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Abstract 

Background Colorectal cancer (CRC) is a complex malignancy characterized by diverse molecular profiles, clini-
cal outcomes, and limited precision in prognostic markers. Addressing these challenges, this study utilized multi-
omics data to define consensus molecular subtypes in CRC and elucidate their association with clinical outcomes 
and underlying biological processes.

Methods Consensus molecular subtypes were obtained by applying ten integrated multi-omics clustering algo-
rithms to analyze TCGA-CRC multi-omics data, including mRNA, lncRNA, miRNA, DNA methylation CpG sites, 
and somatic mutation data. The association of subtypes with prognoses, enrichment functions, immune status, 
and genomic alterations were further analyzed. Next, we conducted univariate Cox and Lasso regression analyses 
to investigate the potential prognostic application of biomarkers associated with multi-omics subtypes derived 
from weighted gene co-expression network analysis (WGCNA). The function of one of the biomarkers MID2 was vali-
dated in CRC cell lines.

Results Two CRC subtypes linked to distinct clinical outcomes were identified in TCGA-CRC cohort and validated 
with three external datasets. The CS1 subtype exhibited a poor prognosis and was characterized by higher tumor-
related Hallmark pathway activity and lower metabolism pathway activity. In addition, the CS1 was predicted to have 
less immunotherapy responder and exhibited more genomic alteration compared to CS2. Then a prognostic model 
comprising five genes was established, with patients in the high-risk group showing substantial concordance 
with the CS1 subtype, and those in the low-risk group with the CS2 subtype. The gene MID2, included in the prog-
nostic model, was found to be correlated with epithelial–mesenchymal transition (EMT) pathway and distinct DNA 
methylation patterns. Knockdown of MID2 in CRC cells resulted in reduced colony formation, migration, and invasion 
capacities.

Conclusion The integrative multi-omics subtypes proposed potential biomarkers for CRC and provided valuable 
knowledge for precision oncology.
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Introduction
Colorectal cancer (CRC) is a major global health con-
cern, which ranks third in morbidity (10.0%) and second 
in mortality (9.4%) worldwide, with an estimated 1.9 mil-
lion new cases and 935,000 deaths yearly [1]. There are 
large differences in survival rate depending on stage of 
disease at diagnosis [2]. For patients with localized CRC, 
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the 5-year survival rate is about 90%. However, approxi-
mately 20% of patients already at an advanced stage at 
the time of diagnosis, the 5-year survival rate drops to 
12.5% [2]. Besides, the molecular heterogeneity can result 
in different outcomes for patients even with similar clin-
icopathological features [3]. To date, increasing evidence 
has certified that biomolecules hold great promise in pre-
dicting disease prognosis and identifying potential treat-
ment targets. Hence, the molecular subtyping of CRC is 
urgently needed.

Multi-omics data refer to the amalgamation of tran-
scriptomic, genomic, and epigenetic information that 
can provide a more comprehensive understanding for 
cancer heterogeneity. Multi-omics-based classification 
can help identify the most relevant biomarkers and treat-
ment targets for various types of tumors [4–8]. The ini-
tiation and progression of CRC are driven by a series of 
aggressive gene mutations and epigenetic alterations [9]. 
By studying the multi-omics, which refers to the analy-
sis of various biological molecules, we can gain a more 
holistic view of the biological characteristics underlying 
CRC [10]. An integrative multi-omics study revealed that 
early-onset CRC have higher tumor mutation burden and 
different biological and clinical features from late-onset 
CRC [11]. The CRC Subtyping Consortium proposed 
classic consensus molecular subtypes (CMS), which 
have  distinct gene expression profiles, genomic altera-
tions, immune infiltrations and therapy responses [12].

Cancer is a complex disease with high heterogeneity, 
the occurrence of CRC undergoing multiple gene muta-
tions and epigenetic modifications such as DNA meth-
ylation [13–15]. DNA methylation and somatic mutation 
can strongly perturb gene expression [11, 16]. A meta-
analysis showed that KRAS, BRAF and p53 mutations 
were associated with the lymphatic and distant metas-
tases of CRC [17]. A systematic review indicated a 1.49-
fold greater risk of colorectal cancer in BRCA1 mutation 
carriers [18]. Changes in DNA methylation also can serve 
as biomarkers for the diagnosis, prognosis, and treatment 
response of CRC [19]. Hypomethylation is observed from 
early adenomas to metastases, with a linear correlation 
between demethylation grade and disease stage [20]. 
LINE-1 hypomethylation is a unique feature of early-
onset colorectal cancer and inversely correlated with 
microsatellite instability (MSI) and CpG island methyla-
tor phenotype [21, 22]. The hypermethylation of MGMT, 
a DNA repair enzyme, is associated with chemotherapy 
response in metastatic CRC [23, 24].

