated risk 
signature
We used the LASSO regression analysis and Cox uni-
variate analysis to construct a risk prognostic model 
based on  CD8+ T cell-associated genes. After integrating 

Fig. 4 Identification of differentially expressed genes, their potential signaling pathways, and somatic mutations in C1 and C2 subtypes. DEG 
expression profiles (A) and volcano plots (B) of different subtypes. C KEGG analysis of down-regulated DEGs. GO analysis of up-regulated (D) 
and down-regulated (E) DEGs. Potential signaling pathways between C1 (F) and C2 (G) subtypes. Visualization of the top 10 mutated genes 
in the C1 (H) and C2 (I) subtypes of the  CD8+ T cell-associated genes. C1 was a low-expression subtype of  CD8+ T cell-associated genes and C2 
was a high-expression subtype



Page 9 of 17Gao et al. European Journal of Medical Research           (2024) 29:89  

survival time, survival status, and gene expression data, 
the final six-gene risk-score model was developed prem-
ised on 10  CD8+ T cell-associated genes on the LASSO 
regression analysis using the following model equa-
tion: RiskScore =  − 0.291858656434841*GZMK − 0.192
758342489394*FXYD2 + 0.625023643446193*LAG3 + 0
.161324477181591*RGS1 − 0.380169045328895*DUSP
4 − 0.107221347575037*TRBV20-1 (Fig.  6A–B). Subse-
quently, it was finally determined by the Cox univariate 
analysis that GZMK, FXYD2, LAG3, RGS1, and DUSP4 
displayed prognostic significance (Fig.  6C). Next, the 
relationship between survival status and the five genes 
above was investigated. Our results demonstrated that 
the number of survival states was considerably higher 

in the anti-cancer cohort (C1 subtype) compared to the 
oncogenic cohort (C2 subtype) (Fig. 6D). The risk scores 
for the above five genes were further quantified using the 
KM analysis in the TCGA–KIRC cohort, where high-risk 
scores corresponded to poorer OS (Fig. 6E) and 1, 3, and 
5-year survival rates of 0.67, 0.67, and 0.69, respectively 
(Fig. 6F).

Identification of LAG3 as the most critical  CD8+ T 
cell‑associated gene in KIRC
The correlation of  CD8+ T cell-related genes (GZMK, 
CD27, CCL4L2, FXYD2, LAG3, RGS1, CST7, DUSP4, 
CD8A, and TRBV20-1) was further explored with prog-
nosis and diagnosis in KIRC. We further validated the 

Fig. 5 Immune landscape of C1 and C2 subtypes of  CD8+ T cell-associated genes. Subtypes were assessed using the ESTIMATE algorithm 
for stromalScore (A), immueScore (B), and ESTIMATE score (C). Immune cell infiltration (D) was assessed using the xCell algorithm, as well 
as stromalScore (E), immueScore (F), and microenvironment Score (G) for different subtypes. Differential expression of genes related to immune 
cells (H), immunosuppression (I), MHC molecules (J), immune enhancement (K), and chemokines (L) between C1 and C2 subtypes. C1 
was a low-expression subtype of  CD8+ T cell-associated genes and C2 was a high-expression subtype
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OS, disease-specific survival, progression-free inter-
val, diagnostic receiver operating characteristic (ROC), 
and time-dependent ROC curves of the above 10 genes 
in the TCGA–KIRC cohort. The results suggested that 
the area under the ROC curve was > 0.85 for all genes, 
except FXYD2, and the diagnostic effect was good (Addi-
tional file  4: Figure S2A–J). LAG3 exerted a significant 
pro-carcinogenic effect and KIRC patients with high 
LAG3 expression had shorter OS (p = 0.008), disease-
specific survival (p = 0.006), and progression-free inter-
val (p = 0.043) (Additional file 4: Figure S2H). In contrast, 
FXYD2 and DUSP4 displayed a significant anti-carci-
nogenic effect with all p < 0.05 (Additional file  4: Figure 
S2E–F), whereas the other single genes exerted no great 
prognostic significance (Additional file  4: Figure S2). 
Notably, only LAG3 exhibited a relatively good time-
dependent curve, AUC 1-year = 0.592, AUC 3-year = 0.574, 
and AUC 5-year = 0.580 (Additional file  4: Figure S2H). 
Further analysis of its association with  CD8+ T cells 
revealed that the expression of LAG3 and DUSP4 was 

