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Abstract 

Background This study aimed to develop and validate an interpretable machine-learning model that utilizes clini-
cal features and inflammatory biomarkers to predict the risk of in-hospital mortality in critically ill patients suffering 
from sepsis.

Methods We enrolled all patients diagnosed with sepsis in the Medical Information Mart for Intensive Care IV (MIMIC-
IV, v.2.0), eICU Collaborative Research Care (eICU-CRD 2.0), and the Amsterdam University Medical Centers databases 
(AmsterdamUMCdb 1.0.2). LASSO regression was employed for feature selection. Seven machine-learning methods 
were applied to develop prognostic models. The optimal model was chosen based on its accuracy, F1 score and area 
under curve (AUC) in the validation cohort. Moreover, we utilized the SHapley Additive exPlanations (SHAP) method 
to elucidate the effects of the features attributed to the model and analyze how individual features affect the model’s 
output. Finally, Spearman correlation analysis examined the associations among continuous predictor variables. 
Restricted cubic splines (RCS) explored potential non-linear relationships between continuous risk factors and in-
hospital mortality.

Results 3535 patients with sepsis were eligible for participation in this study. The median age of the participants 
was 66 years (IQR, 55–77 years), and 56% were male. After selection, 12 of the 45 clinical parameters collected 
on the first day after ICU admission remained associated with prognosis and were used to develop machine-learning 
models. Among seven constructed models, the eXtreme Gradient Boosting (XGBoost) model achieved the best 
performance, with an AUC of 0.94 and an F1 score of 0.937 in the validation cohort. Feature importance analysis 
revealed that Age, AST, invasive ventilation treatment, and serum urea nitrogen (BUN) were the top four features 
of the XGBoost model with the most significant impact. Inflammatory biomarkers may have prognostic value. Further-
more, SHAP force analysis illustrated how the constructed model visualized the prediction of the model.

Conclusions This study demonstrated the potential of machine-learning approaches for early prediction of out-
comes in patients with sepsis. The SHAP method could improve the interoperability of machine-learning models 
and help clinicians better understand the reasoning behind the outcome.
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Introduction
Sepsis is a severe illness that arises from various infec-
tions, leading to uncontrolled systemic inflammation. 
Despite medical advances and increased knowledge of 
its pathophysiology, sepsis remains a common cause of 
ICU admission and causes over 30 million deaths annu-
ally [1, 2]. According to the third international consensus 
definition, sepsis and septic shock are rapidly progres-
sive inflammatory conditions accompanied by a state 
of immunosuppression [3]. Neutrophils are primary 
effector cells during systemic inflammatory reactions 
and exert regulatory roles over other immune cells by 
secreting cytokines and chemokines that enhance their 
recruitment, activation, and function [4, 5]. The neutro-
phil-to-lymphocyte ratio (NLR), calculated as a simple 
ratio between the neutrophil and lymphocyte counts 
measured in peripheral blood, reflects two aspects of the 
immune system: innate immunity, predominantly medi-
ated by neutrophils, and adaptive immunity, supported 
by lymphocytes6. The NLR has acted as a reliable diag-
nostic marker for bacteremia and sepsis [7], with higher 
NLR values associated with adverse prognoses in patients 
with sepsis [8]. Moreover, NLR values have demonstrated 
a potential effect in assessing sepsis severity, notably ele-
vated in patients with septic shock. Recent researchers 
have explored prediction models based on NLR, reveal-
ing their excellent diagnostic and prognostic capabilities 
in sepsis [9–11].

Compared with other markers, such as C-reactive 
protein (CRP) and white blood cell count (WBC), NLR 
exhibited moderate sensitivity and high specificity [12]. 
High-density lipoprotein (HDL), known for its anti-
inflammatory properties, has been demonstrated to have 
prognostic implications in patients with inflammatory 
disorders, including sepsis [13]. HDL levels significantly 
decrease during sepsis, and low HDL correlates with 
higher hospital mortality, likely due to its anti-inflam-
matory properties [14]. Furthermore, recent studies have 
shown that immune-inflammation markers such as plate-
let-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte 
ratio (LMR), NLR, monocyte/high-density lipoprotein 
cholesterol ratio (MHR) have garnered attention in iden-
tifying patients with septic and other infectious diseases 
[15–18]. Machine learning is a synthesis of mathematical 
methods that seek to distill knowledge and insights from 
large datasets to develop algorithms capable of predicting 
outcomes through data-driven ‘learning.’ This paradigm 

