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Abstract 

O-GlcNAcylation is a unique monosaccharide modification that is ubiquitously present in numerous nucleoplas-
mic and mitochondrial proteins. The hexosamine biosynthesis pathway (HBP), which is a key branch of glycolysis, 
provides the unique sugar donor UDP-GlcNAc for the O-GlcNAc modification. Thus, HBP/O-GlcNAcylation can act 
as a nutrient sensor to perceive changes in nutrient levels and trigger O-GlcNAc modifications of functional proteins 
in cellular (patho-)physiology, thereby regulating diverse metabolic processes. An imbalance in O-GlcNAcylation 
has been shown to be a pathogenic contributor to dysfunction in metabolic diseases, including type 2 diabetes, 
cancer, and neurodegeneration. However, under acute stress conditions, protein O-GlcNAc modification exhibits rapid 
and transient upregulation, which is strongly correlated with stress tolerance and cell survival. In this context, we dis-
cuss the metabolic, pharmacological and genetic modulation of HBP/O-GlcNAc modification in the biological system, 
the beneficial role of O-GlcNAcylation in regulating stress tolerance for cardioprotection, and neuroprotection, which 
is a novel and rapidly growing field. Current evidence suggests that transient activation of the O-GlcNAc modification 
represents a potent pro-survival signalling pathway and may provide a promising strategy for stress-related disorder 
therapy.
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Introduction
Glycosylation is a posttranslational modification (PTM) 
characterized by the covalent attachment of glycans to 
proteins, that occurs in 50%-70% of human proteins 
[1]. Unlike classic protein glycosylation (N-glycosyla-
tion), which occurs mostly via an endoplasmic reticu-
lum–Golgi-dependent secretory pathway in the cell, 
O-linked N-acetylglucosaminylation (O-GlcNAcylation) 
is a unique PTM that is widely present in the nucleo-
plasm and mitochondria. O-GlcNAcylation is a highly 
dynamic signalling modification involving the attach-
ment/removal of N-acetylglucosamine (GlcNAc) via an 
O-linkage with specific serine and threonine residues on 
proteins, and its function is similar to that of quintessen-
tial protein phosphorylation. Since it was first identified 
on mouse lymphocytes in 1984 [2], O-GlcNAcylation has 
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been shown to regulate a multitude of cellular (patho)
physiologies, including type 2 diabetes, cancer, and neu-
rodegeneration [3]. For example, when cells are exposed 
to chronic hyperglycaemia, high O-GlcNAc levels reduce 
the effectiveness of insulin signalling pathways via meta-
bolic regulation at the transcriptional level, leading to 
insulin resistance and type 2 diabetes [4, 5]. However, an 
increase in O-GlcNAc levels is an endogenous defence 
response to stress and initially acts in a protective man-
ner. The beneficial effects of an acute and transient 
increase in O-GlcNAcylation in mediating stress toler-
ance and cell survival have recently been recognized. 
In this review, we discuss the beneficial role and poten-
tial mechanisms by which O-GlcNAcylation promotes 
self-tolerance and maintains cellular homeostasis under 
stress conditions, with a focus on the cardiovascular and 
central nervous systems (CNS).

Metabolic, pharmacological, and genetic 
modulation of O‑GlcNAcylation
Unlike kinases and phosphatases with substrate spe-
cificities, the recycling of O-GlcNAc on proteins is 
controlled by only one pair of antagonistic enzymes, 
O-GlcNAc transferase (OGT) and O-GlcNAcase 
(OGA). This posttranslational modification requires 
UDP-GlcNAc as its sugar donor, which is synthe-
sized via the hexosamine biosynthesis pathway (HBP), 
which is a branch of glucose metabolism [6]. The HBP 

branches off from the beginning stages of glycolysis 
and ultimately generates UDP-GlcNAc under multi-
step enzymatic catalysis with the involvement of amino 
acids (glutamine), fatty acids (acetyl-CoA), and nucleo-
tides (UTP) (Fig. 1). Because multiple metabolites enter 
the HBP, the levels of UDP-GlcNAc and O-GlcNAc 
cycling are sensitive to fluctuations in these nutrient 
intermediates. For example, an increase in HBP flux 
driven by acute or chronic hyperglycaemia can lead to 
an increase in UDP-GlcNAc levels, causing the acti-
vation of O-GlcNAcylation in multiple cell types [7, 
8]. Glutamine is also a potential activator of the HBP. 
Numerous studies have demonstrated that glutamine 
enhances stress tolerance and cell survival via HBP flux 
and increased protein O-GlcNAc levels in the heart 
and brain [9, 10]. The addition of glucosamine should 
be an effective means of driving the HBP/O-GlcNAc, 
since glucosamine can be directly phosphorylated to 
form glucosamine-6-phosphate by hexokinase, bypass-
ing glutamine-fructose-6-phosphate amidotransferase 
(GFAT), a key rate-limiting enzyme for the formation 
of UDP-GlcNAc [11]. Thus, glucosamine is widely and 
extensively used in the biological systems as a metabolic 
intervention for functional studies of O-GlcNAcyla-
tion. Notably, unlike glucose, high concentrations of 
glucosamine can overwhelm the biosynthetic capacity 
of the HBP, causing massive accumulation of glucosa-
mine-6-phosphate, ultimately leading to cellular ATP 