positively correlated with  CD8+ T cell enrichment 
(Fig. 7A–B), whereas FXYD2 was not (Fig. 7C). The cor-
relation between key genes and immunotherapy was fur-
ther explored by TMB scores, suggesting that LAG3 was 
positively correlated with TMB scores (ρSpearman = 0.14 
and p = 0.006), whereas DUSP4 was insignificant (Fig. 7D, 
F). The study revealed that the expression of LAG3 and 
DUSP4 was not associated with TIDE scores (Fig. 7E, G). 
Compared to the expression of DUSP4, LAG3 displayed 
a higher correlation with  CD8+ T cells and a function in 
immunotherapy. Therefore, we followed up with an in-
depth exploration of LAG3. We further verified the cor-
relation between LAG3 expression and different T-cell 
subtypes in the TCGA–KIRC disease cohort. We found 
that the LAG3 level was positively correlated with sev-
eral T cells, including CD8 T cells, cytotoxic cells, T cells, 
T helper cells, Tcm, Tem, TFH, Th1 cells, Th2 cells, and 
Tregs, and negatively correlated with Th17 cells, with 
no correlation with Tgd (Additional file  5: Figure S3). 
Therefore, LAG3 was identified as the most critical T 

Fig. 6 Construction and validation of  CD8+ T cell-associated genetic risk prognostic model in the TCGA–KIRC cohort. A–B Correlation of 10  CD8+ T 
cell-associated genes with OS using the Lasso–Cox analysis. C The prognostic value of genes for OS was assessed using the univariate Cox analysis. 
D Risk score distribution, survival status, and heat map of five valuable genes. Kaplan–Meier plots (E) and ROC plots (F) of  CD8+ T cell-associated 
genetic risk prognostic models
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cell-related prognostic gene in KIRC. Further investiga-
tion of the association of LAG3 expression with sunitinib 
and sorafenib sensitivity indicated that the high LAG3 
expression group (G2) had lower sunitinib  IC50 and 
higher sorafenib  IC50 (Fig.  7H–I). Moreover, LAG3 was 
correlated with multiple immune-related genes (Fig. 7K). 
This study revealed that the LAG3 expression was not 
associated with stemness scores between the high and 
low LAG3 expression groups (Fig. 7J).

The single-cell analysis revealed that LAG3 expres-
sion was mostly concentrated in zone 1 with scattered 
distribution in zones 2, 5, 6, 7, and 10 (Fig. 8A). Cluster 
identification demonstrated that LAG3 was concen-
trated in  CD8+ T cells in KIRC, whereas it was highly 
scattered in NKT or B cells in both normal kidney tis-
sues and KIRC (Fig.  8B). The GSEA pathway after sin-
gle-gene differential analysis suggested that its pathway 
included the PID_CD8_TCR_PATHWAY, WP_INTER-
ACTIONS_BET WEEN_IMMUNE_CELLS_AND_
MICRORNAS_IN_TUMOR_MICROENVIRONMENT, 
W P _ C A N C E R _ I M M U N OT H E R A P Y _ BY _ P D 1 _
BLOCKADE and REACTOME_IMMUNOREGULA-
TORY_INTERACTIONS_BETWEEN_A_LYMPHOID_
AND_A_NON_LYMPHOID_CELL, whose NES > 1.9, 
p.adj < 0.05, and FDR < 0.05 (Fig. 8C–F). In addition, the 
combined enrichment scores of each sample on multiple 
pathways revealed the most significant positive correla-
tion between LAG3 and Tumor_Inflammation_Signature, 

apoptosis, and IL-10_Anti-inflammatory_Signaling_
Pathway (Fig. 8G–I).