significantly outperforms traditional statistical methods 
regarding predictive accuracy [19]. For example, Ren 
and Yao et al. described how the XGBoost model outper-
formed a stepwise logistic regression model in predicting 
in-hospital mortality by identifying key features associ-
ated with outcomes such as coagulopathy, fluid electro-
lyte disturbances, renal replacement therapy (RRT), urine 
output, and cardiovascular surgery [20]. Similarly, the 
XGBoost model was touted as a reliable tool for predict-
ing acute kidney injury (AKI) in septic patients, demon-
strating superior performance over six other machine 
learning models [21]. In addition, John and Aron have 
developed a machine learning scoring method to predict 
the onset of sepsis within 48 h, a novel approach aimed at 
identifying at-risk populations, tailoring clinical interven-
tions, and improving patient care [22]. Considering these 
findings, our study seeks to extend this emerging field by 
introducing features associated with immune-inflamma-
tion biomarkers. Incorporating these features may reveal 
new insights into the pathophysiology of sepsis and create 
more accurate prognostic models. Thus, our work aligns 
with the contemporary discussion on the application of 
machine learning in sepsis prognosis and significantly 
extends by highlighting our research’s novelty and clinical 
necessity. Firstly, our study was designed to investigate 
the correlation between immune-inflammation biomark-
ers and in-hospital mortality among septic patients based 
on machine learning algorithms and compared with the 
conventional logistic regression model and Sofa score. 
Secondly, by employing the XGBoost model coupled 
with SHapley Additive exPlanations (SHAP), we achieve 
superior predictive performance and enhance the inter-
pretability of the model’s outputs, making our findings 
directly actionable in clinical settings. This dual focus on 
accuracy and interpretability addresses a significant gap 
in the current literature, where many ML models remain 
black boxes. Lastly, to strengthen the model’s credibility, 
we recruited patients from three reputable medical cent-
ers, namely MIMIC-IV, eICU-CRD, and AmsterdamUM-
Cdb, compared to single-center studies that have been 
prevalent in previous predictive models for sepsis [19, 
23]. In addition, we meticulously excluded patients with 
HIV infection, rheumatic diseases, cancer or metastatic 
tumors, and hematological diseases to minimize poten-
tial bias associated with immunosuppression. Through 
advanced machine learning models, including the 
XGBoost model, we aimed to provide reliable prognostic 
insights into in-hospital mortality in septic patients.

Keywords Sepsis, Prediction, Machining learning, Intensive care unit, XGBoost
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Methods
Data source
Data for this study were obtained from the MIMIC-IV 
1.0 database, the eICU-CRD 2.0, and the Amsterda-
mUMCdb 1.0.2. The MIMIC-IV 2.0 database, an updated 
version of MIMIC-III, comprises data from over 40,000 
patients admitted to the ICU at the Beth Israel Deaconess 
Medical Center (BIDMC) [24]. The eICU-CRD contains 
data from multiple ICUs, having over 200,000 patients 
admitted in 2014 and 2015 [25]. The AmsterdamUMCdb 
contains approximately 1 billion clinical data points from 
23,106 admissions of 20,109 patients [26].

Data collection and release were approved by the ethi-
cal standards of the institutional review board of the 
Massachusetts Institute of Technology (no. 0403000206) 
and complied with the Health Insurance Portability and 
Accountability Act (HIPAA).

Participants
This study included participants aged 18 or older from 
the MIMIC-IV1.0, eICU databases 2.0, and Amsterda-
mUMCdb 1.0.2. Eligibility for inclusion was based on the 
following criteria: (1) Documented or suspected infec-
tion and a Sequential Organ Failure Assessment (SOFA) 
score of ≥ 2 according to the Sepsis-3.0 standards [3] in 
the first 24 h of ICU admission. (2) Documentation of 
peripheral complete blood count within the first 24 h of 
ICU admission.

Exclusion criteria included: (1) ICU stay of fewer than 
24 h; (2) HIV infection, cancer, metastatic tumors, rheu-
matic diseases; (3) For patients with multiple hospitaliza-
tions, only the first ICU admission was considered for the 
study; (4) Total cholesterol, triglyceride, HDL, low-den-
sity lipoprotein (LDL) was not documented in the first 24 
h.

Data extraction, handling missing and outlier data
The following clinical information was extracted using 
Structured Query Language (SQL) statements: (1) Labo-
ratory blood and biochemical examination within the 
first 24 h: WBC, platelets, neutrophil count, lympho-
cyte count, monocyte count, total cholesterol, HDL, 
LDL, blood glucose. (2) Demographics and vital signs 
within the first 24 h: age, sex, heart rate, systolic blood 
pressure, diastolic blood pressure, temperature (℃), and 
respiratory rate. (3) Blood gas analysis within the first 24 
h: arterial partial pressure of oxygen  (PaO2), arterial par-
tial pressure of carbon dioxide  (PaCO2). (4) ICU details: 
the length of ICU stays and the inpatient survival status. 
(5) Comorbidity and treatment modalities: myocardial 
infarction, congestive heart failure, chronic pulmonary, 
liver disease, renal disease, mechanical ventilation, and 
dialysis. In cases where a variable was recorded multiple 

times within the first 24 h of ICU admission, the value 
associated with the greatest severity of illness was used. 
The NLR was computed as the ratio of neutrophils to 
lymphocytes, and the LMR was calculated as the ratio of 
lymphocytes to monocytes. The PLR was calculated from 
the ratio of platelets to lymphocytes. The MHR was cal-
culated from the ratio of monocytes to HDL. The NHR 
was calculated from the ratio of neutrophils to HDL.