Fig. 1 A schematic overview of the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation. Glucose imported into the cells is rapidly 
converted to fructose-6-phosphate via the beginning stages of glycolysis. Then, under the catalysis of the rate-limiting enzyme GFAT 
and other enzymes, HBP integrates multiple metabolic nutrients, ultimately generating UDP-GlcNAc, which is a unique monosaccharide donor 
for O-GlcNAcylation. The O-GlcNAc cycling is a highly dynamic and reversible modification controlled by a pair of antagonistic enzymes, OGT 
and OGA. The metabolic and pharmacological interventions for studying the functional role of HBP/O-GlcNAcylation are illustrated with blue 
and green boxes, respectively
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depletion via allosteric changes in various enzymes. 
Therefore, the judicious use of glucosamine rather than 
excessive concentrations of glucosamine facilitates our 
understanding of insulin resistance induced by hexosa-
mine [12–14]. In addition, GlcNAc also significantly 
contributes to UDP-GlcNAc biosynthesis and serves as 
an available means for the increase in O-GlcNAc levels 
[15, 16]. Therefore, O-GlcNAcylation is highly sensitive 
to metabolite pools via the HBP and responds quickly 
to metabolic cues (Fig.  1), representing an important 
posttranslational mechanism for maintaining cellular 
homeostasis.

In addition to the aforementioned metabolic inter-
ventions, the modulation of O-GlcNAc cycling can be 
achieved by pharmacological manipulation targeting 
key regulatory enzymes involved in the HBP/O-Glc-
NAcylation pathway. GFAT, which is the rate-limiting 
enzyme in the HBP, is key to controlling HBP flux. 
Since flux through GFAT is glutamine dependent, HBP 
flux can be inhibited by glutamine analogues, such as 
6-diazo-5-oxo-norleucine (DON) or O-diazoacetyl-
l-serine (azaserine). Of note, these substrate ana-
logues have too many off-target effects and potential 

cytotoxicity [17, 18], therefore, new potent and revers-
ible GFAT inhibitors are being developed [19, 20].

In addition to GFAT, the expression or activity control 
of OGT and OGA are also targets for intervention. OGT 
has a high affinity for UDP-GlcNAc, and its affinity for 
peptides is exquisitely modulated by UDP-GlcNAc levels. 
In fact, several OGT inhibitors are being widely used to 
pharmacologically modulate O-GlcNAcylation in func-
tional analyses, including alloxan, a UDP-GlcNAc ana-
logue (Ac4-5SGlcNAc), ST045849, and OSMI-1, − 2, − 3, 
and − 4. Notably, alloxan is now rarely used as an OGT 
inhibitor due to its dual inhibitory effects on both OGT 
and OGA [21]. Moreover, there are several pharmacolog-
ical inhibitors of OGA, including streptozotocin (STZ), 
PUGNAc, NButGT, GlcNAcstatin, NAG-thiazoline, and 
thiamet-G (Fig.  1). Despite the widespread use of these 
OGT and OGA inhibitors, researchers are still concerned 
about their potential off-target effects. Thus, the use of 
genetic approaches to manipulate the level of O-GlcNAc 
modification, such as RNA interference, adenoviral over-
expression or transgenic mouse models, are expected to 
contribute to the understanding of drug targets and off-
target-associated safety. The commonly used and emerg-
ing metabolic, pharmacological and genetic interventions 

Table 1 List of commonly used and emerging metabolic, pharmacological, and genetic interventions for studying the functional role 
of HBP/O-GlcNAcylation in biological systems

Group Targets Metabolites/inhibitors/genetic 
techniques

Effect of O-GlcNAcylation References

Metabolic interventions HBP Glucose Increase [7, 8]

Glutamine Increase [9, 10]

Glucosamine Increase [22, 23]

N-acetylglucosamine Increase [15, 16]

Pharmacological interventions GFAT DON Decrease [24, 25]

Azaserine Decrease [9, 26]

OGT Alloxan Decrease [21, 27]

Ac4-5SGlcNAc Decrease [28, 29]

ST045849 Decrease [30, 31]

OSMI-1, − 2, − 3, and − 4 Decrease [32, 33]

OGA STZ Increase [34, 35]

PUGNAc Increase [36, 37]

NButGT Increase [38, 39]

GlcNAcstatin Increase [40, 41]

NAG-thiazoline Increase [42, 43]

thiamet G Increase [44, 45]

Genetic interventions OGT siRNA Decrease [46, 47]

Adenoviral overexpression Increase [46, 47]

Transgenic mouse models Increase [48]

OGA siRNA Increase [49, 50]

Adenoviral overexpression Decrease [47, 51]

Transgenic mouse models Decrease [48]
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for functional studies on HBP/O-GlcNAcylation are 
listed in Table 1.

O‑GlcNAcylation and stress tolerance
It is well known that organisms have evolved specific 
stress adaptation strategies to response to environmental 
fluctuations [52]. Although chronic hyperglycaemia is a 
potential risk factor for the severity of multiple diseased 
organs, early and rapid hyperglycaemia caused by stress 
has been considered an evolutionarily preserved adaptive 
response that provides a protective effect and supports 
survival during acute illnesses [53]. Under acute stress, 
the neuroendocrine response is characterized by activa-
tion of the sympathetic nervous system and the massive 
release of catecholamines, leading to increased secretion 
of glucagon. Glucagon promotes excessive gluconeogen-
esis and glycogenolysis, causing stress-induced hyper-
glycaemia and providing energy for high-energy organs, 
such as the brain and heart [54]. Along with providing a 
ready source of fuel, the hypermetabolic state can inhibit 
glycolytic flux via reactive oxygen species (ROS), thereby 
increasing the availability of glucose for the HBP/O-Glc-
NAc pathway [55]. Thus, O-GlcNAc modification is a 
nutrient and stress sensor, indicating a potential mecha-
nism linking stress-induced hyperglycaemia with benefi-
cial outcomes.