This study will discuss the use of combinatorial algo-
rithms and multi-omics data in defining the different 
CRC molecular subtypes and their associated prognostic 
implications. We identified two distinct subtypes with 
distinct prognosis and validated with Gene Expression 

Omnibus (GEO) datasets. Specifically, we also compre-
hensively depicted the functional annotations, immune 
status, somatic mutations, copy number variations 
(CNV), and gene expression patterns of distinct sub-
types. We also developed a risk model based on the sub-
types related genes and subsequently conducted in vitro 
experiments to validate the function of the identified 
gene.

Methods
Data source and preprocessing
Molecular profiles of CRC patients were retrieved from 
The Cancer Genome Atlas (TCGA) using the “TCGA-
biolinks” R package for the multi-omics data analysis. A 
total of 510 CRC patients with complete RNA-seq pro-
files, miRNA-seq profiles, the Illumina 27  K and 450  K 
DNA methylation, somatic mutations, and clinicopatho-
logical features were selected for subsequent analysis. 
And the RNA-seq were converted to the log2 “transcripts 
per million (TPM)” format for subsequent analysis.

Gene expression profiles of datasets (GSE39582, 
GSE17538, and GSE41258) with RNA expression data 
and survival information were downloaded from the 
GEO database for external validation using the “GEO-
query” R package.

Identification of subtypes through integrative multi‑omics 
analysis
To perform clustering with “MOVICS” R package [25], 
the CRC multi-omics data (mRNA, lncRNA, miRNA, 
DNA methylation CpG sites, and somatic mutation 
data) were transformed to features in rows and samples 
in columns. There are 510 CRC patients with complete 
multi-omics information. Subsequently, we proceeded 
by selecting the top 50% of  variance factors (mRNA, 
lncRNA, miRNA, DNA methylation CpG sites) with 
prognostic value (univariate Cox regression analysis, 
p < 0.05), along with genes with mutation frequencies 
above 0.1, for further in-depth analyses. The cluster-
ing prediction index (CPI) and Gaps-statistics based on 
above multi-omics data were used to determine the opti-
mal number of subtypes. Subsequently, ten clustering 
algorithms: SNF, PINSPlus, NEMO, COCA, LRAclus-
ter, ConsensusClustering, IntNMF, CIMLR, MoCluster, 
and iClusterBayes were used to separate CRC patients 
into different subtypes. Finally, we used “getConsensus-
MOIC()” function to identify the final clusters with high 
robustness based on ten clustering methods.

Evaluation of the activated of signaling pathways
To reveal the function distribution of each subtype, 
we downloaded 50 tumor-related Hallmark gene sets 
from Molecular Signatures Database (MSigDB) and 87 
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metabolism related gene sets from KEGG [26, 27]. The 
single sample gene set enrichment analysis (ssGSEA) 
was used to calculated the enrichment scores for each 
patient, and pathways with different distribution in two 
subtypes were visualized in heatmaps. “ClusterProfiler” R 
package was used to evaluate the most significant differ-
ent enrichment pathways for each subtype based on dif-
ferent expressed genes (DEGs).

Characterization of genetic alteration on subtypes
We analyzed the mutation landscape through the R 
package “maftools”. Using the "oncoplot", "Oncogenic-
Pathways", "somaticInteractions", "mafCompare", and 
"plotOncodrive" functions of this package, we analyzed 
the tumor mutation panorama, base conversion and 
transversion, amino acid mutation hotspot, mutation 
frequency of mutation alleles, copy number mutation, 
and mutual exclusion or coexistence mutation across 
different subtypes. The somatic copy number alteration 
(SCNA) data were analyzed using GISTIC2.0 algorithm 
on GenePattern (https:// cloud. genep attern. org/).

Immune microenvironment analysis and assessment 
of response to immunotherapy
We also used ssGSEA and xCell to assess the distribu-
tion of immunologic functions, immune cells and stro-
mal cells infiltration in each subtype and visualized with 
boxplots. And boxplots were also utilized to compare 
the expression of immunological checkpoint. We used 
the tumor immune dysfunction and exclusion (TIDE) 
(http:// tide. dfci. harva rd. edu) web application to estimate 
the immunotherapy response of each ESCC patient [28]. 
GSE78220  and IMvigor210 cohorts were used to verify 
the predictive value of subtype in response to immuno-
therapy [29, 30].

External data validation
The “MOVICS” R package was utilized to validate the 
repeatability  of cluster analysis in other CRC cohorts. 
Firstly, nearest template prediction (NTP) function per-
mits adaptable cross-platform, cross-species, and multi-
class predictions, without requiring the optimization of 
analysis parameters. Then, we compared the prognosis of 
the predicted cancer subtypes in these validation cohorts.