Variables missing for over 30%, including  PaO2fio2ratio, 
 Fio2, Lactate,Spo2,  Paco2,  Pao2, Ph, LDL, were excluded 
from analysis (Additional file  1: Fig. S1). The remaining 
45 predictor candidates measured at the ICU admis-
sion were selected for further analysis. Multiple imputa-
tions utilizing predictive mean matching (pmm) with the 
"mice" package imputed missing values for selected vari-
ables [27]. Random forest outlier detection was imple-
mented (Additional file 2: Fig. S2), with outliers replaced 
by pmm using the outForest R package [28, 29].

Statistical analysis
We utilized SQL statements to extract the required clini-
cal information. All analyses were carried out using R4.0.5. 
Continuous variables were represented as the mean ± SD or 
median (interquartile) and compared using Student’s t test 
for normally distributed variables or the Mann–Whitney 
U test for non-normally distributed variables. Categorical 
variables were expressed as proportions and analyzed using 
the Chi-square or Fisher’s exact tests. The participants in 
the survey were randomly divided into three different 
cohorts: the training cohort, the validation cohort, and 
the test cohort. The training cohort comprised 48% of the 
total participants (n = 1696) and was used to identify essen-
tial features. Meanwhile, the validation cohort (n = 1132), 
which accounted for 32% of the participants, was used to 
fine-tune the hyperparameters and identify the most effec-
tive classifiers. Finally, the test cohort, which made up 20% 
of the total number of participants (n = 707), was used to 
evaluate the performance of the selected features and clas-
sifiers. LASSO regularization was employed for variable 
selection, identifying pertinent variables while disregarding 
others to reduce model complexity and mitigate overfitting 
risks [30, 31]. A vital advantage of this approach is facilitat-
ing model interpretability by enhancing the understanding 
of underlying relationships. Ten-fold cross-validation with 
the "glmnet" package estimated optimal penalty param-
eters (lambda) and beta coefficients for selected variables 
in the training cohort [32]. This rigorous cross-validation 
process ensured robustness in model selection and param-
eter estimation. We used the glmnet package for LASSO 
regression, setting the alpha parameter to 1. As part of the 
procedure, it automatically normalizes the data. In addi-
tion, we performed outlier preprocessing to improve data 
quality and employed tidymodel package to normalize 
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the data with Z-scores after handling outliers for valida-
tion and test cohorts. Therefore, no further normalisation 
of the dataset is required for machine learning modelling. 
A comprehensive ensemble of seven machine learning 
models, including eXtreme Gradient Boosting (XGBoost), 
logistic regression (LR), random forest (RF), support vector 
machine (SVM), K Nearest Neighbor (KNN), Naive Bayes, 
and Decision Tree (DT), estimated the predictive models 
in our study. Model discriminative accuracy was evaluated 
using the area under the receiver operating characteristic 
curve (AUC-ROC), a widely accepted metric, F1 scores, 
precision, and recall. Decision curve analysis (DCA) quan-
tified net benefit across varying threshold probabilities to 
further assess the practical utility and potential clinical 
impact, providing crucial insights into model clinical rel-
evance and optimal decision strategies based on predic-
tive outcomes [33]. Ten-fold Cross-Validation was applied 
to the validation set to reduce the bias. Spearman correla-
tion, Pearson correlation analysis, distance correlation, 
mutual information, and maximal information coefficient 
examined the associations among the continuous predic-
tor variables. Restricted cubic splines (RCS) with strategic 
knot positioning (the 5th, 35th, 65th, and 95th percentiles) 
explored potential non-linear relationships between con-
tinuous risk factors using the Regression Modeling Strate-
gies (rms) package in R [34]. Multivariate adjustment in 
RCS analyses helps control for these variables’ effects and 
get a more accurate estimate of the relationship between 
the independent variable and the in-hospital mortality. 
Collectively, these rigorous statistical techniques ensured 
robust and reliable results. The machine learning models 
were performed based on the “tidymodels” R package. The 
R package “shapviz” was used to evaluate the SHAP value 
and visulize the feature importance of XGBoost model.