In the past two decades, the beneficial effects of acute 
stimulation of protein O-GlcNAc levels in the context 
of stress tolerance and cell survival have received wide-
spread attention. In 2004, Zachara et  al. first proposed 
that O-GlcNAcylation was a stress signalling through 
which cells rapidly detected and responded to a diverse 
array of stress stimuli to survive [56]. In fact, numerous 
reports have demonstrated that transient activation of 
O-GlcNAcylation is an endogenous adaptation against 
stress, and metabolic, pharmacological and genetic aug-
mentations of O-GlcNAc levels promote cellular sur-
vival in multiple tissues and organs. Next, we focus our 
discussion on the beneficial role of O-GlcNAcylation in 
mediating stress tolerance in the cardiovascular system, 
as well as neuroprotection, which is a novel and rapidly 
growing field.

O‑GlcNAcylation and cardioprotection
GIK therapy and O-GlcNAcylation
Glucose–insulin–potassium (GIK) therapy has played 
a beneficial role in acute myocardial infarction and car-
diac surgery over the last 50 years [57, 58]. Although the 
mechanism by which GIK therapy confers cardioprotec-
tion is not known, it is widely accepted that increases in 
glucose uptake and metabolism are common features of 
this metabolism-based therapy [59]. Other researchers 
have suggested that the beneficial effects of GIK therapy 

can be attributed to an increase in O-GlcNAc signalling. 
In patients undergoing aortic valve replacement surgery, 
the improved outcome of low cardiac output after GIK 
therapy is associated with increased AMPK/Akt phos-
phorylation and O-GlcNAcylation of selected protein 
bands [60]. Furthermore, in cultured cardiomyocytes 
exposed to ischaemic shock, the cytoprotective effect 
of GIK therapy may involve the inhibition of ROS and 
upregulation of O-GlcNAcylation and OGT expression 
[61]. In fact, O-GlcNAcylation can act as a signalling 
molecule to rapidly respond to nutrient status and play 
a fundamental role in the endogenous defence of cardio-
myocyte survival. For example, a series of studies on iso-
lated perfused rat hearts provided early evidence of the 
functional relevance of HBP/O-GlcNAc flux and cellular 
stress tolerance, signifying that acute O-GlcNAc activa-
tion was an important PTM that regulated stress survival 
[9, 34, 62]. Subsequently, many studies have investigated 
changes in O-GlcNAc modification under stress condi-
tions in various in vitro and in vivo models and explored 
the functional role of O-GlcNAcylation in mediating 
myocardial stress tolerance via metabolic, pharmacologi-
cal and genetic interventions (Table 2). Next, we discuss 
the functional relevance of O-GlcNAc levels and cellu-
lar stress resistance, as well as the specific mechanisms 
through which O-GlcNAc exerts cardioprotection.

Mechanisms by which O‑GlcNAcylation confers 
myocardial stress tolerance
Calcium and redox homeostasis
The severity of myocardial I/R injury is intimately tied 
to the sustained increase in intracellular calcium levels 
(calcium overload). O-GlcNAc signalling has been shown 
to regulate  Ca2+-mediated events in cardiomyocytes. In 
cultured cardiomyocytes acutely treated with glucosa-
mine, an increase in UDP-GlcNAc and O-GlcNAc levels 
is coupled to the inhibition of calcium overload induced 
by angiotensin II. This cardioprotection can be simu-
lated by PUGNAc or eliminated by alloxan, indicating a 
close link between HBP/O-GlcNAc levels and intracel-
lular calcium homeostasis [80]. Subsequently, research 
on the calcium paradox model of isolated hearts found 
that short-term high glucose or glucosamine challenge 
significantly improved cardiac function recovery, while 
pharmacological inhibition of GFAT or OGT restored 
sensitivity to the calcium paradox [34]. These cardiopro-
tective mechanisms can be attributed at least in part to 
the reduction in calcium/calpain-dependent proteolysis, 
including alpha-fodrin,  Ca2+/calmodulin (CaM)-depend-
ent protein kinase (CaMKII) [62], and calcineurin [67]. It 
is worth noting that in a comparative study of  K+ chan-
nel remodelling in hearts exposed to acute and chronic 
hyperglycaemia, O-GlcNAcylation of CaMKII at Ser-280 
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enhanced the recovery of  K+ channels from inactivation 
during acute hyperglycaemia. However, chronic hyper-
glycaemia and sustained activation of CaMKII lead to 
significant arrhythmogenic electrophysiological remodel-
ling [81]. Furthermore, excessive O-GlcNAc modification 
of CaMKII has been shown to contribute to the induc-
tion of ROS, which may exacerbate the pathological con-
sequences of hyperglycaemia in diabetes [7, 82]. Notably, 
in a recent study on the diabetic heart, the O-GlcNAc 
modification of the histone deacetylase 4 subdomain 
at Ser-642, which is an important epigenetic regulator, 
exerted cardioprotective effects by counteracting patho-
logical CaMKII signalling [83].