WGCNA and prognosis model construction
“WGCNA (Weighted Gene Co-Expression Network 
Analysis)” R package was used to identify co-expressed 
gene modules correlated with cluster subtypes. We iden-
tified a total of 24 co-expression modules through the 
topological overlap matrix (TOM) calculation, which 
were marked with different colors by setting a soft thresh-
old power β = 8, which represented genes that shared 

highly similar expression patterns in CRC patients. Then, 
the most correlated module was identified after assess-
ing the Pearson correlation coefficient between two sub-
types and the co-expression modules. Finally, the genes 
of module with high trait significance were selected for 
further analysis.

Genes in target module with significant impact on 
OS were selected for least absolute shrinkage and selec-
tion operator (LASSO) regression analysis. Then, genes 
strongly correlated with prognosis and their coefficients 
were obtained. The risk score was calculated by multiply-
ing each obtained coefficient by the corresponding gene 
expression and summing the total values and patients 
were stratified into low- and high-risk groups based on 
the median risk score.

Cell culture and plasmid transfection
CRC cell lines SW480 and HCT116 were purchased from 
Shanghai Institute of Cell Biology and cultured with Dul-
becco’s modified Eagle’s medium (DMEM; Gibco, USA) 
containing 10% fetal bovine serum (FBS; Hyclone, USA) 
at 37℃ 5%  CO2. To investigate the impact of MID2 on 
cellular function, the short-hairpin RNA (shRNA) tar-
geting MID2 and control shRNA were purchased from 
Sangon Biotech (Shanghai, China). Transfections were 
carried out according to the Lipofectamine 3000 (Invitro-
gen, USA) protocol.

Western blot assay
Cells were lysed in RIPA buffer (Beyotime, China), 1 mM 
PMSF (Beyotime, China), phosphatase  inhibitor cock-
tail (Beyotime, China). The lysates were then denatured 
in 100℃, separated by 10% SDS-PAGE gel, transferred to 
PVDF membranes (Millipore, Sigma, USA), and blocked 
in 5% skimmed milk. The membranes were incubated 
overnight at 4% with primary antibody: MID2 polyclonal 
antibody (1:1000, PA5-28457, Thermo Fisher Scientific), 
GAPDH polyclonal antibody (1:10,000, 10494-1-AP, 
Proteintech), E-Cadherin polyclonal antibody (1:20,000, 
20874-1-AP, Proteintech), N-Cadherin polyclonal anti-
body (1:2000, 22018-1-AP, Proteintech), Vimentin 
monoclonal antibody (1:1000, 5741  T, Cell Signaling 
Technology). Then secondary antibody goat anti-rab-
bit IgG (1:2000, A0277, Beyotime) was incubated 1 h at 
room temperature. After washing with TBST solution, 
the bands were finally visualized using an ECL reagent 
(Millipore, Sigma, USA).

Colony formation assay
SW480 and HCT116 cells were inoculated in a six-well 
plate (800/well). After 10 days, the cells were fixed with 
4% paraformaldehyde and stained with 1% crystal violet. 

https://cloud.genepattern.org/
http://tide.dfci.harvard.edu
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The number of visible colonies was counted to evaluate 
the colony formation ability of the cells.

Transwell assay
Cell migration and invasion were measured using Boyden 
chambers in 24-transwell plates (8  μm pores, Corning). 
600 μL DMEM medium containing 20% FBS were added 
to the bottom of plates. Then, 2.5 ×  104 cells suspended 
in a 200 μl serum-free medium were seeded to the upper 
chambers for migration assay, 5 ×  104 cells were seeded in 
upper chamber pre-coated with 60 μL of Matrigel (BD) 
for invasion assay. After incubation for 24 h at 37 °C, the 
membranes were fixed with 4% paraformaldehyde and 
stained with 1% crystal violet.

Statistical analysis
GraphPad Prism (version 8.0, USA) and R language (ver-
sion 4.2.1) were used for statistical analysis. Student’s 
t-test and Wilcoxon test were used to compare the dis-
crepancy of continuous data between two groups. Chi-
square test and Fisher’s exact test were used to compare 
the distribution of categorical variable. Kaplan–Meier 
(K-M) method and log-rank test were used to estimate 

the survival analysis. P value < 0.05 indicated statistical 
significance.

Results
Overview of multi‑omics profiling of two CRC subtypes
The flowchart of this study is presented in Fig. 1. We inte-
grated the multi-omics data of TCGA-CRC, with 510 
samples having complete multi-omics and survival data 
used for subsequent cluster analysis. The optimal number 
of clusters (k = 2) was determined based on the CPI and 
gap statistics, the number of clusters that reach the maxi-
mum sum of these two statistics is considered optimal 
(Fig.  2A). In comparison to three, four, or five clusters, 
two clusters showed superior consistency, as confirmed 
by the consensus matrix (Fig.  2B, Additional file  1: Fig. 
S1A, B, and C). The Silhouette value, a clustering quality 
indicator to assess the effectiveness of clustering for each 
data point ranging from − 1 to 1, demonstrated that the 
high silhouette width of the two clusters (0.58 and 0.51), 
which was closer to 1 than the other clusters, represented 
the robustness of two subtypes and indicated better clus-
tering performance (Fig. 2C, Additional file 1: Fig. S1E, F, 
and G). For consensus clustering, ten independent clus-
tering algorithms refer the uniformity of the multi-omics 