Results
Clinical characteristics and demographics of patients
3535 patients meeting the inclusion criterion were ulti-
mately recruited for this study (Fig.  1). The median par-
ticipant age was 66 years (IQR, 55–77 years), with 1977 
of 3535 (56%) being male (Table  1). Diabetes was the 
most common comorbidity (1116 of 3535, 31.6%), fol-
lowed by congestive heart failure (680 of 3535, 19.2%). 
Non-survivors tend to be older (64.0 [53.0–75.0] vs. 69.0 
[58.4–80.0], p < 0.01) and exhibited greater vulnerability 
to medical interventions, including invasive ventilation 

(79.1% vs. 59.8%, p < 0.01) and renal replacement treatment 
(RRT) (19.3% vs. 8.3%, p < 0.01). The median value of HDL, 
lymphocytes, hemoglobin, albumin, and LMR was higher 
in survivors, while the inflammatory biomarkers, includ-
ing NLR and NHR, were significantly lower than in the 
non-survivors.

Model development and validation
A total of 45 clinical variables were collected according to 
the inclusion criteria. LASSO regression for the training 
cohort identified 12 variables associated with sepsis prog-
nosis out of 45 clinical parameters (Additional file 3: Fig. 
S3): Age, Heart rate, AST, invasive ventilation treatment, 
renal replacement treatment, albumin, cerebrovascular 
disease, MHR, NLR, NHR, BUN, and Potassium. Seven 
ML binary classifiers were constructed to predict sepsis 
mortality risk based on the selected variables: XGBoost, 
Random Forest (RF), Naive Bayes (NB), Logistic Regres-
sion (LR), Support Vector Machine (SVM), k-Nearest 
Neighbors (KNN), and Decision Tree (DT). In the vali-
dation cohort, XGBoost demonstrated superior model 
fit with an area under the curve (AUC) of 0.94 and an F1 
score of 0.937 compared to a Sofa score AUC of 0.687 and 
an F1 score of 0.914 (Fig. 2A). The optimal hyperparam-
eters for the XGBoost model: learning_rate = 0.003, tree_
depth = 8, subsample = 0.876, min_child_weight = 8, and 
n_estimators = 1024. Compared with XGBoost model, 
the other models also showed comparatively lower effi-
ciency in AUC and other indices (AUC: RF, 0.686, NB, 
0.640; LR, 0.707 SVM, 0.648; KNN, 0.595; DT,0.601; 
F1 score: RF, 0.917, NB,0.914; LR, 0.915; SVM,0.881; 
KNN,0.892; DT, 0.871) (Table  2 and Additional file  6: 
Table S1). This trend persisted in the test cohort (Fig. 2B). 
Given its optimal performance, the XGBoost model was 
selected for further prediction. DCA also shows that the 
XGBoost model conferred more significant clinical ben-
efit across threshold probability (0.25) versus the Sofa 
score and other models in the validation and test cohorts 
(Fig. 3). Additionally, calibration curve analysis revealed 
superior XGBoost model goodness-of-fit over SOFA 
scoring in the test cohort (Additional file 4: Fig. S4).

Model explanation
SHAP (SHapley Additive exPlanations) is a versatile 
method capable of elucidating the foundations of machine 
learning models. It uses the principle of optimal credit 

Fig. 1 A flowchart illustrating the regulatory model of patient enrollment and analysis workflow. Following the exclusion of 83,829 patients, 
3535 patients were included from three databases. MIMIC-IV database: Medical Information Mart for Intensive Care-IV database, eICU-CRD: eICU 
Collaborative Research Database; AMDS: Amsterdam University Medical Centers database; ROC: receiver operating characteristic curve; DCA: 
Decision curve analysis

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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allocation, rooted in the Shapley value, to measure the 
importance of features through a game-theoretic lens, 
thereby subtly navigating the opacity often associated with 
machine learning models and achieving consistent inter-
pretability [35]. One of the unique strengths of SHAP, par-
ticularly in global interpretation, is its ability to reveal the 
importance of features and describe their outputs in rela-
tionship to their interactions. Our study applied SHAP 
values specifically for interpreting the XGBoost model. 
As illustrated in Fig. 4A, the horizontal positioning in the 
SHAP plot illustrates whether eigenvalues are associ-
ated with a higher or lower predictive tendency. At the 
same time, the color spectrum indicates whether the vari-
able is high (indicated in purple) or low (indicated in yel-
low) for a particular observation. Notably, elevated age, 
blood potassium levels, neutrophil-to-lymphocyte ratio 
(NLR), heart rate, and invasive ventilation treatment were 
observed to influence and thus drive mortality prediction 
positively. Conversely, increases in serum albumin nega-
tively impacted the prediction of survival. These findings 

Table 1 Baseline characteristics of the patients

Survivors Non-survivors P value
N = 2980 N = 555

Age, years 65.(0 55.0–76.0) 72.0 (62.1–80.0) < 0.001

Gender 0.260

 F 1326 (44.5%) 232 (41.8%)

 M 1654 (55.5%) 323 (58.2%)

