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Abstract 

Background  Previously identified phenotypes of acute respiratory distress syndrome (ARDS) could not reveal 
the dynamic change of phenotypes over time. We aimed to identify novel clinical phenotypes in ARDS using trajecto-
ries of fluid balance, to test whether phenotypes respond differently to different treatment, and to develop a simpli-
fied model for phenotype identification.

Methods  FACTT (conservative vs liberal fluid management) trial was classified as a development cohort, joint latent 
class mixed models (JLCMMs) were employed to identify trajectories of fluid balance. Heterogeneity of treatment 
effect (HTE) for fluid management strategy across phenotypes was investigated. We also constructed a parsimonious 
probabilistic model using baseline data to predict the fluid trajectories in the development cohort. The trajectory 
groups and the probabilistic model were externally validated in EDEN (initial trophic vs full enteral feeding) trial.

Results  Using JLCMM, we identified two trajectory groups in the development cohort: Class 1 (n = 758, 76.4% 
of the cohort) had an early positive fluid balance, but achieved negative fluid balance rapidly, and Class 2 (n = 234, 
24.6% of the cohort) was characterized by persistent positive fluid balance. Compared to Class 1 patients, patients 
in Class 2 had significantly higher 60-day mortality (53.5% vs. 17.8%, p < 0.001), and fewer ventilator-free days (0 vs. 
20, p < 0.001). A significant HTE between phenotypes and fluid management strategies was observed in the FACTT. 
An 8-variables model was derived for phenotype assignment.

Conclusions  We identified and validated two novel clinical trajectories for ARDS patients, with both prognostic 
and predictive enrichment. The trajectories of ARDS can be identified with simple classifier models.
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Introduction
Acute respiratory distress syndrome (ARDS) is a heter-
ogenous syndrome characterized by acute hypoxic res-
piratory failure that can be caused by a wide variety of 
insults [1]. The diverse populations, multiple etiologies, 
and a broad definition lend to the clinical heterogene-
ity of ARDS, which might explain the absence of benefit 
in most randomized controlled trials (RCTs) assessing 
various treatment strategies [2]. Identification of specific 
ARDS phenotypes could lead to more positive clinical 
trials and personalized ARDS management.

Several ARDS phenotypes have been documented [3]. 
Using clinical data from negative RCTs of ARDS, two 
phenotypes have been identified. Compared to patients 
with the hypo-inflammatory phenotype, those with the 
hyper-inflammatory phenotype had higher levels of pro-
inflammatory biomarkers and poorer outcomes, sub-
sequent analyses demonstrated that patients with the 
hyper-inflammatory phenotype could benefit more from 
higher positive end-expiratory pressure (PEEP) and con-
servative fluid strategy [4, 5]. However, these phenotypes 
do not capture the complexity and diversity of ARDS, 
and, because they are based on data collected within the 
first day do not reveal dynamic changes in the patients’ 
conditions over time.

Daily fluid balance is a dynamic variable that changes 
throughout the course of a patient’s illness, and varies 
across patients. Cumulative positive fluid balance was 
associated with increased duration of mechanical ventila-
tion (MV) and mortality in ARDS patients, presumably 
as a marker of worsening pulmonary edema, deteriorat-
ing organ function and respiratory mechanics [6–8], 
and conservative fluid management was associated with 
improved organ function and decreased intensive care 
unit (ICU) length of stay [9]. However, persistent nega-
tive fluid balance could induce acute circulatory failure in 
patients with sepsis related ARDS. We assumed that the 
trajectories of fluid balance indicate the dynamic change 
of illness over time, which might be a helpful to classify 
dynamic phenotypes of ARDS patients in clinical.

Therefore, we designed a secondary analysis to iden-
tify trajectories of fluid balance in ARDS patients. We 
hypothesized that each of trajectory groups would have 
different demographics, physiological characteristics, 
mortality rate, and most importantly, respond differently 
to treatments. We also aimed to derive and validate a 
simplified probabilistic model for phenotype assignment.