Fig. 1 Schematic diagram of the study design. A The mRNA, lncRNA, miRNA, DNA methylation CpG sites, and mutation data from TCGA-CRC 
were systematically organized into comprehensive multi-omics data, which were utilized to identify two subtypes through integrated clustering 
algorithms. B The association of subtypes with prognoses, enrichment functions, immune status, and genomic alterations were further identified. 
C The risk model, constructed through WGCNA and Cox analysis, exhibited substantial concordance with the prognosis of multi-omics subtypes, 
and the functionality of the molecular marker MID2 in the risk model was validated

Fig. 2 Molecular subtypes clustering based on TCGA-CRC multi-omics data. A Prediction of optimal cluster number of multi-omics data 
by cluster prediction index and Gap-statistics. B Consensus heatmap for two cluster subtypes based on multi-omics data. C The Silhouette value 
quantify sample similarity based on two cluster subtypes. D Clustering of CRC patients via 10 leading-edge clustering methods. E Visualization 
of multi-omics data for mRNA, lncRNA, miRNA, DNA CpG methylation sites and mutant genes. F Differential overall survival outcome in two 
subtypes. G Differential disease-free survival in two subtypes, log-rank test

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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cluster and we further combined the clustering results 
via a consensus ensemble approach with “MOVICS” R 
package (Fig.  2D). The heatmap revealed distinct tran-
scriptomic, genomic, and epigenomic patterns, as well as 
clinicopathological features of two subtypes (Fig. 2E).

Moreover, the clinical outcomes of patients in the two 
subtypes were compared. The K-M plots illustrated that 
the patients in CS1 had worse prognoses than CS2 (OS: 
p < 0.0001; DFS: p = 0.00027; Fig.  2F, G). Table  1 shows 
the demographic features of CRC patients in the TCGA 
cohort. Notably, CS2 had more N0, T1–2, and I stage, 
while CS1 was associated with longer tumor dimen-
sion, with an average size of 1.38 ± 0.61 cm, compared to 
CS2 is 1.17 ± 0.50 cm (p < 0.001). And multivariable Cox 
regression analysis indicates that the impact of multi-
omics subtypes on survival is independent of other clin-
icopathological factors (Additional file 2: Fig. S2).

Gene set variation characters of different subtypes
Metabolic reprogramming was known to provide valu-
able insights into metabolic alterations and the mecha-
nisms of disease progression [26, 31]. In this study, we 
performed metabolic pathway analysis on each patient 
and observed that CS2 exhibited more metabolic path-
way enrichment compared to CS1. Specifically, key 
metabolic pathways, such as carbon metabolism, TCA 
cycle, amino acid metabolism, and fatty acid metabolism 
were upregulated in CS2, while only Glycosaminogly-
can biosynthesis-chondroitin sulfate and heparan sulfate 
were active in CS1, suggesting potentially differences in 
metabolic profile and energy utilization pattern between 
the two subtypes (Fig. 3A). To provide a comprehensive 
overview of the changes in gene expression, we con-
ducted ssGSEA by employing Hallmark gene sets that 
represent distinct biological states. Figure 3B shows that 
CS1 was significantly associated with various malignancy 
pathways, including epithelial–mesenchymal transition 
(EMT), angiogenesis, hypoxia, TCF-β, and Notch path-
ways. In terms of KEGG pathways enrichment, we found 
that CS1 was associated with cell adhesion and other 
biological characteristics that are indicative of cancer, 
such as ECM–receptor interaction, focal adhesion, cell 
adhesion molecules, PI3K–Akt, Rap1 signaling pathway, 
and so on. And in line with previous findings, CS2 was 
also enriched in the progression of cellular metabolism 
(Fig. 3C, D).

The effect of genetic alteration on subtypes
Gene mutations and copy number alterations are criti-
cal events in tumorigenesis and cancer progression. 
Therefore, we further conducted a deeper analysis 
on the mutation patterns of different subtypes, and 
identified genetic alterations that were specifically 

associated with each subtype. Waterfall plots revealed 
that several oncogenes and tumor suppressor genes 
are mutated in overall cohort. The waterfall plot and 
comparison forest plot showed that CS1 had rela-
tively more genes mutation than CS2. And CS1 had 
more TP53, TTN, SYNE1, and FAT3 mutation, while 
CS2 had more KRAS, RYR2, LRP1B, and SOX9 muta-
tion (Fig. 4A, B). Cross-comparisons showed that CS1 
had more TP53, CCDC136, PIK3R3, KCNA6 muta-
tion rate, and CS2 only had more PROKR1 mutation 
rate (Fig. 4C). In oncogene pathway mutation analysis, 