White blood cells, ×  103/µL 13.6 (10.1–18.4) 14.7 (10.6–20.0) 0.001

Lymphocytes 1.45 (0.90–2.31) 1.26 (0.79–2.12) 0.001

Neutrophils 10.9 (7.44–15.2) 11.9 (7.85–16.9) 0.002

Monocytes 0.93 (0.59–1.42) 0.94 (0.55–1.42) 0.588

Platelet 225 (169–296) 214 (154–282) 0.004

Triglycerides, mg/dL 106 (74.0–157) 104 (77.0–147) 0.757

Total cholesterol, mg/dL 128 (99.0–164) 114 (88.9–150) < 0.001

High-density lipoprotein, 
mg/dL

35.0 (25.0–47.0) 32.0 (21.5–44.0) < 0.001

Hemoglobin, g/dL 12.6 (10.9–14.3) 12.4 (10.3–14.0) 0.011

Albumin, g/dL 3.20 (2.70–3.70) 3.00 (2.40–3.50) < 0.001

Bun, mg/dL 25.0 (16.2–40.0) 34.0 (20.9–51.0) < 0.001

Calcium, mg/dL 8.70 (8.20–9.20) 8.70 (8.10–9.20) 0.025

Creatinine, mg/dL 1.25 (0.90–2.00) 1.70 (1.10–2.60) < 0.001

Glucose, mg/dL 171 (133–229) 187 (143–247) < 0.001

Sodium, mmol/L 140 (138–143) 141 (138–146) < 0.001

Potassium, mmol/L 4.40 (4.10–4.90) 4.60 (4.20–5.20) < 0.001

ALT, IU/L 30.0 (19.0–55.2) 38.0 (21.0–97.0) < 0.001

AST, IU/L 36.0 (23.0–76.0) 60.0 (32.0–200) < 0.001

PH 7.41 (7.36–7.46) 7.40 (7.35–7.46) 0.091

Heart rate 106 (92.0–122) 113 (96.0–129) < 0.001

Systolic blood pressure 155 (136–176) 155 (134–178) 0.898

Diastolic blood pressure 90.0 (77.0–105) 91.0 (76.0–105) 0.631

Mean blood pressure 162 (137–187) 160 (134–186) 0.306

Respiratory rate 28.0 (24.0–35.0) 30.0 (25.0–37.0) 0.001

Temperature 37.4 (37.0–38.0) 37.3 (36.9–37.9) 0.072

First day sofa score 6.00 (4.00–9.00) 9.00 (7.00–12.0) < 0.001

Length of hospital stays 38.0 (14.0–86.0) 36.0 (8.00–118) 0.605

Renal replacement therapy < 0.001

 No 2732 (91.7%) 448 (80.7%)

 Yes 248 (8.32%) 107 (19.3%)

Invasive ventilation < 0.001

 No 1197 (40.2%) 116 (20.9%)

 Yes 1783 (59.8%) 439 (79.1%)

Myocardial infarct 0.293

 No 2648 (88.9%) 484 (87.2%)

 Yes 332 (11.1%) 71 (12.8%)

Congestive heart failure 0.838

 No 2409 (80.8%) 446 (80.4%)

 Yes 571 (19.2%) 109 (19.6%)

Peripheral vascular disease 0.566

 No 2834 (95.1%) 524 (94.4%)

 Yes 146 (4.90%) 31 (5.59%)

Dementia 0.835

 No 2831 (95.0%) 529 (95.3%)

Table 1 (continued)

Survivors Non-survivors P value
N = 2980 N = 555

 Yes 149 (5.00%) 26 (4.68%)

Chronic pulmonary disease 0.465

 No 2533 (85.0%) 479 (86.3%)

 Yes 447 (15.0%) 76 (13.7%)

Peptic ulcer disease 0.612

 No 2933 (98.4%) 544 (98.0%)

 Yes 47 (1.58%) 11 (1.98%)

Renal disease: 0.003

 No 2508 (84.2%) 438 (78.9%)

 Yes 472 (15.8%) 117 (21.1%)

diabetes: 0.003

 No 2009 (67.4%) 410 (73.9%)

 Yes 971 (32.6%) 145 (26.1%)

Liver disease: 0.015

 No 2876 (96.5%) 523 (94.2%)

 Yes 104 (3.49%) 32 (5.77%)

Cerebrovascular disease: 0.010

 No 2509 (84.2%) 442 (79.6%)

 Yes 471 (15.8%) 113 (20.4%)