Methods
Study design and participants
Patients for this secondary analysis were drawn from 
two randomized clinical trials from the National Heart, 
Lung, and Blood Institute (NHLBI) ARDS Network: 

FACTT (conservative vs liberal fluid management) [10], 
and EDEN (initial trophic vs full enteral feeding) [11]. 
The study designs and patient characteristics were avail-
able in the original reports. Briefly, FACTT cohort com-
prised 1000 adult patients with ARDS between 2000 and 
2005, and was classified as a development cohort in the 
present study. We used the EDEN cohort which enrolled 
1000 adult patients with ARDS admitted to 44 hospitals 
between 2008 and 2011 as an external validation cohort. 
Patients in both RCTs were all intubated and received 
invasive MV. We excluded patients who had no data of 
fluid balance within 7 days after randomization.

All data were obtained and approved by Biologic 
Specimen and Data Repository Information Coordinat-
ing Center (BioLINCC, https://​bioli​ncc.​nhlbi.​nih.​gov). 
STROBE recommendations were followed.

Data collection and outcomes
The detail of data collection is presented in the supple-
ment. The primary outcome in the FACTT cohort was 
60 days mortality, and was ventilator-free days (VFDs) to 
28 days in the EDEN cohort (details in Additional file 1).

Phenotype derivation
In the development cohort, joint latent class mixed mod-
els (JLCMM) was used to identify novel phenotypes 
based on daily fluid balance (D0–D7). JLCMM considers 
the population of subjects as heterogeneous, and assumes 
that it consists of homogeneous latent subgroups of sub-
jects that share the same marker trajectory (fluid bal-
ance) and the same risk of the event (mortality) (details 
in Additional file  1) [12]. Based on the previous studies 
identified two to four phenotypes in sepsis and ARDS 
cohorts, we estimated models ranging from two to five 
classes [13, 14]. The best-fit GBTM model was selected 
based on the Bayesian information criterion (BIC), and 
the minimum number of patients should be over 5% of 
the entire study population [15]. The trajectories of fluid 
balance were also validated in the EDEN cohort.

Statistical analyses
Values are presented as proportions for categorical 
variables and means (standard deviations) or medians 
[interquartile ranges (IQRs)] for continuous variables. 
For comparisons, we used analysis of variance and the 
Kruskal–Wallis test for continuous data and the X2 test 
for categorical data.

We first compared 28-day mortality of patients in the 
different phenotypes in the development cohort with 
Kaplan–Meier curves and log-rank tests; we also per-
formed a multivariate Cox regression model to explore 
the relationship between phenotypes and the 28-day 
mortality, and adjusted for age, sex and body mass index 

https://biolincc.nhlbi.nih.gov
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(BMI).To avoid bias induced by missing data (Additional 
file 1: Tables S1, S5), we imputed the missing data prior to 
Cox regression.

Heterogeneity of treatment effect (HTE) was evaluated 
by the interaction test to determine if treatment effects 
were differential across phenotypes in FACTT and EDEN 
cohort, respectively. HTE was assessed by the interaction 
term (class × treatment strategy) of the Cox regression for 
mortality and Poisson regression for VFDs.

We also attempted to construct a parsimonious model 
to predict phenotypes using baseline variable (D0). Gra-
dient boosted model (GBM) was used to identify the 
most critical classifier variables, and we further selected 
the top eight variables to construct a phenotype predic-
tion model using GBM. The ability of the final model to 
predict the phenotypes as identified by calculating the 
area under the receiver operating characteristic curves 
(AUROC).

Lastly, to investigate whether we can detect a differen-
tial effect of treatment when phenotype is defined by the 
prediction model rather than the JLCMM, we repeat the 
HTE analysis using the phenotypes as defined by the pre-
diction model.

The p-value was calculated to evaluate the differences 
between phenotypes, and p < 0.05 was considered statis-
tically significant. All statistical analyses were performed 
using R (version 4.0.3).