Table 1 The clinicopathological parameters of colorectal cancer 
patients in TCGA 

Subtype CS1 (n = 227) CS2 (n = 283) p

Age 64.71 ± 13.44 66.09 ± 12.53 0.236

Gender (%)

 Female 107 (47.1) 136 (48.1) 0.906

 Male 120 (52.9) 147 (51.9)

M stage (%)

 M0 160 (70.5) 208 (73.5) 0.654

 M1 37 (16.3) 39 (13.8)

 MX 28 (12.3) 31 (11.0)

 Unknown 2 (0.9) 5 (1.8)

N stage (%)

 N0 114 (50.2) 175 (61.8) 0.005

 N1 56 (24.7) 70 (24.7)

 N2 56 (24.7) 38 (13.4)

 NX 1 (0.4) 0 (0.0)

T stage (%)

 T1 5 (2.2) 14 (4.9) 0.001

 T2 24 (10.6) 66 (23.3)

 T3 168 (74.0) 176 (62.2)

 T4 30 (13.2) 26 (9.2)

 Tis 0 (0.0) 1 (0.4)

Stage (%)

 Stage I 25 (11.0) 66 (23.3) 0.008

 Stage II 82 (36.1) 97 (34.3)

 Stage III 74 (32.6) 73 (25.8)

 Stage IV 38 (16.7) 39 (13.8)

 Unknown 8 (3.5) 8 (2.8)

Cancer type (%)

 Colon adenocarcinoma 137 (60.4) 186 (65.7) 0.247

 Colorectal adenocarcinoma 2 (0.9) 0 (0.0)

 Mucinous adenocarcinoma 
of the colon and rectum

29 (12.8) 28 (9.9)

 Rectal adenocarcinoma 59 (26.0) 69 (24.4)

Longest dimension (cm) 1.38 ± 0.61 1.17 ± 0.50 0.001

Disease-free status (%)

 Disease free 133 (69.6) 209 (82.9) 0.001

 Recurred/progressed 58 (30.4) 43 (17.1)
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both two subtype have similar gene in these pathways 
been affected, while samples in CS1 have higher muta-
tion rates in RTK-RAS, WNT, Hippo, and TP53 path-
ways (Additional file  3: Fig. S3A, B). We also found 
that TVP23A, GIPC2, NRAS, RPL22, and KRAS were 
driver genes in CS1, and TMEM60, FAHD2B, ZNF365, 
and SHC1 were driver genes in CS2 through the plo-
tOncodrive function of the “maftools” R package 
(Additional file 3: Fig. S3C, D). 

Subsequently, we used the compMut and comp-
FGA function of “MOVICS” R package to investigate 

the difference of tumor mutation burden (TMB) and 
genome alteration between two subtypes. There was no 
significant difference in TMB between the two subtypes 
(p = 0.26), but CS1 had more copy number variations 
than CS2 (p < 0.1, Fig.  4D, E). CS1 had more genomic 
copy number amplification (p < 0.01), and CS2 had more 
copy number lost (p < 0.1, Fig.  4E). We used GISTIC2.0 
algorithm to identify recurrent SCNAs present in differ-
ent subtypes, Fig. 4F and G depict that CS1 had more fre-
quent copy number gains in chromosome regions 1q, 8q, 
13q and 20q, and CS2 had more losses in chromosome 
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regions 1p, 5q, 10q, 15p, and 21p. The co-mutation plot 
revealed most mutation genes are co-occurrence with 
others, except APC, TP53, and KRAS (Fig. 4H).

Tumor microenvironment landscape across CRC subtypes
Tumor microenvironment (TME) is a complex system 
consisting of various cell types, extracellular matrix, 
and signaling molecules that play critical roles in tumor 
development, progression, and metastasis. Therefore, 
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understanding the intricate crosstalk between tumor 
cells and the TME is essential to develop efficient can-
cer treatments. Previous results revealed that CS1 was 
highly enriched in Hallmark pathways related to immune 
response, such as interferon-α and interferon-γ response, 
IL-6/JAK/STAT3 signaling, IL2/STAT5 signaling and 
TNFA via NF-κB signaling (Fig. 3B). There were also sig-
nificant differences in cellular composition between the 
two subtypes. CS1 had relatively higher immune cells, 
such as dendritic cells (DC), macrophages, neutrophils, 
Th, Tfh, tumor-infiltrating lymphocytes (TILs), and 
Treg cells, which can drive and regulate T cell-mediated 
immune responses and interact with each other, while 
CS2 had more NK cells known as cytotoxic lympho-
cytes of the innate immune system (Fig. 5A) [32–34]. In 
terms of stromal cells, CS1 had more fibroblast, endothe-
lial cell, mesenchymal stem cell (MSC), and pericytes 
that can establish an inflammatory, immunosuppressive 
and pro-angiogenic microenvironment, while epithelial 
and plasma cell are more infiltrated in CS2 (Fig. 5B) [35, 
36]. In addition, we utilized ssGSEA to examine the dif-
ferences in immune function and found that most func-
tions, such as APC co-inhibition and co-stimulation, T 
cell co-inhibition, inflammation promoting, and type I/
II IFN response, are active in CS1 (Fig.  5C). Further-
more, we observed higher expression of immune check-
points (CD274, CTLA4, IDO1, LAG3, PDCD1, and 
PDCD1LG2) in CS1 compared to CS2 (Fig. 5D).

