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Abstract 

Objective To develop and validate a diagnosis model to inform risk stratified decisions for idiopathic pulmonary 
fibrosis patients experiencing acute exacerbations (AE-IPF).

Methods In this retrospective cohort study performed from 1 January 2016 to 31 December 2022, we used data 
from the West China Hospital of Sichuan University for model development and validation. Blood test results 
and the underlying diseases of patients were collected through the HIS system and LIS system. An algorithm for fil-
tering candidate variables based on least absolute shrinkage and selection operator (LASSO) regression. Logistic 
regression was performed to develop the risk model. Multiple imputation handled missing predictor data. Model 
performance was assessed through calibration and diagnostic odds ratio.

Results 311 and 133 participants were included in the development and validation cohorts, respectively. 3 can-
didate predictors (29 parameters) were included. A logistic regression analysis revealed that dyspnea, percent-
age of  CD4+  T-lymphocytes, and percentage of monocytes are independent risk factors for AE-IPF. Nomographic 
model was constructed using these independent risk factors, and the C-index was 0.69. For internal validation, 
the C-index was 0.69, and that indicated good accuracy. Diagnostic odds ratio was 5.40. Meanwhile, in mild, moder-
ate, and severe subgroups, AE positivity rates were 0.37, 0.47, and 0.81, respectively. The diagnostic model can classify 
patients with AE-IPF into different risk classes based on dyspnea, percentage of  CD4+  T-lymphocytes, and percentage 
of monocytes.

Conclusion A diagnosis model was developed and validated that used information collected from HIS sys-
tem and LIS system and may be used to risk stratify idiopathic pulmonary fibrosis patients experiencing acute 
exacerbations.

Keywords Acute exacerbation of idiopathic pulmonary fibrosis/AE-IPF, Diagnosis model, Disease severity, Risk 
prediction

Introduction
Idiopathic pulmonary fibrosis (IPF) is the most common 
of the idiopathic interstitial pneumonias, characterized 
by severe pulmonary tissue fibrosis without a known 
pathogenesis. And the mean survival time after diagnosis 
is 2–3 years [1, 2]. It is a devastating condition that car-
ries a prognosis worse than that of many cancers [2, 3]. 
Except for lung transplantation, there are very few treat-
ment options for a patient with a fibrotic disease [4]. IPF 
patients frequently suffer an acute exacerbation (AE) of 
respiratory failure, also known as AE-IPF [5, 6]. It can 
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cause severe acute hypoxemic respiratory failure, shar-
ing common features with acute respiratory distress syn-
drome (ARDS).

In a retrospective study of 461 IPF cases, AE-IPF was 
the most frequent cause for the deterioration of IPF, 
accounting for 55.2% of the cases [7]. In another review, 
the ICU mortality of AE-IPF was from 56% to 100%, 
meanwhile the hospital mortality was 56% to 100% [5]. 
It is crucial to accurately identify the high risk of AE-
IPF patients for optimizing their management and pro-
viding personalized care.

Currently, biological data grow and become more 
complex, machine learning is being applied to build 
predictive and informative models of these processes 
[8]. For example, analyzing primary care data to 
develop and validate a prognostic model for assessing 
methotrexate toxicity in immune-mediated inflamma-
tory diseases [9]. According to percentage predicted 
forced vital capacity and  PaO2/FiO2 levels, an intersti-
tial lung disease prognosis model was developed for 
patients with AE rheumatoid arthritis [10]. The gender, 
age, physiology (GAP) model was used to determine 
disease severity in the idiopathic pulmonary fibro-
sis [11]. Notably, blood test results are the easiest to 
obtain.

There have been reports of immune cell disorders in 
patients with IPF [12, 13]. It has been demonstrated that 
certain patients with similar pulmonary fibrosis, such as 
COVID-19, have immune cell infiltration in the lungs 
and a decrease in  CD4+ T and  CD8+ T in the peripheral 
blood [14]. In this study, immunological data from the 
electronic medical record system of West China Hospital 
of Sichuan University were used to develop and validate 
a diagnosis model for AE-IPF. For patients with AE-IPF, 
it would be beneficial to predict the likelihood of clini-
cally significant abnormal blood test results. In order to 
better understand this risk, we developed and validated 
a diagnosis model to estimate the risk of clinically signifi-
cant idiopathic pulmonary fibrosis patients experiencing 
acute exacerbations.