Results
Derivation of fluid balance trajectories of ARDS in FACTT 
cohort
The development cohort consisted of 992 ARDS patients 
from FACTT cohort. Using JLCMM, a model with two 
distinct trajectory groups were identified and had the 
optimal fit (Fig. 1A, Additional file 1: Table S2). Class 1 
(n = 758, 76.4% of the cohort) had an early positive fluid 
balance, but achieved negative fluid balance rapidly, and 
Class 2 (n = 234, 24.6% of the cohort) was characterized 
by persistent positive fluid balance.

Baseline patient characteristics for the two phenotypes 
are presented in Table 1 and Fig. 2. Compared to patients 
in Class 1, patients in Class 2 had higher respiratory rate, 
blood urea nitrogen, and creatinine, but lower mean arte-
rial blood pressure, bicarbonate and platelet. There were 
statistically significant differences in vasopressor use and 
in ARDS risk factors between the two phenotypes. Nota-
bly, patients classified within Class 2 exhibited a higher 
incidence of vasopressor requirement and were more 
commonly diagnosed with sepsis upon study enrollment.

Comparisons of clinical outcomes between phenotypes
In the FACTT cohort, patients assigned to Class 2 
had significantly higher 60-day mortality (53.5% vs. 

17.8%, p < 0.001), and fewer ventilator-free days (0 vs. 
20, p < 0.001) compared to patients assigned to Class 1 
(Table 1). Kaplan–Meier survival curves also showed the 
60-day mortality was highest in Class 2 patients com-
pared to Class 1 patients (p < 0.001) (Fig. 1C).

Heterogeneity of treatment effect within phenotypes 
in the FACTT cohort
We detected a significant interaction between pheno-
types and fluid management strategy on 60-day mortality. 
Specifically, mortality among Class 1 patients was 18.2% 
with fluid conservative strategy compared to 17.0% with 
the fluid liberal strategy. While mortality among Class 2 
patients was 69.8% with the fluid conservative strategy 
compared to 47.9% with the fluid liberal strategy (p for 
interaction = 0.033) (Table 2; Fig. 3). No significant HTE 
was observed for ventilator-free days.

Parsimonious probabilistic model can identify trajectory 
of fluid balance
The most important classifier variables for predict-
ing phenotypes are shown in Additional file  1: Fig.  S1. 
The top eight variables were blood urea nitrogen, BMI, 
albumin, fluid balance within 24  h prior to randomiza-
tion, central venous pressure, P/F ratio, peak pressure 
and chlorine, which were further utilized to construct 
the prediction model. The probabilistic model had an 
AUROC of 0.80 (95% CI 0.77–0.83)(Additional file 1: Fig.
S2). Using Youden’s index, we found that the model iden-
tified Class 1 with greater accuracy as compared to Class 
2 in the FACTT cohort (Additional file 1: Table S3).

We further explore the utility of the probabilistic 
model, we re-analyze the HTE between fluid manage-
ment strategy and phenotypes as identified by this model, 
although mortality among Class 2 patients was 69.1% 
with the fluid conservative strategy compared to 48.3% 
with the fluid liberal strategy, the interaction was not sta-
tistically significant (p for interaction = 0.07) (Additional 
file 1: Table S4).

Validation of phenotypes and the probabilistic model 
in EDEN cohort
The validation cohort consisted of 998 ARDS patients 
from EDEN cohort. Similar to the development set, two 
distinct trajectory groups were identified using JLCM 
(Fig.  1B; Additional file  1: Table  S6): Class 1 (n = 790, 
79.2% of the cohort) and Class 2 (n = 208, 20.8% of the 
cohort). The baseline characteristics for patients in the 
two phenotypes of the validation cohort are summarized 
in Additional file 1: Table S7. Patients assigned to Class 
2 had significantly fewer ventilator-free days (0 vs. 21, 
p < 0.001), and higher 60-day mortality (36.5% vs. 18.9%, 
p < 0.001) (Fig. 1D). No significant HTE was observed in 
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the EDEN cohort (Additional file 1: Table S8). Similar to 
the development set, the probabilistic model identified 
Class 1 with greater accuracy as compared to Class 2 in 
the EDEN cohort (Additional file 1: Table S9).