LMR 1.63 (1.00–2.56) 1.42 (0.94–2.48) 0.018

NLR 7.16 (4.18–12.0) 8.71 (4.90–14.7) < 0.001

PLR 152 (94.5–238) 151 (90.5–269) 0.436

MHR 0.03 (0.02–0.05) 0.03 (0.01–0.05) 0.204

NHR 0.31 (0.19–0.50) 0.35 (0.21–0.64) < 0.001

LMR: the ratio of lymphocytes to monocytes; NLR: the ratio of neutrophils 
to lymphocytes; PLR: the ratio of platelets to lymphocytes; MHR: the ratio of 
monocytes to high-density lipoprotein; NHR: the ratio of neutrophils to high-
density lipoprotein
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are consistent with established medical principles and 
confirmed by previous studies [7, 36, 37], thus enhancing 
our model’s credibility and explanatory veracity. SHAP 
values can provide valuable insights to help physicians 
interpret individual predictions [38]. Additionally, we gen-
erate a waterfall plot visualizing the SHAP values for a 
given patient (Fig. 4B), with features ranked from most to 
least important. This would allow the physician to quickly 
understand which factors are most strongly associated 
with an increased or decreased risk of septic death for that 
patient. Furthermore, a comparative analysis of the results 
obtained using the traditional XGBoost feature importance 
method and SHAP was conducted. Firstly, feature impor-
tance was calculated using the in-built functionality of the 
XGBoost algorithm. As shown in Fig.  5A, the results are 
presented visually in bar charts, which rank the features 
according to their contribution to the model. The analysis 
revealed six main features, AST, MHR, BUN, NHR, albu-
min, and age, which differed from the results of SHAP 
(Fig. 5B) and weakened the prognostic impact of mechani-
cal ventilation on in-hospital mortality [39, 40]. The differ-
ence arises from their distinct analytical approaches. SHAP 
values provide a local, accurate interpretation of how each 
feature influences individual predictions, considering fea-
ture interactions. XGBoost feature importance, in contrast, 
gives a global view of feature contributions across the entire 
model [41], and SHAP values are particularly adept at cap-
turing non-linear effects and interactions between features, 
which might not be fully represented by traditional feature 
importance metrics in XGBoost42. SHAP appears more 
interpretable than traditional XGBoost feature significance 
methods, providing a more comprehensive assessment of 
feature significance. The sophisticated understanding pro-
vided by SHAP helps to outline the intricate relationships 
between features and model outputs, thereby increasing 
the interpretive transparency of machine learning mod-
els. Multivariate-adjusted restricted cubic splines further 
explored variables’ relationships with in-hospital mortality. 
Liner associations were found for NLR, NHR, Potassium, 
heart rate, BUN, and albumin (p for non-linear > 0.05) 
(Fig. 6A–F). However, non-linear relationships between in-
hospital mortality and MHR, Age, and AST were observed. 
A U-shaped association exists for MHR, with higher and 
lower values conferring greater in-hospital mortality risk 
than the curve bottom (0.028) (Additional file 5: Fig. S5A). 
Age and AST demonstrated steep initial increases, pla-
teauing at certain levels (AST: 234IU/L, Age: 78 years) 
(Additional file  5: Fig. S5B, C). In addition, A statistically 
significant positive correlation was observed between 
NHR and MHR, BUN (p < 0.05), as depicted in Fig. 7, and 
the results from Pearson correlation, distance correlation, 
mutual information, and maximal information coefficient 
analyses align with the trends observed in our Spearman 

Fig. 2 The ROC curve comparison of six models and Sofa score 
in training cohort and validation cohort. DT: Decision Tree; XGBoost: 
eXtreme Gradient Boosting; KNN: k-Nearest Neighbors; RF: Random 
Forest; NB: Naive Bayes; LR: Logistic Regression; SVM: Support Vector 
Machine. A The ROC curve of validation Cohort, B The ROC curve 
of test Cohort

Table 2 Performances of the seven machine learning models 
and Sofa score for predicting in-hospital mortality

XGBoost: extreme Gradient Boosting, SVM: Support Vector Machine, AUC: the 
area under curve

Model AUC Precision Recall F1 Score

XGBoost 0.94 0.882 0.918 0.937

Sofa score 0.687 0.849 0.879 0.914

Logistic regression 0.707 0.850 0.878 0.915

Random forest 0.686 0.852 0.882 0.917

K-nearest Neighbor 0.622 0.855 0.873 0.892

Naïve Bayes 0.590 0.842 0.876 0.914

SVM 0.648 0.855 0.873 0.892

Decision Tree 0.595 0.853 0.861 0.871
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correlation (Additional file  7: Table  S2, Additional file  8: 
Table  S3, Additional file  9: Table  S4, Additional file  10: 
Table  S5). However, the relationships of NHR and BUN 
to in-hospital mortality (Fig. 6C and E) differ from SHAP 
analysis. The key point here is that SHAP values reflect not 
solely the correlation between features but also how each 

feature contributes to the model’s prediction for each spe-
cific instance, meaning that the SHAP value for a feature in 
a given prediction is an average of its marginal contribution 
across all possible combinations of features, which can lead 
to differences in SHAP values for correlated features [43]. 
In summary, while NHR and BUN are correlated, their 