Methods
In this retrospective cohort study performed from 1 Jan-
uary 2016 to 31 December 2022, we used data from the 
electronic medical record system of West China Hospital 
of Sichuan University (WCHSCU) for model develop-
ment and validation. As WCHSCU is the largest general 
hospital in Southwest China and is representative of the 
patients for the database. The electronic medical record 
system includes information on demographic factors, 
basic diseases (hypertension, diabetes, cardiovascular 
disease, etc.), complications at the onset (pulmonary 

hypertension, gastroesophageal reflux disease, etc.), 
blood test results, and smoking status. According to TRI-
POD guidelines, this study is transparently reporting 
multivariable prediction models for individual diagnosis 
[15].

Study population
This retrospective study enrolled consecutive IPF 
patients who were hospitalized in the West China Hospi-
tal of Sichuan University between 1 January 2016 and 31 
December 2022. 444 patients were selected to construct 
the prediction model. 45.5% of patients received anti-
fibrotic therapy, meanwhile, 56.3% of patients received 
oxygen supply (Additional file 1: Table S1). Data should 
be collected on AE-IPF diagnosis if it existed; otherwise, 
data should be collected on the first exam the patient 
underwent.

IPF was defined by the presence of bilateral reticu-
lar opacities with/without traction bronchiectasis on 
chest high-resolution computed tomography (HRCT). 
The diagnosis of IPF was confirmed through clinical 
features, imaging data, and medical history according 
to the diagnostic criteria for IPF [16]. AE-IPF was diag-
nosed according to the 2016 AE-IPF International Work-
ing Group report [17]. The diagnostic criteria for AE-IPF 
were as follows: (1) the past or presence of fibrosing ILD 
on HRCT; (2) acute worsening or development of dete-
riorative acute dyspnea typically within 1  month; (3) A 
new bilateral ground-glass opacity and/or consolidation 
superimposed on fibrosing ILD on HRCT; and (4) Unac-
counted deterioration unrelated to cardiac failure or 
excessive fluid accumulation. This study was approved 
by the Clinical Trials and Biomedical Ethics Committee 
of West China Hospital of Sichuan University (approval 
number: No. 366 in 2022).

Variable collection
Variable selection would  be based on physicians’ opin-
ions and immune disorders of the disease in subsequent 
analyses. Data pertaining to the following variables were 
collected from the medical records: clinical data, includ-
ing the age, hypertension, etc.; laboratory data at AE 
onset, including 29 indicators (Table 1) and outcomes.

Final predictor selection
We employed a statistical consolidation technique called 
the Least Absolute Shrinkage and Selection Operator 
(LASSO) to combine all variables. The core principle of 
LASSO involved applying a penalty function to shrink 
the regression coefficient of each variable within a spe-
cific range, irrespective of its statistical significance. Vari-
ables with a coefficient of 0 were eliminated, resulting in 
a final set of optimal and representative variables. As a 
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result, the coefficients were optimized, and less signifi-
cant variables were excluded [18].

Sample size
For model development, we adopted Riley and colleagues’ 
formulae to construction of the prediction model [19]. 
Using above formulae, we determined that to minimize 
model overfitting (parameters: a shrinkage factor is 0.1, 
an anticipated R2

cs is 0.3), and  we required a minimum 
sample size of 103 participants based on a maximum of 
29 parameters. The variables tested were adjusted for an 
additional 29 covariate(s),  which had a combined R2 of 
0.3 by themselves.

Statistical analysis
SPSS 20.0 (SPSS Inc., Chicago, IL, USA) and R Statistical 
Software (v4.1.2, R Foundation for Statistical Computing, 
Vienna, Austria) were used for data analysis. Diagnostic 
odds ratio (DOR), odds ratio of positive labeling for con-
dition positive versus negative, was calculated to predict 
the degree of discrimination of the prediction model [20]. 
In order to reflect the AE-IPF risk stratification effect, 
the values at risk were divided into mild, moderate, and 
severe subgroups, and the frequency of AE was calcu-
lated separately. Finally, an internal validation method 
was used to test the stability of the prediction model. 
The “rms” package was used to calculate the C-index in 

Table 1 Summary characteristics of final study cohort overall and separated into distinct sub-cohorts for internal–external cross-
validation

Variables and categories Overall study cohort
(n = 444)

Development cohort
(n = 311)

validation cohort
(n = 133)

AE-IPF, n (%) 247(55.6) 171(55.0) 76(57.1)

Age at onset (years) 67.9 ± 9.8 67.6 ± 9.5 68.8 ± 7.1

Gender (male,%) 357(80.4) 248(79.7) 109(82.0)

Dyspnea, n (%) 119(26.8) 84(27.0) 35(34.01)