Calcium transport pathways are highly sensitive to oxi-
dative stress. Accumulating evidence indicates that ROS 
and  Ca2+ signalling likely play central roles in the patho-
genesis of cardiovascular dysfunction [84]. Recent work 
suggests that a dynamic mitochondrial O-GlcNAcylation 
system rapidly modulates oxidative phosphorylation and 
ROS release in the heart [39]. In mice exposed to hypoxic 
acclimation, O-GlcNAc modification of glucose-6-phos-
phate dehydrogenase increases the NADPH/NADP+ and 
GSH/GSSG ratios, contributing to redox homeostasis 
in the I/R-exposed heart [77]. O-GlcNAc signalling also 
attenuates hypoxic/H2O2-induced  Ca2+ overload in cul-
tured neonatal rat cardiomyocytes [51]. In addition, a 
similar protective mechanism of O-GlcNAcylation has 
been found in the neuronal defence against Aβ neuro-
toxicity [85]. Interestingly, in human corneal endothelial 
cells exposed to tBHP (an oxidative stress inducer), the 
increase in O-GlcNAc signalling induced by PUGNAc 

reduces intracellular ROS and restores cellular viabil-
ity, and this beneficial effect is due to the maintenance 
of mitochondrial calcium homeostasis, indicating that 
mitochondrial calcium signalling may be a key target for 
O-GlcNAcylation [86]. Paradoxically, high glucose or 
thiamet-G treatment promotes the excessive ROS gener-
ation in cardiomyocytes via CaMKII O-GlcNAcylation-
dependent sarcoplasmic reticulum  Ca2+ release [7]. The 
integration of O-GlcNAc into calcium and redox signal-
ling is under intense investigation.

Mitochondrial homeostasis
In 2008, Ngoh et al. first provided evidence that O-Glc-
NAcylation plays a fundamental role in mitochondrial 
homeostasis to influence cardiomyocyte survival/death. 
They reported that an acute increase in OGT exerts a 
cardioprotective effect by maintaining the mitochon-
drial permeability transition pore (mPTP) and mitochon-
drial membrane potential in the myocardium exposed to 
hypoxia–reoxygenation insult [46]. Further studies inves-
tigating the effects of high glucose or hyperglycaemia in 
diabetes on myocardial function showed that a chronic 
increase in O-GlcNAcylation causes mitochondrial dys-
function, including the impairment of mitochondrial 
respiratory complex activity [87], an imbalance in mito-
chondrial fusion and fission [88], and mitochondrial DNA 
(mtDNA) damage [89]. Subsequently, Banerjee et  al. 
reported the presence of mitochondrial-specific OGT, 
OGA, and UDP-GlcNAc transporters and confirmed that 
the dysregulation of O-GlcNAc cycling within mitochon-
dria contributed to mitochondrial dysfunction associated 

Table 2 List of models for myocardial stress tolerance modulated by O-GlcNAc modification

Metabolic (M), pharmacological (P), genetic (G) interventions; N/A, not addressed in this model

In vitro/ex 
vivo/in vivo

Models Cells/tissues/organs/animals O-GlcNAc 
levels in 
stress

O-GlcNAc 
protection

Methods of 
modulation

References

In vitro Heat shock NRVMs Increase Increase N/A [63]

Hypoxia and H/R NRCMs, NMCMs, CSCs Increase Increase P, G [46, 50, 51, 64]

CoCl2 HUVECs N/A N/A G [65]

I/R NRVMs Increase Increase M, P, G [61, 66–69]

H2O2 NRCMs Complex Increase P, G [51, 66, 70]

ER stress (BfA, TM) NRCMs Increase Increase P, G [71]

LPS NRVMs, macrophages N/A N/A M, P, G [23]

TNF-α Aortic rings, HUVECs
VSMCs

N/A Increase M, P [72, 73]

Ex vivo I/R, IPC, rIPC Isolated hearts Increase Increase M, P [9, 34, 42, 62, 74–76]

In vivo I/R, IPC Mice, Murine Complex Increase P [51, 68–70, 77]

Hypoxia/ hypoxic acclimation Mice Increase Increase P [65, 77]

Acute arterial injury Rats Complex Increase M, P [72, 78]

Trauma- haemorrhage Rats Decrease Increase M, P, G [23, 36, 37, 79]

Septic shock Rats N/A Increase P [38]
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with diabetic cardiomyopathy [90]. In fact, mitochondria 
are targets of O-GlcNAc modification [91]. In a mouse 
model with impaired branched-chain amino acid catab-
olism, a reduction in HBP/O-GlcNAc levels selectively 
disrupted the use of mitochondrial pyruvate by inhibit-
ing pyruvate dehydrogenase complex activity, result-
ing in a significant decrease in glucose oxidation in the 
heart [92]. In a study of cardiac I/R injury, the beneficial 
effect of O-GlcNAcylation induced by hypoxic acclima-
tion was partly attributed to mitochondrial preservation, 
including effects on mitochondrial ultrastructure, mito-
chondrial respiration, mtDNA, and mitochondrial redox 
homeostasis [77]. Redox and calcium handling may be 
key regulators of mPTP-dependent apoptosis cascade 
events that occur in mitochondria impaired by stress. 
The transient opening of the mPTP allows for the release 
of mitochondrial contents and the activation of intrin-
sic apoptosis pathways. In cardiomyocytes subjected 
to hypoxia or oxidative stress, pharmacological and 
genetic manipulation of OGT and OGA confirmed that 
O-GlcNAcylation alleviated the formation of mPTP by 
inhibiting ROS generation and calcium overload [51]. 
Proteome and O-GlcNAcome analysis of cardiac mito-
chondria from thiamet-G-treated rats revealed that many 
mitochondrial proteins, especially those in the oxidative 
phosphorylation system, are major targets for O-Glc-
NAcylation. Although certain sites of specific proteins 
exhibit decreases in O-GlcNAc modification, global pro-
tein O-GlcNAc levels are increased, which leads to the 
enhancement of mitochondrial bioenergetics and the 
threshold for mPTP opening in the presence of calcium 
[93].