Validation of LAG3 as a key  CD8+ T cell‑associated gene 
in KIRC in in vitro experiments
An analysis of the CCLE dataset revealed a significantly 
high expression of LAG3 in A-704, OS-RC-2, SNU-349, 
KMRC-3, SLR 26, and ACHN kidney cancer cell lines 
(Additional file 6: Figure S4). Next, the RT-PCR results of 
existing kidney cancer cell lines in the laboratory found 
LAG3 to be highly expressed in 786-O and ACHN cell 
lines, which were selected for subsequent validation 
(Fig. 9A). The knockdown efficiency of LAG3 small inter-
fering reagents in 786-O and ACHN cell lines by RT-PCR 
was validated (Fig. 9B). Subsequently, the growth curve of 
the siLAG3 group was significantly slower in the 786-O 
and ACHN cell lines than that of the control group in the 
CCK8 experiment (Fig. 9F). Compared with the control 
group, the number of cell clones in the siLAG3 group 
was significantly lower in 786-O and ACHN cell lines 
by clone experiments (Fig.  9C). The scratch experiment 
revealed that the siLAG3 group was less efficient at heal-
ing scratches at 24  h than the control group (Fig.  9D). 
Cell migration and invasion were detected to be signifi-
cantly down-regulated in the siLAG3 group by transwell 
assay (Fig. 9E). Combined with the preliminary results of 
LAG3 differential expression in KIRC versus normal kid-
ney tissues in the HPA database (Additional file 3: Figure 

Fig. 7 Single-gene analysis of LAG3 in  CD8+ T cell-associated genes. The expression and correlation with  CD8+ T cells for LAG3 (A), DUSP4 (B), 
and FXYD2 (C) in the TCGA–KIRC cohort. Correlation of LAG3 with tumor mutation burden (D) and responsiveness to immune checkpoint 
inhibitors (E). Correlation of DUSP4 with tumor mutation burden (F) and responsiveness to immune checkpoint inhibitors (G).  IC50 of sunitinib (H) 
and sorafenib (I) in different LAG3 expression subgroups. (J) LAG3 stemness score. (K) Relevance of LAG3 to immune-related genes
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S1), immunohistochemistry revealed the high expression 
of LAG3 in KIRC was further confirmed in the tissues of 
our patients (Fig. 10).

Discussion
Kidney cancer constitutes the 14th most common malig-
nancy worldwide with 431,288 new diagnosed cases and 
179,368 new deaths in 2020 [3]. The major etiologies of 
kidney cancer include hypertension, obesity, and smok-
ing [22]. The ICI-based combination therapy demon-
strated excellent clinical efficacy in several large clinical 
trials and is now the first-line care standard for patients 

with advanced or metastatic renal cancer with a low OS 
at first diagnosis [23–26]. Despite the pivotal function 
of the PD-1/CTLA-4 axis in the treatment of RCC has 
greatly improved clinical outcomes compared to previous 
treatment options, the majority of patients with RCC did 
not achieve durable clinical benefits after ICI-based com-
bination therapy [23–26]. Therefore, it is highly essential 
to investigate the tumor immune microenvironment and 
explore novel immunotherapeutic targets, and ultimately 
optimize systemic treatment for RCC.

In response to the immune microenvironment of renal 
cancer, Finke [6] and Stein [15] provided reviews on the 

Fig. 8 Cell population expression and pathway analysis of LAG3 in single-cell analysis. A LAG3 UMAP plot in  CD8+ T cell-associated subgroups. 
B Expression of LAG3 in different cell populations in normal kidney and renal cancer tissues. C–F Analysis of potential signaling pathway of LAG3 
by GESA. G–I Analysis of the enrichment of LAG3 using the GSVA algorithm
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immunology and immunobiology of renal cancer, respec-
tively. In most solid tumors, the degree of  CD8+ T cell 
infiltration was positively correlated with good progno-
sis for tumor patients [27].  CD8+ T cells exerted a direct 
cytotoxic effect on target cells and performed a critical 
role in anti-cancer immunity. However, the expression of 
suppressive molecules (PD-1 and CTLA-4) on the sur-
face of  CD8+ T cells increases in response to sustained 
stimulation by tumor-specific antigens, and their func-
tion decreases and eventually reaches the exhausted 
state, as demonstrated in multiple cancer models [13, 14, 
28]. Therefore, blocking their inhibitory signaling using 
anti-PD1/CTLA-4 antibodies could rejuvenate exhausted 
 CD8+ T cells, enhance their cytotoxicity, promote tumor 
cell lysis, and restrict tumor metastasis [29]. However, 