Discussion
The novel findings of our analyses can be summarized 
as follows. First, based on the trajectories of daily fluid 
balance, we identified two novel clinical trajectories of 
ARDS with different demographics, physiological char-
acteristics, and mortality. Second, patients with different 

fluid trajectories of ARDS responded differently to fluid 
management strategy. Third, we developed a simplified 
probabilistic model to predict phenotypes of ARDS, and 
which is also potentially applicable to another cohort. 
These findings indicate that identify and target distinct 
dynamic phenotypes of ARDS might be fundamentally 
important in future ARDS clinical trials.

Clinical phenotypes have been described for patients 
with ARDS, and could lead to more personalized man-
agement strategies. However, these phenotypes based 
only on cross-sectional data collected within 1  day, 

Fig. 1  Derivation of phenotypes of ARDS based on joint latent class mixed model (JLCMM) and clinical outcomes between phenotypes. 
Using JLCMM, two phenotypes were identified in the development (A) and validation (B) cohorts, C shows the Kaplan–Meier survival curves 
to day 60 according to phenotypes in the development cohort. D Shows the Kaplan–Meier survival curves to day 60 according to phenotypes 
in the validation cohort
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while the phenotypes might be dynamic and change 
throughout the course of a patient’s illness. A retro-
spective study divided septic patients into four illness 
categories based on severity of laboratory and vital 
sign abnormalities, and declared that almost 60% of the 

septic patients changed their illness category at least 
once during hospitalization [16]. To our best knowl-
edge, whether the phenotypes of ARDS are dynamic 
and follow distinct trajectories over time have never 
been explored.

Table 1  Comparison of baseline characteristics and outcomes between two phenotypes in FACTT cohort

BMI body mass index, ARDS acute respiratory distress syndrome, APACHE III Acute Physiology and Chronic Health Evaluation III, PBW predicted body weight, PEEP 
positive end-expiratory pressure, PaCO2 partial pressure of carbon dioxide, PaO2 partial pressure of oxygen, FiO2 fraction of inspired oxygen, MAP mean arterial blood 
pressure, CVP central venous pressure, BUN blood urea nitrogen, VFD ventilator-free day

Characteristics All (n = 992) Trajectories of fluid balance

Class 1 (n = 758) Class 2 (n = 234) p value

Age (years) 49 (38, 60) 47 (37, 59) 54 (41, 65)  < 0.001

Male (gender), n (%) 532 (53.6) 393 (51.8) 139 (59.4) 0.0051

BMI (kg/m2) 27.3 (23.2, 32.5) 27.7 (23.9, 32.9) 25.7 (21.6, 31.1)  < 0.001

ARDS primary risk factor, n (%)  < 0.001

 Pneumonia 469 (47.3) 349 (46) 120 (51.3)

 Sepsis 230 (23.2) 160 (21.1) 70 (29.9)

 Aspiration 148 (14.9) 127 (16.8) 21 (9)

 Other 145 (14.6) 122 (16.1) 23 (9.8)

Charlson comorbidity index 0 (0, 2) 0 (0, 2) 1 (0, 3) 0.031

APACHE III 91 (71, 116) 87 (66, 109) 105 (86, 129)  < 0.001

Severity of ARDS at baseline, n (%) 0.003

 Mild 207 (21.7) 157 (21.5) 50 (22.5)

 Moderate 496 (52) 400 (54.7) 96 (43.2)

 Severe 250 (26.2) 174 (23.8) 76 (34.2)