Then we employed several methods to predict the 
potential immunotherapy response of patients in differ-
ent subtypes. A web platform TIDE integrates large-scale 
omics data to predict immunotherapy response across 
various tumor types [28]. Therefore, we used TIDE to 
generate scores reflecting the likelihood of immuno-
therapy response based on transcriptomic data for each 
patient (Fig.  5E). The histogram showed that patients 
in CS2 exhibit a higher probability of responding to 
immunotherapy compared to those in CS1 (52% vs 24%, 
p = 5.904e−10, Fig. 5F). Subsequently, NTP method was 
used to predict the multi-omics subtypes of GSE78220 
and IMvigor210 cohorts, which provide both immu-
notherapy response information data and transcrip-
tional data for patients who underwent anti-PD1/PD-L1 
therapy [29, 30]. Then we compared the distribution 

of immunotherapy responses in the two subtypes of 
patients. While the Chi-square test did not demon-
strate statistical significance, Fig.  5G and H illustrate 
that patient in CS2 exhibited higher rates of immune 
complete and partial response (GSE78220: 38% vs. 66%, 
p = 0.1124; IMvigor210: 19% vs. 27%, p = 0.1192). These 
results indicate that patients in CS2 may be better suited 
for immunotherapy.

Extra validation for molecular subtypes in GEO cohorts
To validate the molecular subtypes identified through 
our multi-omics analysis, we included external CRC 
cohorts with transcriptome and follow-up information 
for further analysis. Three external cohorts (GSE39582, 
GSE17538, and GSE41258) were downloaded and pre-
pared for validation. Using the "limma" package, we 
identified the top 200 upregulated genes in CS1 and 
CS2 subtypes as their marker genes (Additional file  6: 
Table  S1) and applied the NTP method to determine 
the subtype of each patient in the validation cohorts 
(Fig. 6A–C). The prognostic predictions for CS1 and CS2 
were consistently observed across all three external GEO 
cohorts, providing robust validation for the molecular 
subtypes identified in our study (GSE39582: OS p = 0.019, 
DFS p = 0.011; GSE17538: OS p = 0.0024, DFS p = 0.0035; 
and GSE41258: OS p = 0.037, Fig. 6D–H).

Construction of a prognostic model for multi‑omics 
molecular subtype
To enhance the clinical application of the molecular 
subtype, we aimed to construct a prognostic model for 
predicting patient outcomes. We utilized the WGCNA 
to investigate the relationship between gene modules 
and patient subtypes. Specifically, we constructed gene 
co-expression networks using the expression profiles of 
CRC patients, setting β at 8 to ensure scale-free networks 
(Fig.  7A). We then transformed the adjacency matrix 
into a topology matrix and used the average-linkage 
hierarchical clustering method to cluster genes, setting 
the minimum number of genes in each network module 
to 30. Next, we merged similar gene modules using the 
dynamic cut tree method, which resulted in 24 distinct 
modules (Fig. 7B). This analysis allowed us to identify the 
gene modules most closely associated with the molecular 

(See figure on next page.)
Fig. 5 Comparison of immune status across two subtypes. A The boxplot of immune cell infiltrations across two subtypes. B The boxplot of stroma 
cell infiltrations across two subtypes. C The boxplot of immune functions across two subtypes. D The boxplot of the expression of immune 
checkpoints across two subtypes. E The score of immunotherapy response predicted by the TIDE method. F The distribution of immunotherapy 
responders and non-responders across two subtypes. G The distribution of immunotherapy response across the nearest template prediction 
(NTP) predicted subtypes based on GSE78220 cohort. H The distribution of immunotherapy response across the NTP predicted subtypes based 
on IMvigor210 cohort
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subtype, providing a basis for the development of a 
robust risk model.