Fig. 3 The DCA curve comparison of six models and Sofa score in training cohort and validation cohort. DCA: Decision curve analysis; DT: Decision 
Tree; XGBoost: eXtreme Gradient Boosting; KNN:k-Nearest Neighbors; RF: Random Forest; NB: Naive Bayes; LR: Logistic Regression; SVM: Support 
Vector Machine. A DCA curve of XGBoost and Sofa score in validation Cohort. B DCA curve of other six models in validation Cohort. C DCA curve 
of XGBoost and Sofa score in Validation Cohort. D DCA curve of other six models in test Cohort

(See figure on next page.)
Fig. 4 A Scatter plot of feature values and SHAP values. The purple part of the feature value represents a lower value. B Consent waterfall plot 
showing an example of interpretability analysis for a patient. The yellow part of the feature value represents a positive effect on the model. The 
deep red part of the feature value represents a represents a negative effect on the model
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Fig. 4 (See legend on previous page.)
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different SHAP values in our model reflect the complex 
interactions and the unique contribution of each feature 
within the context of the model’s predictions. This discrep-
ancy in SHAP values underscores the complexity of the fea-
ture interactions within the model and does not necessarily 
contradict the observed correlation between the features.

Discussion
The phenomenon of missing data is a common problem 
in most research endeavors and can significantly impact 
the validity of data inferences and reduce the sample size 
when restricted to analyses of complete cases [44, 45]. 
We chose multiple imputation as our strategy for dealing 

with missing data, because it is more likely to provide 
more accurate estimates than other methods, such as 
mean imputation or listwise deletion, even at the cost of 
increased analytical complexity [46]. The procedures for 
dealing with missing data were carefully designed in col-
laboration with clinicians familiar with the study popu-
lation and the data collection process. Their input was 
sought to determine the most appropriate approach to 
missing data management, including identifying vari-
ables to be included in the estimation model. In this ret-
rospective study utilizing three large-scale public ICU 
databases, we developed and validated seven machine-
learning algorithms to predict the in-hospital mortality of 
patients with sepsis. The XGBoost model outperformed 
LR, RF, NB, KNN, DT, and SVM. Furthermore, the 
XGBoost model demonstrated superior performance 
compared to traditional Sofa scores. XGBoost is well-
suited for capturing complex non-linear relationships 
between features without the extensive data preproc-
essing required by deep learning models. Considering 
the computational resources available, XGBoost offers 
a more scalable and less resource-intensive alternative 
to deep learning models, which often require significant 
computational power and data volume to achieve optimal 
performance [47–52]. In critical care research, XGBoost 
has been extensively utilized to predict the in-hospital 
mortality of patients and may assist clinicians’ decision-
making [20, 53]. SHAP values offer insight into how 
each feature influences the model’s prediction, provid-
ing interpretability support in understanding the model’s 
decision-making process, fostering trust, and facilitat-
ing the model’s adoption in clinical practice [54, 55]. We 
employed SHAP to explain the XGBoost model to ensure 
model performance and clinical interpretability, which 
enables physicians to comprehend the model’s decision-
making process better and facilitates the utilization of 
prediction results.

The most impactful parameters contributing to pre-
dicted mortality risk in sepsis patients were Age, AST, 
invasive ventilation treatment, and BUN. NLR and serum 
albumin were also highly predictive of in-hospital mor-
tality in ICU sepsis patients, consistent with previous 
research [56, 57]. Interestingly, some inflammatory bio-
markers, such as NHR and MHR, critically impacted 
hospital mortality of sepsis patients in the XGBoost 
model. Previous prognostic prediction models utiliz-
ing inflammatory biomarkers have been developed, such 
as a nomogram by Chen et al. based on age, NLR, PLR, 
LMR, and RDW to predict 28-day mortality in sepsis 
[58]. Li et  al. [17] were the first to develop an XGBoost 
model incorporating inflammatory biomarkers like NLR, 
NHR, and MHR, demonstrating the combination of NLR 
and MHR as an independent risk factor with predictive 

Fig. 5 The feature importance of SHAP method and conventional 
method for XGBoost model. A Feature importance of conventional 
method for the XGBoost model. B Feature importance of SHAP 
method for the XGBoost model. BUN: Urea nitrogen
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Fig. 6 The association between variables and hospital mortality. Albumin (A), Potassium (B), NHR (C), Heart rate (D), BUN (E), NLR (F): the restricted 
cubic splines with four knots. The horizontal dashed line represents the reference OR of 1.0. The model was multivariate-adjusted for Age, AST, 
whether or not invasive ventilation treatment, whether or not renal replacement treatment, Albumin, whether or not have cerebrovascular disease, 
MHR, NLR, NHR, Potassium. OR odds ratio; 95% CI 95% confidence interval
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capability for 28-day mortality in patients with sepsis. 
Our model encompassed three ICU databases to improve 
credibility and generalizability compared to previous 
single-center models. An observational study in Australia 
and New Zealand also demonstrated sepsis mortality 
under 5% without comorbidities or advanced age [59]. 
Consistent with the findings, our analysis also demon-
strated that comorbidities like cerebrovascular disease 
contributed to higher sepsis mortality. Our initial exclu-
sion of patients with HIV, rheumatic disease, cancer, or 
metastatic tumors minimized potential immunosuppres-
sion-related biases across the three databases. To evalu-
ate the performance of our proposed approach, we use 
the Sequential Organ Failure Assessment (SOFA) score 
as a baseline comparison. The SOFA score is a validated 
tool for assessing morbidity in critical illness and is com-
monly used for benchmarking in observational studies 
[60]. While the SOFA score has been used for over 25 
years, it remains a relevant metric for objectively describ-
ing patterns of organ dysfunction in critically ill patients. 
For example, an increase in the SOFA score, such as 
requiring renal replacement therapy, has been associated 
with higher overall ICU mortality [61]. Our study aims 
to complement the SOFA score by incorporating inflam-
matory biomarkers and machine learning techniques to 
improve risk prediction in sepsis patients. We believe 
supplementing the SOFA score in this manner may pro-
vide unique and clinically meaningful information. How-
ever, several limitations exist. First, our current study has 
limitations in fully establishing external validity and may 