Voltage-dependent anion channel (VDAC), which is 
the primary channel for  Ca2+ influx and efflux through 
the outer mitochondrial membrane (OMM) [94], is a 
target for O-GlcNAcylation. Functional biochemical 
assessments indicate that the enhanced resistance of 
mitochondria to mPTP formation induced by calcium 
is intimately associated with the increase in the number 
of O-GlcNAc-modified VDACs [70], while inhibiting 
VDAC O-GlcNAc modification makes mitochondria sen-
sitive to calcium-induced mPTP opening [46]. The func-
tional relevance of VDAC O-GlcNAcylation to mPTP 
inhibition and cellular tolerance has also been confirmed 
by the protective effect of the volatile anaesthetic isoflu-
rane on myocardial I/R stress [68]. Although VDAC may 
not be an essential component of the mPTP, the fact that 
VDAC participates in mitochondrial membrane perme-
ability and apoptosis signalling by modulating mitochon-
drial  Ca2+ flux cannot be ignored [95]. The Bcl-2 family 
appears to be responsible for the regulation of mito-
chondrial  Ca2+ transport systems, including VDAC and 
the mPTP [96]. The dynamic interactions between Bcl-2 

family proteins induce conformational changes in pro-
teins, leading to oligomerization (homologous or heter-
ologous) and membrane insertion, thereby regulating the 
permeabilization of the OMM and apoptosis [97]. There 
is evidence that the beneficial effect of O-GlcNAc modi-
fication on the maintenance of mitochondrial membrane 
potential and cytochrome c in stressed cardiomyocytes 
can be attributed to an increase in mitochondrial Bcl-2 
translocation rather than changes in BAD or Bax [66]. 
However, in H9c2 cardiomyoblasts exposed to chronic 
hyperglycaemia, excessive O-GlcNAcylation of the proa-
poptotic protein BAD has been shown to contribute to 
the formation of the BAD-Bcl-2 dimer, thus enhancing 
cellular apoptosis [98]. Mitochondrial dysfunction asso-
ciated with an imbalance in O-GlcNAcylation in the 
context of glucose toxicity due to hyperglycaemia cannot 
be ignored. Overall, these studies highlight a profound 
impact of O-GlcNAcylation on mitochondrial homeo-
stasis, including mitochondrial structure, mitochondrial 
bioenergy, redox signalling, calcium handling, and the 
mitochondrial apoptosis pathway (Fig. 2). Further inves-
tigation of the multiple layers of complexity between 
O-GlcNAcylation and mitochondrial homeostasis is 
needed.

Endoplasmic reticulum stress
The endoplasmic reticulum (ER) possesses a strict qual-
ity control system for protein folding, posttranslational 
modification, and assembly. The quality control capabil-
ity of ER is limited. Under pathological conditions, large 
amounts of unfolded or misfolded proteins accumulate 
in the ER, resulting in ER stress and the unfolded pro-
tein response (UPR). The adaptive UPR plays a ben-
eficial role in restoring protein homeostasis in the ER, 
while the maladaptive or terminal UPR is involved in 
the destruction of ER integrity and cellular defects. In 
metazoans, the UPR includes three signalling pathways: 

Fig. 2 Schematic representation of key targets for O-GlcNAc cycling 
on mitochondrial homeostasis, including mitochondrial structure, 
mitochondrial bioenergy, redox signalling, calcium handling, 
and the mitochondrial apoptosis pathway
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the membrane-anchored transcription factor ATF6, 
the inositolase IRE1, and the protein kinase PERK [99]. 
In 2009, Ngoh et  al. first proposed that ER stress was a 
key pathological factor in cardiomyocyte death induced 
by hypoxia, and increasing O-GlcNAc levels by pharma-
cological or genetic manipulation mitigated the death 
of cardiomyocytes exposed to ER stress inducers [71]. 
In constitutive cardiomyocyte-specific OGT-KO mice, 
gradual and progressive cardiomyopathy is accompanied 
by increased expression of ER stress markers, suggesting 
a close link between ER function and O-GlcNAcylation 
[100]. Notably, transcriptional activation of the UPR/
HBP axis in various stress conditions has been con-
firmed. The UPR triggers the transcription of key mem-
bers (GFAT1, GNPNAT1, and PGM3) of the HBP via its 
most conserved signal transducer spliced X-box binding 
protein 1 (xbp1s, a transcription factor), leading to the 
activation of HBP and O-GlcNAcylation, thus providing 
robust cardioprotection in mice (Fig.  3) [69]. Similar to 
xbp1s, the ER resident transcription factor spermatogen-
esis 40 (Tisp40) transcriptionally activates the HBP in 
conditions of cardiac stress [101]. In turn, O-GlcNAcyla-
tion can modulate cellular homeostasis in response to ER 
stress by modulating eukaryotic translation initiation fac-
tor 2α (eIF2α), which is one of the UPR branches [102]. 
However, this regulatory mechanism has not yet been 
demonstrated in the cardiovascular system.