kidney cancer had a distinctive immune profile such that 
the degree of  CD8+ T cell infiltration is positively corre-
lated with poor prognosis, and the specific mechanism 
was unclear. Several hypotheses have been proposed to 
explain this paradoxical phenomenon. First, the activa-
tion status and virulence potential of  CD8+ T cells were 
highly specific in kidney cancer, where stem-like  TCF1+ 
or PD-1+  TIM3−  LAG3− CD8 + T cell subsets contrib-
ute to the anti-cancer immune effect [30–32]. Second, 
the low density of tertiary lymphoid structures gener-
ated numerous immature DC cells, causing the infiltra-
tion of polyclonal  CD8+ T cells that could not recognize 
tumor-associated antigens [11, 27, 32]. Third, the absence 
of tumor-specific genes, such as the relative absence of 
PBRM1 mutations in highly  CD8+ T cells RCC, which 

Fig. 9 Validation of LAG3 as a key oncogene in KIRC in in vitro experiments. A Validation of LAG3 expression in renal cancer cell lines. B Knock-down 
efficiency of LAG3, respectively, in 786-O and ACHN cell lines. C LAG3 clone tests in 786-O and ACHN cell lines. D LAG3 scratch tests in 786-O 
and ACHN cell lines. E LAG3 migration and invasion assays in 786-O and ACHN cell lines using a 24-well plate. F LAG3 CCK8 assay in 786-O 
and ACHN cell lines
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was often associated with a better prognosis [33]. Finally, 
specific metabolic dysregulation of  CD8+ T cells in RCC 
restricted  CD8+ T cell activation and did not recover 
through the PD-1 axis inhibition [34].

The high significance of  CD8+ T cells in the immuno-
therapy of kidney cancer and the results of single-cell 
sequencing analysis (CD8 + T cells were significantly dif-
ferentially expressed in KIRC and kidney tissue) can be 
used to construct a prognostic model of  CD8+ T cell-
associated genes to guide clinical decisions in KIRC. 
First, the top 10 DEGs in  CD8+ T cells of KIRC were 
obtained by cluster identification in single-cell analysis, 
including GZMK, CD27, CCL4L2, FXYD2, LAG3, RGS1, 
CST7, DUSP4, CD8A, and TRBV20-1. Subsequently, the 
above gene expression was divided into two subtypes by 
cluster analysis, that is,  CD8+ T cell-associated gene low 
expression (C1) and high expression (C2) subtypes. The 
cluster analysis results were used for grouping, and the 
DEGs, pathway enrichment, and mutated genes between 
C1 and C2 subtypes were comprehensively studied. The 
up-regulated genes were largely enriched for glutamate 
and leukotriene activity, whereas the down-regulated 
genes were enriched for immune-related activities. Fur-
thermore, VHL and STED2, the most commonly mutated 
genes in primary KIRC, displayed remarkably high muta-
tion rates in the C2 subtype compared to the C1 subtype, 
predicting a poor prognosis such as metastasis or drug 