be subject to bias, even with internal ten-fold cross-vali-
dation. Secondly, our data were sourced from the initial 
24 h of ICU admission. The omission of dynamic changes 
in inflammatory markers in our study might limit our 
ability to capture the full spectrum of immunological 
changes in sepsis. The work of Reyna et al. demonstrates 
how machine learning can uncover hidden patterns in 
vital signs, enhancing sepsis outcome predictions [62]. 
Similarly, Nesaragi highlights the importance of incor-
porating ratios and higher order interactions among 
vital signs, a methodological approach that aligns with 
our study’s efforts to improve predictive accuracy [49]. 
These references underscore the potential of leveraging 
complex statistical relationships to predict better sepsis 
outcomes, a direction our research aims to develop fur-
ther. The limitation posed by the lack of comprehensive 
time-series data restricts our ability to capture the dyna-
mism inherent in sepsis progression and limits the utility 
score’s application, reflecting a broader challenge in the 
field. The utility score’s emphasis on the clinical impact 
of predictions necessitates detailed data, underscor-
ing the need for future studies to access more granular 
clinical information [50–52, 63–66]. Future research 
should incorporate longitudinal analyses to model bet-
ter the temporal variations in inflammatory markers, a 
direction underscored by the referenced studies’ success 
in utilizing such data for enhanced prediction models. 
Thirdly, the retrospective nature of our study introduces 
inherent selection bias and machine learning, where the 
nature of the input data constrains the model’s output, 
focusing more on correlation and less on the underly-
ing causal mechanisms [67]. Therefore, a well-designed 
prospective study is essential to validate the model’s 
utility. Fourthly, limited by the MIMIC-IV, eICU-CRD 
databases, and AmsterdamUMCdb, critical data such 
as temporal dynamics of inflammatory biomarkers were 
insufficiently recorded, hindering analysis. Despite these 
limitations, we hope our constructed model will assist 
clinicians in the timely treatment of ICU sepsis patients. 
In our subsequent research, we aim to include dynamic 
markers to capture the evolving nature of sepsis more 
effectively, thereby contributing to a more robust and 
nuanced understanding of the disease. We will focus on 
continuous modeling of predictors in sepsis research, 
reducing reliance on dichotomization to minimize asso-
ciated potential errors. Additionally, we acknowledge our 
current study’s limitations regarding the establishment of 
external validity and recognize the need for further vali-
dation through prospective multi-center studies. We plan 
to explore the model’s applicability to different patient 
populations and clinical settings, aiming to improve the 
model’s predictive accuracy and external validity contin-
uously. In line with these efforts, we are establishing our 

Fig. 7 Spearman correlation analysis between variables. The color 
spectrum, ranging from blue to yellow, represents the degree 
of correlation: closer to blue indicates a stronger positive correlation, 
while closer to yellow indicates a stronger negative correlation



Page 13 of 15Zhang et al. European Journal of Medical Research          (2024) 29:156  

sepsis database to further validate our model’s external 
validity.

Conclusion
In conclusion, this study demonstrates that machine 
learning models integrating inflammatory biomarkers 
can significantly improve the prediction of the risk of in-
hospital mortality among sepsis patients. The XGBoost 
model outperformed traditional scoring systems and 
other machine learning algorithms, with an AUC of 0.94 
and an F1 score of 0.937 in predicting in-hospital mor-
tality. Specifically, the most significant determinants 
included increased levels of AST and BUN, advanced 
age, elevated NLR, and the requirement for invasive ven-
tilation. The model provides a robust method to rapidly 
stratify patients upon ICU admission and could guide 
clinical decisions. We also hope the model could serve as 
a supplementary tool to the SOFA score in this manner 
and may provide unique and clinically meaningful prog-
nostic information beyond what is captured by the SOFA 
score alone.
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