Inflammation
Although it has been reported that the beneficial effects 
of O-GlcNAc stimulation on improving survival and 

cardiac function in septic shock are independent of 
inflammation [38], numerous studies have shown that 
there is an intimate relationship between inflammation 
and O-GlcNAcylation in stressed hearts. Glucosamine 
exerts anti-inflammatory effects on various cell types 
and models, including systemic inflammation [103] and 
osteoarthritis [104]. In a rat model of trauma-induced 
haemorrhage, the increase in O-GlcNAc levels induced 
by glucosamine or PUGNAc has been shown to improve 
survival, organ perfusion, and cardiac function. One 
mechanism of these beneficial outcomes is the attenua-
tion of circulating inflammatory cytokines [36, 37, 79, 
105]. Furthermore, the protective effect of the increase in 
protein O-GlcNAc modification on vascular inflamma-
tion and vascular dysfunction has also been confirmed 
[65, 73, 78]. Importantly, the nuclear factor NF-κB, which 
is a prototypical proinflammatory signalling factor, is 
a key molecular bridge linking O-GlcNAcylation and 
inflammation. For example, an increase in O-GlcNAc 
levels weakens NF-κB nuclear translocation and subse-
quent TNF-α and IL-6 expression, thus improving car-
diac function following trauma-induced haemorrhage 
[23]. It is also noteworthy that the NF-κB pathway is 
involved in vascular inflammation, and glucosamine or 
thiamet-G treatment has been shown to alleviate inflam-
mation-induced vascular damage by antagonizing the 
NF-κB signalling cascade [72, 106]. The NF-κB subunit 
p65 is a target for O-GlcNAcylation, and glycosylation 
of this factor inhibits self-phosphorylation, thereby pre-
venting p65 downstream signalling [107]. Furthermore, 
acute O-GlcNAcylation can reduce inducible nitric oxide 

Fig. 3 A schematic overview of the XBP1s/HBP/O-GlcNAc axis in the heart and brain
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synthase (iNOS) by inhibiting the NF-κB pathway, thus 
alleviating oxidative stress-induced vascular dysfunc-
tion [73]. Paradoxically, O-GlcNAcylation of NF-κB may 
also contribute to the lipopolysaccharide (LPS)-induced 
endothelial inflammatory response [108]. Thus, a deeper 
investigation of the nuanced relationship between O-Glc-
NAc and inflammation and how this association impacts 
cardiac and vascular function under stress conditions is 
needed.

Heat shock response
The heat shock response (HSR) is an ancient defence sig-
nalling pathway that maintains proteostasis to cope with 
a variety of cellular stresses. In the HSR, diverse heat 
shock factors are recruited to control the heat shock pro-
tein (HSP)/chaperone network to help modulate protein 
folding and repair [109]. O-GlcNAc appears to improve 
the tolerance of cardiomyocytes to multiple forms 
of stress by upregulating the rates and extent of HSP 
induction [56, 63, 110, 111], including HSP70, HSP40, 
HSP72, and aB-crystallin (HSPB5). Many studies associ-
ated with protection strategies against myocardial stress 
have focused on HSP70, a master regulator of protein 
degradation. Activation of HSP70 enhances the stress 
adaptation of the myocardium to I/R injury via multiple 
mechanisms, including oxidative stress, calcium over-
load, apoptosis, autophagy, and inflammatory responses 
[112, 113]. Pharmacological enhancement with glu-
tamine induces HSP70 expression and the activation of 
key transcription factors in the HSP70 pathway in animal 
models of inflammatory responses [10, 114, 115]. HSP70 
exhibits adjustable lectinic activity that depends on glu-
cose concentrations and O-GlcNAc levels [116, 117]. 

Protein misfolding triggers the release of Hsp70-GlcNAc-
binding activity in response to a wide variety of cellular 
stresses [118]. Importantly, O-GlcNAc signalling pre-
vents proteasome degradation by modifying the specific 
interactions of HSP70 family members [119]. In addition 
to HSP70, other HSPs are targets for O-GlcNAcylation, 
including Hsp90β [120], HSP28 [121], and HSPA6 [122]. 
However, further studies are needed to determine the 
role of O-GlcNAcylation in the functional regulation of 
these HSPs during cellular stress.

Collectively, these results demonstrate that O-Glc-
NAcylation is a pro-survival signal that mediates myocar-
dial stress tolerance via multiple mechanisms, including 
calcium and redox homeostasis, mitochondrial homeo-
stasis, ER stress, inflammation, and the HSR.

O‑GlcNAcylation and neuroprotection
Inspired by the beneficial effects of O-GlcNAcylation on 
improving cardiac function under stress, the discovery 
and knowledge of the pro-survival response of O-Glc-
NAcylation in the CNS has exploded recently (Table 3). 
Extensive work has focused on in vivo cerebral I/R injury 
experiments in which the activation of O-GlcNAcylation 
has been shown to be an adaptive response to improve 
cellular stress tolerance, and increasing this PTM might 
be a promising strategy for stroke therapy.