We further calculated the correlations between each 
module and the subtypes, and found that the brown 
module had the strongest positive correlation with CS1 
and negative correlation with CS2 (Fig.  7C). Next, we 
performed univariate Cox regression analysis on the 1260 
genes in the brown module and identified 44 genes with 

statistical prognostic significance (p < 0.01). To reduce 
the number of genes and solve multicollinearity prob-
lems, we performed LASSO analysis and established a 
5-gene prognostic model (Fig. 7D). The final prognostic 
model is as follows: Risk Score = 0.323 * MID2 + 0.261 * 
THBS3 + 0.243 * NUMBL + 0.276 * TMEM88 − 0.330 * 
MRPL37 (Fig.  7E). The CRC patients were then divided 
into low- and high-risk groups based on the median risk 
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score. And the consistency of the risk model and molec-
ular subtypes was confirmed by the Sankey plot, which 
showed that CS1 was mainly in the high-risk group and 
CS2 was in the low-risk group (Fig. 7F). Finally, the K-M 
survival curve demonstrated a significantly lower sur-
vival rate in the high-risk group compared to the low-risk 
group (p < 0.0001, Fig. 7G), indicating a significant differ-
ence in prognosis between the two groups.

MID2 was involved in EMT function in CRC cells
We observed that MID2, which in previous risk model 
(Fig.  7E), is a stage-dependent gene, with its expression 
increasing with CRC stage progression (Fig.  8A). Fur-
thermore, the functional analysis of MID2-related genes 
using Hallmark gene sets demonstrated a remarkable 
enrichment in the EMT pathway, with the highest level 
of significance (Fig. 8B, Additional file 4: Fig. S4). Given 
our focus on multi-omics research, MID2 displayed a low 
mutation rate, prompting an investigation into its rela-
tionship with DNA methylation. Additional file  5: Fig. 
S5A indicates that the methylation levels of MID2 CpG 
sites are not significantly correlated with its expression. 
Then we explored whether MID2 serves as an upstream 
regulator of DNA methylation. Additional file  5: Fig. 
S5B reveals a significant correlation between MID2 and 
DNA methyltransferase. Additionally, principal compo-
nent analysis indicates different DNA methylation sites 
between high and low MID2 expression groups (Addi-
tional file  5: Fig. S5C). Previous literatures report the 
association between DNA methylation in CpG islands 
and EMT in diseases [37, 38], which implied that the 
effects of MID2 on cancer progress may be associated 
with DNA methylation.

Furthermore, we sought to validate the function of 
MID2 in CRC and confirm the relationship between 
MID2 and EMT function. Plasmids were used to knock-
down the expression of MID2 in SW480 and HCT116 
cells. The knockdown efficiency was verified through 
western blot analysis (Fig. 8C). And the results revealed 
that the knockdown of MID2 led to upregulation of 
E-Cadherin and downregulation of N-Cadherin and 
vimentin (Fig.  8C), which are associated with a mesen-
chymal phenotype. In addition, we performed the colony 
formation assay to validate the effect of MID2 on CRC 

cells proliferation. Figure  8D shows that CRC cells with 
sh-MID2 had a significantly reduced colony formation 
capacity compared to cells with sh-NC. Additionally, 
because EMT is a critical regulator pathway of tumor 
invasiveness, we assessed the effect of MID2 on cell 
migration and invasion using transwell assays. As dis-
played in Fig. 8E and F, knockdown of MID2 significantly 
inhibited the migration and invasion ability of CRC cells. 
These findings suggest that MID2 plays a crucial role in 
the progression of CRC.

Discussion
CRC is a highly lethal malignancy and ranks as the sec-
ond leading cause of cancer-related mortality world-
wide [1]. Recent advancements in high-throughput 
biochemical technologies have facilitated the accumula-
tion of multi-omics data, enabling the identification of 
molecular mechanisms underlying various cancer types. 
The progression of CRC from colonic epithelium to the 
development of precancerous polyps, adenomas, and 
ultimately adenocarcinomas is accompanied by mul-
tiple gene mutation, DNA methylation alterations and 
gene expression changes [39]. Furthermore, it has been 
observed that early-onset CRC exhibits distinct epig-
enomic, transcriptomic, proteomic, and metabolic fea-
tures when compared to late-onset CRC [11, 40]. These 
findings emphasize the therapeutic and prognostic value 
of integrating multi-omics data in CRC. In this study, by 
integrating multiple omics data sets with ten clustering 
methods, we report two refined and extensively validated 
CRC subtypes associated with distinct prognosis and 
molecular characteristics.

In our analysis, CS1 was characterized by poor progno-
sis and malignant phenotype, such as enriched function 
of the tumor-related Hallmark pathways, higher genomic 
alterations, and poor response to immunotherapy. 
Among the upregulated genes in CS1 (Additional file 6: 
Table S1), SFRP2 and SFRP4 are Wnt-regulator and can 
modulate the differentiation of cancer-associated fibro-
blasts (CAFs), which contribute to the progression and 
metastasis of the tumor [41–43]. And CAFs can drive 
FN1, COMP to regulate tumor metastasis and stemness 
in hepatocellular carcinoma [44, 45]. For CS2 upregulated 
gene, ZG16 exhibited a sequential decrease from normal 