resistance in the C2 subtype [35, 36]. We assessed the 
KIRC immune microenvironment in different subtypes 
and revealed that the stromal and immune scores were 
significantly higher in the  CD8+ T cell-associated gene 
high expression subtype than in the C1 subtype, with sig-
nificant differences between the two subtypes in immune 
infiltrating cells and immune-related molecules. There-
fore, LASSO regression and Cox univariate analyses were 
used to construct the  CD8+ T cell-associated risk prog-
nostic model: RiskScore =  − 0.291858656434841*GZM
K − 0.192758342489394*FXYD2 + 0.625023643446193*
LAG3 + 0.161324477181591*RGS1 − 0.38016904532889
5*DUSP4 − 0.107221347575037*TRBV20-1, which will 
assist the clinicians to assess the prognosis for survival, 
immune status, and drug selection in patients with KIRC. 
Relevant studies were investigated to identify  CD8+ T 
cell-related genes in kidney cancer. Genomics, radiol-
ogy, and artificial intelligence modalities can be used to 
identify renal cancer differentiation more easily and ear-
lier, and predict its Fuhrman grade and responsiveness to 
immunotherapy response, thus assisting the clinicians in 
defining the risk of stratification of the disease, treatment 
choices, follow-up strategies, and prognosis [42, 43].

Using tumor single-gene related studies as the ref-
erence [44], we performed single-gene analysis of the 
above genes and finally identified LAG3 as the most valu-
able  CD8+ T cell-associated gene in KIRC. Lymphocyte 

Fig. 10 LAG3 is highly expressed in the KIRC tissue
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activating gene 3 (LAG3) or CD223 is highly expressed 
in different T cells,  CD8+ T cells,  CD4+ T cells, and 
Tregs, to maintain homeostasis [37]. However, persistent 
tumor-associated antigen stimulation causes its chronic 
expression, ultimately promoting T-cell exhaustion in 
cancers [37, 38]. Therefore, LAG3 serves as the third 
clinical checkpoint in case of limited or even no response 
in 60 to 80% of cancer patients in PD1/CTLA-4 axis 
immunotherapy [39]. Currently, several clinical trials are 
being conducted on immunotherapies targeting LAG3 in 
combination with PD1/CTLA-4 axis inhibitors to treat 
cancers including kidney cancer 40, 41. In the current 
study, we analyzed for the first time the distribution of 
LAG3 in renal cancer and renal tissue using single-cell 
analysis and investigated its expression, prognostic sig-
nificance, immune microenvironmental relevance, and 
pathway enrichment using bioinformatics techniques. 
We confirmed that LAG3 promotes the progression and 
metastasis of renal cell carcinoma and is positively cor-
related with  CD8+ T cells using cell phenotype studies 
and immunohistochemistry. Presently, immunotherapy 
targeting LAG3 is largely used for melanoma, pancreatic 
cancer, and hematological tumors, with only a few studies 
on renal cancer. We elucidated the function of LAG3 in 
KIRC. We believe our findings will provide a preliminary 
basis and direction for LAG3-targeted immunotherapy 
and even CAR-T therapy in patients with kidney cancer.

The present study had certain limitations. First, het-
erogeneity obtained in retrospective studies needs to be 
verified by conducting prospective studies. Second, we 
only applied the top 10  CD8+ T cell-associated genes to 
construct the risk prognosis model, which lacked com-
prehensiveness and extensiveness. Third, we only vali-
dated the function of LAG3 in KIRC at the in vitro level 
and lacked in vivo experiments, as well as the expression 
mechanism and  CD8+ T cell activity warrant further 
exploration. In conclusion, more basic and large clinical 
trials are required to validate these findings (Table 1).

Conclusion
The top 10  CD8+ T cell-associated genes were 
obtained by single-cell analysis, including GZMK, 
CD27, CCL4L2, FXYD2, LAG3, RGS1, CST7, DUSP4, 

CD8A, and TRBV20-1. These genes were divided into 
low- and high-expression subtypes by cluster analy-
sis, and DEGs, pathway enrichment, mutant genes, 
and KIRC immune infiltration in different subtypes 
were studied. The best risk prognosis model was con-
structed (RiskScore =  − 0.291858656434841*GZMK − 
0.192758342489394*FXYD2 + 0.625023643446193*L
AG3 + 0.161324477181591*RGS1 − 0.3801690453288
95*DUSP4 − 0.107221347575037*TRBV20-1). Finally, 
the single-gene analysis identified LAG3 as the most 
valuable  CD8+ T cell-associated gene in KIRC, which 
was further confirmed by cell phenotype studies and 
immunohistochemistry.
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