Age-related activation of O-GlcNAcylation
Stroke is an acute cerebrovascular accident that primar-
ily impacts elderly individuals, and clinical evidence 
shows that the recovery of neurological function worsens 
with age [139]. Therefore, researchers have focused on 
comparing cellular responses to ischaemic challenges in 

Table 3 List of models for neuronal stress tolerance modulated by O-GlcNAc modification

Metabolic (M), pharmacological (P), genetic (G) interventions; N/A, not addressed in this model

In vitro/in vivo Models Cells/animals O-GlcNAc levels in stress O-GlcNAc 
protection

Methods of 
modulation

References

In vitro OGD/R Primary neuron cultures, 
Primary astrocyte cultures, 
HT22 cells

Increase Increase P, G [123–126]

LPS BV2 microglia cells Increase Increase M, P [44, 127]

Aβ Primary cortical neurons
, CHO cells

Decrease Increase P [128]

Glutamate PC12 cells Increase Increase P, G [129]

In vivo Transient global 
ischaemia, tMCAO, 
pMCAO

Mice, Rat Young: increase
Aged: no change

Increase M, P, G [44, 45, 127, 130–135]

CA/CPR Mice Young: increase
Aged: no change

Increase M, P [45, 136]

Hypoxia Mice N/A Increase P [137]

RH Zebrafish Decrease Increase M [138]

SAH Mice N/A Increase P [126]
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young and aged animals in experimental stroke studies 
and have attempted to determine the role of ageing in the 
cellular response to severe forms of stress associated with 
I/R. In a transient forebrain ischaemia model, Liu et  al. 
analysed the activation of proteostasis-related pathways 
in young and aged mice and found that the most promi-
nent change in the ageing brain was the inactivation of 
the O-GlcNAc modification, suggesting that this pathway 
might be a promising target for stroke therapy [132]. In 
addition to the brain, impaired age-related activation of 
O-GlcNAcylation has also been confirmed in the kidney 
and spinal cord after cardiac arrest and cardiopulmonary 
resuscitation (CA/CPR) [45], signifying the importance 
of O-GlcNAcylation as a potential mechanism under-
lying the impairment of functional recovery in ageing 
organs/tissues in response to ischaemic challenge. LC–
MS/MS analysis showed that the availability of UDP-
GlcNAc in the aged brain was impaired both at baseline 
and after I/R, while metabolic intervention with glucosa-
mine significantly improved the acute outcomes in young 
and elderly mice [130]. Furthermore, other studies have 
reported that pharmacological increases in O-GlcNAc 
levels with thiamet-G improved outcomes after ischae-
mic stroke or CA/CPR in both young and elderly animals 
[44, 131]. Therefore, interventions targeting the HBP/O-
GlcNAc axis might be a promising therapeutic strategy 
for stroke.

Mechanisms by which O‑GlcNAcylation confers 
neuronal stress tolerance
Mitochondrial homeostasis
Mitochondria are crucial for maintaining metabolic 
homeostasis in the high-energy CNS. In the brain, 
O-GlcNAc cycling participates in the modulation of 
mitochondrial network homeostasis, which is diverse and 
includes mitochondrial trafficking, mitochondrial bio-
energetics, mitochondrial fission and fusion, and mito-
chondrial apoptosis [91]. In fact, under ischaemic stress 
conditions, O-GlcNAcylation-mediated mitochondrial 
homeostasis and cellular bioenergetics have emerged as 
potential pharmacological targets for the development of 
neuroprotective agents. For example, an active compo-
nent of Gastrodia elata exerts a potent neuroprotective 
effect by maintaining mitochondrial energy metabolism 
during cerebral I/R injury. Targeted metabolic profiling 
suggests that the increased levels of UDP-GlcNAc and 
its regulatory enzyme OGT contribute to the beneficial 
effects of Gastrodia elata on stroke [134, 135]. In our 
laboratory, the compound SalA-4  g was shown to have 
neuroprotective effects [124]. Specific mechanisms may 
involve the O-GlcNAc modification of mitochondria 
by SalA-4  g, which was shown to exert neuroprotective 
effects by improving mitochondrial homeostasis and 

inhibiting mitochondrial apoptosis pathways in neurons 
exposed to ischaemia-like conditions [125]. Recently, in 
a mouse model exposed to sevoflurane, the beneficial 
effects of hypoxia acclimation on anaesthetic sensitivity 
were attributed to the increase in O-GlcNAc-dependent 
modulation of glutamatergic synapses and mitochondria 
[137].

Other studies have focused on the functional effects 
of O-GlcNAc on individual proteins in mitochondria. 
In neurons, dynamin-related protein 1 (Drp1), which is 
a critical protein involved in mitochondrial fission, is a 
target for O-GlcNAcylation [140]. In cerebral I/R injury, 
the expression of ogt is significantly upregulated, and ogt 
knockout reduces the phosphorylation of Drp1 Ser-637, 
leading to the translocation of Drp1 from the cytosol to 
mitochondria, thus accelerating mitochondria-depend-
ent apoptosis [133]. Another O-GlcNAcylation target, 
adenosine 5’-triphosphate synthase subunit α (ATP5A), 
is critically involved in mitochondrial bioenergetics. The 
decrease in O-GlcNAc modification of the Thr-432 resi-
due on ATP5A induced by Aβ inhibited ATPase activ-
ity and disrupted ATP synthesis in Alzheimer’s disease 
(AD) pathology [128]. In neuronal excitotoxicity, the 
nitric oxide synthase adaptor (NOS1AP) acts as a ligand 
of neuronal nitric oxide synthases (nNOS) to participate 
in NMDA receptor-nNOS signalling. Mass spectrometry 
identified multiple sites for O-GlcNAc modification of 
NOS1AP, and an increase in this modification prevented 
its interaction with nNOS, thus protecting against neu-
ronal excitotoxicity induced by glutamate [129].