Comorbidities:

 Infection of lungs, n (%) 291(65.5) 207(66.6) 84(63.2)

 Renal dysfunction, n (%) 19(4.3) 12(4.0) 7(5.3)

 Hypertension, n (%) 119(26.8) 86(27.7) 33(24.8)

 Diabetes, n (%) 104(23.4) 68(21.9) 36(27.1)

Admission indicators:

 Temperature, ℃ 36.5(36.3–36.7) 36.5(36.3–36.7) 36.5(36.3–36.6)

 Breaths, minute 20.0(20.0–22.0) 20.0(20.0–22.0) 20.0(20.0–22.0)

 Pulse, minute 87.0(80.0–98.0) 87.0(80.0–98.0) 89.0(78.5–98.0)

 Systolic pressure, mmHg 126.5(113.0–138.0) 126.0(113.0–138.0) 128.0(116.5–138.0)

 Diastolic pressure, mmHg 77.0(69.00–85.00) 76.0(69.0–85.0) 78.0(71.5–85.0)

Immune status at admission

 Leucocytes,  109/L 7.3(6.0–9.2) 7.4(6.11–9.3) 7.1(5.8–8.7)

 Neutrophil, % 66.1(57.50–76.50) 66.0(57.9–76.5) 66.5(56.7–76.6)

 Lymphocyte, % 22.1(15.3–29.9) 22.2(15.3–29.4) 21.2(15.3–31.1)

 Monocyte, % 6.9(5.0–8.6) 6.9(5.3–8.6) 6.6 ± 3.0

 Neutrophil,  109/L 4.8(3.6–6.6) 4.9(3.7–6.5) 4.6(3.4–6.7)

 Lymphocyte,  109/L 1.6(1.1–2.0) 1.7 ± 0.8 1.6(1.2–2.0)

 Monocyte,  109/L 0.5(0.3–0.7) 0.5(0.3–0.7) 0.5(0.3–0.7)

  CD3+  T-lymphocyte, % 67.1(57.4–75.5) 66.9(56.3–75.4) 68.3(59.4–75.8)

  CD4+  T-lymphocyte, % 34.6(26.7–42.2) 34.2 ± 10.9 34.0 ± 11.4

  CD8+  T-lymphocyte, % 26.4(20.0–34.8) 26.4(19.2–33.8) 26.3(21.4–37.9)

 CD4/CD8 1.3(0.8–1.9) 1.3(0.9–2.0) 1.2(0.8–1.8)

 Immunoglobulin G, g/L 13.9(11.7–17.0) 13.9(11.6–17.1) 13.9(12.1–16.8)

 Immunoglobulin A, g/L 2.9(2.2–3.8) 2.9(2.2–3.7) 3.0(2.1–4.1)

 Immunoglobulin M, g/L 1.0(0.7–1.4) 1.0(0.7–1.4) 0.9(0.7–1.4)

 Total protein, g/L 68.5 ± 6.5 68.3 ± 6.3 68.9 ± 7.1

 Albumin, g/L 38.7(35.2–41.7) 38.6(34.9–41.7) 38.7 ± 4.8

CO2 23.5(21.9–26.0) 23.5(22.1–26.0) 23.5(21.5–26.0)
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final model. Multiple imputation handled missing predic-
tor data on IgG, IgA, IgM and  CO2 using chained equa-
tions [9]. The  “Caret” package was used to randomly 
assign 444 patients to development cohort and validation 
cohort in a 7:3 ratio.

Construction of the prediction model
Least absolute shrinkage and selection operator (LASSO) 
regression was used to filter candidate variables for 
development of prediction model. All 3 candidate vari-
ables (29 parameters) were included in the final model. 
Rubin’s rule was applied to the imputed datasets to esti-
mate the coefficients of each predictor. The development 
data were used to formulate the risk equation for pre-
dicting an individual’s risk of AE-IPF. The risk of AE-IPF 
was estimated along with the estimated regression coef-
ficients (β) and the individual’s variables (X) at onset, and 
predicted the risk = exp(βX)/(1 + exp(βX)), where βX is 
the linear predictor, equaled to β1X1 + β2X2 + β3X3.

Predictive model was constructed using multivari-
ate logistic regression based on demographic variables, 
underlying disease, co-morbidities and laboratory blood 
tests together. 3 candidate predictors (29 parameters) 
were included in the logistic model, and the coefficients 
of each predictor were estimated and combined using 
Rubin’s rule across the imputed datasets. The stability of 
the models was verified by tenfold cross-validation.