Fig. 8 Validation the function of MID2 in CRC cell lines. A The expression level of MID2 in different stages of CRC patients. B GSEA analysis 
demonstrates enrichment of MID2-related genes in the epithelial–mesenchymal transition (EMT) pathway. C SW480 and HCT116 cells were 
transfected with plasmid carrying sh-NC or sh-MID2. The protein level of MID2 and EMT biomarkers were assessed using western blotting. D Colony 
formation assay to evaluate the effect of MID2 knockdown on the proliferation of CRC cells. E–F Representative images and the comparison of cell 
migration and invasion ability demonstrated by transwell assay between sh-NC and sh-MID2 cells based on SW480 (E) and HCT116 (F) cell lines. The 
scale bar represents100 μm. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and two-tailed unpaired t-test)

(See figure on next page.)
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to adenoma, and finally to carcinoma in CRC [46]. Fur-
thermore, ZG16 inhibits PD-L1 expression and promote 
T cell-mediated immunity [47, 48]. And CS2 upregulated 
gene ITLN1 serve as tumor suppressor factor in various 
cancers [49]. Besides, we also found ZG16 and ITLN1 
were associated with carbohydrate and fat metabolism 
[50, 51], which is consistent with CS2 enriched in multi-
ple metabolism pathways (Fig. 3A).

It is well known that somatic mutations are present in 
the genomes of all cancers [52]. Although there was no 
difference in TMB across the two subtypes, genomic 
alteration analyses revealed that CS1 had more muta-
tion genes and CNV than CS2. As shown in Fig. 4H, gene 
mutations are co-occurrence in CRC, and more synchro-
nization mutation genes are present in the CS1 group 
(Fig. 2E). And one subtype of triple-negative breast can-
cer has poor prognosis with high chromosomal instabil-
ity and highly recurrent CNAs [53]. Since various DNA 
mutagenic-repair events result in gene mutations and 
CNV [54, 55], tumors with more genomic alteration 
are suggest phenotypic malignancy and lead to a poor 
prognosis.

We analyzed immunotherapy responses across differ-
ent subtypes based on the TIDE web platform and two 
external independent immunotherapy cohorts. These 
results implied that patients in CS2 may derive increased 
benefits from immunotherapy, providing valuable 
insights to guide clinical drug application. Since it is not 
convenient to derive the classification from multi-omics 
data, utilizing transcriptomic data to stratify patients in 
clinical applications is recommended. For patients iden-
tified in CS2 using the NTP approach or classified as 
low-risk based on the prognostic model in Fig. 7E, immu-
notherapy is recommended for the higher response rates.

The WGCNA method uses an unbiased systematic 
approach to analyze biological problems [56], which 
allows for the construction of gene co-expression net-
works to help identify candidate biomarkers or thera-
peutic targets for various diseases [57]. To facilitate 
the application of the subtypes to clinical practice, we 
utilized WGCNA to identify gene modular associated 
with the multi-omics subtypes and constructed a five-
gene prognosis model using Cox and LASSO regression 
analyses. The Sankey plot demonstrated the coincidence 
of the risk groups with multi-omics subtypes (Fig. 7F). 
In addition, we found that the expression of MID2 in 
the prognosis model increase along with tumor stage 
progression and was significantly associated with EMT 
function. MID2, which was firstly identified as a causa-
tive gene of the X-linked form of a genetic disorder, is 
a ubiquitin-conjugating E3 enzyme and can regulate 
cytokinesis [58, 59]. In breast cancer, MID2 is upregu-
lated and mediates tumor chemoresistance [60, 61]. In 

this study, in vitro experiments proved that MID2 can 
mediate the proliferation, migration, and invasion abili-
ties of CRC cells, which consistent with the function 
of MID2 in neural crest cells and previous in silicon 
results [62]. These results suggest that MID2 is associ-
ated with tumor progression and could be a therapeutic 
target for CRC.

Our research had some limitations. First, the multi-
omics subtypes in this study were based on bioinfor-
matic analysis, which needs more time and research to 
transform into common medical technology. Second, 
the metabolomics and proteomics data are also criti-
cal to understanding cancer, these data might refine the 
result of multi-omics data analysis. Third, we prelimi-
nary validated the biological function of MID2 in CRC, 
and its detailed molecular mechanisms on EMT func-
tion and DNA methylation require future studies.

Conclusion
In conclusion, our study employed multi-omics data to 
classify CRC into two subtypes, which were associated 
with distinct prognoses, enrichment functions, immune 
microenvironmental characteristics, and altered 
genomic profiles. Additionally, to facilitate the wide-
spread use of the multi-omics subtypes, a prognostic 
model based on five genes was constructed that showed 
strong agreement with the multi-omics subtypes. 
Besides, through in vitro experiments, we validated the 
role of MID2, one of the genes in the prognostic model, 
in promoting EMT function and invasiveness of  CRC 
cells.
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