XBP1s/HBP/O-GlcNAc axis
The discovery that the UPR branch is involved in the 
transcriptional activation of HBP/O-GlcNAcylation in 
cardiac ischaemia has generated a tremendous amount 
of interest among neuroscientists. In 2017, Jiang and col-
leagues first reported that the XBP1s/HBP/O-GlcNAc 
axis was neuroprotective in the context of ischaemic 
stroke (Fig.  3). They showed that O-GlcNAcylation was 
activated in an xbp1-dependent manner in the ischaemic 
penumbra after stroke, and this activation was impaired 
in the aged brain. Critically, an increase in this response 
induced by thiamet-G improved short-term stroke out-
comes in young and aged mice [131]. Subsequently, fur-
ther research evaluated and confirmed that thiamet-G 
improved stroke outcomes in neuron-specific xbp1-
knockout mice, including long-term functional recov-
ery. Given the impaired availability of UDP-GlcNAc in 
the aged brain, the research group further established 
the beneficial effects of metabolic intervention with glu-
cosamine on stroke models in young and elderly animals 
[130]. The functional XBP1s/HBP/O-GlcNAc axis, which 
is a key pro-survival pathway, has also been confirmed 
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in CA/CPR [136] and subarachnoid haemorrhage (SAH) 
models [126]. Thus, these studies demonstrate that the 
XBP1s/HBP/O-GlcNAc axis is a promising target for 
stroke therapy.

Inflammation
O-GlcNAcylation is involved in controlling inflamma-
tory responses in experimental stroke. Acute increases 
in O-GlcNAc levels induced by glucosamine [127] or 
thiamet-G [44] exert neuroprotective effects on the 
ischaemic brain by inhibiting inflammatory cytokine pro-
duction and microglial activation. The specific mecha-
nism may involve the inhibition of NF-κB p65 signalling. 
The similar effects of glucosamine and thiamet-G sug-
gest that suppressing inflammation might contribute to 
the neuroprotective mechanism of O-GlcNAcylation. 
Notably, a study on inflammatory modulation in mac-
rophages exposed to LPS suggested that glucosamine 
could regulate inflammation by sensing different energy 
states. Under normal and high glucose conditions, glu-
cosamine exerted opposite effects on NO/iNOS produc-
tion stimulated by LPS depending on energy availability. 
The bidirectional regulatory effects of glucosamine may 
contribute to understanding the mechanisms by which 
O-GlcNAcylation affects nutrient sensing and inflamma-
tory responses [141].

Moreover, dysfunctional O-GlcNAcylation-mediated 
neuroinflammation has been shown to be involved in 
the pathology of neurodegeneration. OGT protein levels 
are significantly low in the cortical neurons of severe AD 
patients, and specific loss of OGT in the forebrain leads 
to progressive neurodegeneration, including behavioural 
and histological phenotypes, as well as extensive gliosis 
and the upregulation of immune-response genes [142]. 
In an in  vivo zebrafish model of hypoxic brain damage, 
the downregulation of several glucose metabolites and 
O-GlcNAc levels may be an important cause of brain 
inflammation and neurodegeneration, and these changes 
can be reversed by glucosamine supplementation [138]. 
In addition to neurons, O-GlcNAcylation is essential for 
inflammatory responses in astrocytes. The O-GlcNAc 
modification of NF-κB p65 has been identified in astro-
cytes in vitro and in vivo, and increasing O-GlcNAcyla-
tion with GlcNAc inhibits inflammation and activation of 
astrocytes in AD mice by repressing the NF-κB signalling 
pathway [16]. Collectively, these findings illustrate the 
beneficial effect of O-GlcNAcylation on stress tolerance 
by modulating neuroinflammation.

Conclusions and perspective
The early and rapid hyperglycaemic response to severe 
injury or trauma is an important adaptive pro-survival 
process, which is accompanied by an increase in HBP 

flux and the activation of O-GlcNAc signalling. In ani-
mal models and clinical trials, the exact contribution of 
the HBP/O-GlcNAc pathway to various metabolic-based 
therapies (high glucose, GIK, and glutamine) has been 
confirmed. In fact, O-GlcNAc modification can serve as 
an environmental sensor in metabolic and stress regu-
lation by directly and dynamically modulating protein 
functions. Numerous studies have demonstrated that the 
adaptive enhancement of O-GlcNAcylation is a pro-sur-
vival signal under stress, and a transient increase in global 
O-GlcNAc levels induced by stress or interventions (met-
abolic, pharmacological, or genetic) contributes to stress 
tolerance, especially in two high-energy organs: the heart 
and brain. The specific mechanism may involve calcium 
and redox homeostasis, mitochondrial homeostasis, ER 
stress, inflammation, and the HSR.

Although the benefits of O-GlcNAcylation in medi-
ating stress tolerance have been clearly recognized, 
most functional studies still face many challenges. (1) 
The duration of changes in O-GlcNAc signalling under 
pathologic conditions (i.e., glucose toxicity and type 
II diabetes) may have contrary and deleterious effects. 
The molecular mechanisms underlying the transition 
from adaptive and pro-survival pathways to pathologi-
cal responses are still unknown. (2) Due to the potential 
off-target effects of existing inhibitors, the development 
of small molecule kinase inhibitors with high specificity 
and inhibitory effects may contribute to the understand-
ing of drug targets and off-target-associated safety. (3) 
The tools for identifying the individual O-GlcNAcylation 
of specific proteins and site-specific O-GlcNAc proteom-
ics (O-GlcNAcomics) are limited. From this perspective, 
technical advances in high-throughput glycoproteomic 
studies will provide in-depth insights into the role of 
O-GlcNAcylation.
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