Model internal validation
The calibration curve that assessed the agreement 
between predicted and observed risks across the entire 
range. An ideal calibration curve would closely follow the 
45° line, indicating perfect agreement between predicted 
and observed outcomes.

Internal validation was performed using bootstrap-
ping with replacement on 116 samples of the valid data to 
correct for overfitting. The full model was fitted to each 
bootstrap sample, and its performance was measured on 
both the bootstrap samples (apparent performance) and 
the original samples (test model performance). Model 
optimism, which reflects overestimation due to overfit-
ting, was calculated as the difference between the test 
performance and apparent performance.

The optimism-adjusted estimates of the model’s per-
formance for the original model were calculated by 
subtracting the optimism from the original apparent per-
formance. The graph provided insights into the model’s 
calibration performance and accounted for overfitting to 
obtain more accurate estimates of model performance.

Results
Patients and clinical characteristics
A total of 444 patients were retrospected in this study, 
among which 311 patients were enrolled in the candidate 
variable selection cohort (development cohort), and 133 
patients were enrolled in the internal validation cohort. 
There was statistically significant difference in the fre-
quency of dyspnea between the development cohort 
(17.77%) and validation cohort (34.01%), but the propor-
tion of dyspnea in AE-IPF patients was no statistically 
significant difference.

Development of prediction model
Based on the results of the LASSO regression, we deter-
mined three efficiency predictive factors for AE-IPF 
(Fig.  1). A nomographic risk prediction model was 
meticulously developed to enable precise estimation of 
AE-IPF risk based on three distinct variables (Fig.  2A). 

Fig. 1 Filtering candidate variables by LASSO. A Shows the Lasso variable coefficient plot. Each curve in the figure represents the trajectory 
of a variable’s coefficient. The vertical axis represents the values of the variable coefficients. The bottom horizontal axis, λ, is the parameter 
controlling the severity of the penalty, and the top horizontal axis represents the number of non-zero coefficients in the model under the penalty 
parameter. B Shows the parameter adjustments in LASSO. Fine-tuning the LASSO model’s regularization parameters involves screening λ using 
a tenfold cross-validation approach. A dashed vertical line is positioned at 1 standard error (1-SE standard) from the minimum and maximum values 
of λ. λ.1se represents the parameter value associated with a model that delivers optimal performance while utilizing the fewest number of variables
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Scales were used to score each variable, with total score 
ranging from 0 to 180. A higher score on the AE-IPF risk 
axis indicated a greater chance that a patient with IPF 
will develop AE-IPF (Fig.  2B). Dyspnea, percentage of 
CD4 + T-lymphocytes, and percentage of monocytes at 
admission were strong predictors of AE-IPF, with haz-
ard ratios of 2.28 (95% confidence interval 1.43 to 3.70), 
0.96 (0.94 to 0.97), and 0.92 (0.86 to 0.99), respectively 
(Table 2).

Model performance in validation cohort
By plotting the agreement between predicted and 
observed risks (the calibration of the model) across the 
entire range, a smoothed non-parametric calibration 
curve was used to assess the model’s calibration perfor-
mance. Ideally, the curve should be close to the 45° line 
(calibration slope of 1).

The calibration slope was 0.99 (95% confidence inter-
val 0.98 to 0.99). The calibration plot showed reason-
able correspondence between observed and predicted 
risk (Fig.  3). Diagnostic odds ratio, a valuable measure 
because it takes into account both sensitivity and speci-
ficity of a diagnostic test, was used to assess the accuracy 
of this model. Diagnostic odds ratio of this model was 
5.40, indicating a good diagnostic performance.

Discussion
Although the cause of AE-IPF is not very clear, early 
identification and treatment interventions might signifi-
cantly improve the patient’s condition. Moreover, AE is a 
common cause of death in IPF patients, and has a signifi-
cant impact on the short and long-term outcomes of IPF 
patients [21, 22]. Therefore, a prediction of AE-IPF is cru-
cial. Unfortunately, there is no reliable model for predict-
ing AE-IPF. The present study created a model to predict 
the risk of AE-IPF and provided a reference for clinical 
prediction.

Our findings demonstrated that dyspnea, percentage of 
CD4 + T-lymphocytes, and percentage of monocytes can 
be independently important risk factors for AE among 
patients with IPF. It can be used to stratify patients with 
acute exacerbations of idiopathic pulmonary fibrosis. Our 
model used predictors that are more common, accessible, 
and convenient for primary health care and community 

Fig. 2 A Shows nomogram to predict the incidence of AE-IPF. B Shows the occurrence of AE-IPF within differ grading subgroups. CD4 (%): 
percentage of CD4 + T-lymphocytes. Mono (%): percentage of monocytes

Table 2 Model parameter

Risk score = exp(βX)/(1 + exp(βX)), βX = 0.82612 × dyspnea 
-0.04518 × CD4 + T-lymphocytes(%) -0.0815 × monocytes(%) + 2.13781 

Variables β 
coefficient

Std. 
error

Hazard ratio (95%CI)

dyspnea 0.82612 0.24115 2.28 (1.43, 3.70)

CD4 + T-lympho-
cytes(%)

-0.04518 0.01023 0.96(0.94, 0.97)

monocytes(%) -0.08150 0.03713 0.92(0.86, 0.99)

Fig. 3 Calibration of a diagnosis model for AE-IPF. Black line reflected 
ideal prediction, while orange line showed actual prediction
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hospitals. Thus, monitoring AE risk was convenient for 
IPF during follow-up.

While the predictive factors employed in the model 
were not exclusive to AE-IPF and do not serve as defini-
tive diagnostic criteria for AE-IPF, nonetheless, they 
could provide insights into the respiratory function 
and in vivo immune status of patients with AE-IPF. The 
presence of dyspnea is a common deteriorating factor 
in patients with IPF and is an important basis for the 
diagnosis of AE-IPF [17]. In a retrospective, multicenter 
study, increased CD14 + classical monocyte percentages 
were found to be significantly associated with survival in 
short-term, lung transplant-free  IPF patients [3]. Kawa-
mura et  al. reported that monocytes count were found 
to be a risk factor for AE in patients with IPF [23]. How-
ever, the study focused more on pulmonary CT manifes-
tations and changes in pulmonary ventilation function 
in patients with IPF, as well as the relatively small num-
ber of investigators included. Our study placed a greater 
emphasis on monitoring peripheral immune function 
changes during acute exacerbations in IPF patients. It 
aimed to investigate the immune-related risk factors 
associated with AE. Accordingly, our study can serve as a 
complementary research.

A number of studies had shown that patients with IPF 
had an increase in CD4 + and CD8 + T cells in the lungs 
and in their BAL [13, 24]. Decreased  CD4+  CD28+ T 
cells, decreased Treg cells had been revealed with worse 
prognosis and more severe disease in IPF patients by sev-
eral studies [25, 26]. In our scoring model, a significant 
portion of  CD4+ T cells featured prominently, indicating 
a potential strong association between  CD4+ T cell per-
centages and AE. We hypothesized that the reduction 
in peripheral blood  CD4+ T cells might be attributed to 
their recruitment to the lungs, where they potentially 
engaged in the pulmonary inflammatory response.

Misharin and colleagues validated the involvement of 
monocytes in IPF using a mouse mode. Lung injury trig-
gered the recruitment of monocytes into the lung, where 
they underwent differentiation into monocyte-derived 
alveolar macrophages (Mo-AMs). These Mo-AMs played 
a crucial role in driving fibrosis development following 
intratracheal administration of bleomycin or an adeno-
viral vector encoding active TGF-β [27, 28]. Our study 
further confirmed that the occurrence of acute exacerba-
tions in IPF leads to significant alterations in the immune 
status. Consequently, the current model can provide val-
uable information about AE-IPF cases.

Strengths of this study
Strengths of this study included the use of real-world data 
from the largest general hospital in Southwest China. 
Consequently, the result exhibited extensive potential for 

general applicability. Regarding variable selection, fac-
tors deemed risky by the physician and documented in 
literature were included. At the same time, the risk fac-
tors were available in electronical healthy records. There-
fore, the results possessed potential value for clinical 
application.

Limitations of this study
Certain constraints of this study warranted contempla-
tion. Lung function ventilation tests were added without 
incorporating, such as forced vital capacity (FVC)and 
total lung capacity (TLC) [29], for  only a small subset 
of patients having these records in the electronic medi-
cal records. Some patients had received treatment before 
being transferred to our medical institutions, and there 
was no pulmonary function records in our electronic 
medical records. For certain patients with severe con-
ditions, undergoing pulmonary function tests was not 
advisable. Therefore, it would be unreasonable to use 
imputation methods for subsequent analysis.

Conclusion
A diagnosis model that can be used in clinical practice for 
predicting the likelihood of AE in patients with IPF had 
been developed and internally validated. It was recom-
mended that additional validation studies be conducted 
with populations outside of China and that fewer predic-
tor parameters be taken into account.
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