Parameters of mechanical ventilation in the first 24 h

 Respiratory rate (breaths min−1) 25 (20, 31) 24 (19, 30) 27 (21, 32)  < 0.001

 Tidal volume (mL/kg PBW) 6.2 (6.0–7.4) 6.3 (6.0–7.6) 6.1 (6.0–7.3) 0.816

 Minute ventilation (L/min) 11.9 (9.5, 14.7) 11.6 (9.34, 14.3) 13 (9.9, 15.6)  < 0.001

PEEP (cmH20) 10 (8, 12) 10 (8, 12) 10 (8, 12) 0.446

Plate Pressure (cmH20) 25 (21, 29) 25 (21, 29) 26 (21, 29) 0.393

Driving pressure (cmH20) 15 (12, 18) 15 (12, 18) 15 (12, 19) 0.71

Mechanical power (J/min) 23.2 (16.7, 32.3) 22.6 (16.6, 31.6) 25.9 (17.3, 34.3) 0.012

PaCO2 (mmHg) 39 (34, 45) 39 (34, 45) 39 (32, 45) 0.089

PaO2/FiO2 ratio (mmHg) 140 (99, 193.) 144 (103, 193) 128 (90, 193) 0.014

Vasopressor use in the first 24 h, n (%) 325 (32.8) 223 (29.4) 102 (43.6)  < 0.001

Vital signs in the first 24 h

 Heart rate (beats min−1) 102 (87, 117) 100 (86, 115) 107 (91, 120) 0.002

 MAP (mmHg) 75 (67, 86) 76 (68, 87) 71 (65, 82)  < 0.001

 CVP (mmHg) 12 (9, 15) 11 (8, 14) 12 (9, 15) 0.044

 Temperature (℃) 37.5 (36.9, 38.2) 37.6 (36.9, 38.2) 37.4 (36.6, 38.3) 0.129

Laboratory data in the first 24 h

 pH 7.37 (7.3, 7.43) 7.37 (7.31, 7.43) 7.36 (7.27, 7.41) 0.007

 BUN (mg/dL) 18 (12, 29.25) 16 (11, 26) 24 (16, 43)  < 0.001

 Creatinine (mg/dL) 1 (0.7, 1.5) 0.9 (0.7, 1.4) 1.3 (0.8, 1.9)  < 0.001

 Bicarbonate (mmol/L) 22.2 (19, 26) 23 (19, 26) 21 (17, 25)  < 0.001

 Platelet (× 109/L) 183 (106, 261) 188 (110, 263) 164 (92, 249) 0.028

Fluid balance in the first 24 h (L) 1.91 (0.43, 4.29) 1.85 (0.34, 3.88) 2.28 (0.83, 5.10) 0.001

Alive and VFDs at day 28 (days) 18 (0, 23) 20 (10, 23) 0 (0, 16)  < 0.001

60-day mortality, n (%) 261 (26.3) 135 (17.8) 126 (53.8)  < 0.001
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In our study, using JLCMM, we discovered and vali-
dated two groups of ARDS patients that follow distinct 
trajectories of fluid balance, and with both prognostic 

and predictive enrichment. Similar approach has been 
used in limited studies. According to 986 patients with 
septic shock, Wang et  al. [17] identified three latent 

Fig. 2  Standardized mean differences between three two trajectory phenotypes in the development cohort. The continuous variables are 
standardized such that all means are scaled to 0 and SDs to 1. BUN blood urea nitrogen, MP mechanical power, FiO2 fraction of inspired oxygen, 
PaO2 partial pressure of oxygen, DP driving pressure, PaCO2 partial pressure of carbon dioxide, P/F ratio partial pressure of oxygen/ fraction 
of inspired oxygen ratio, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial pressure

Table 2  Differences in response to fluid management strategy by phenotypes (FACTT cohort)

Fluid-management strategy Class 1 (n = 758) Class 2 (n = 234) p value for 
interaction

Conservative 
(n = 435)

Liberal (n = 323) Conservative 
(n = 63)

Liberal (n = 171)

60-day mortality, n (%) 18.2 17.0 69.8 47.9 0.033

Ventilator-free days, days 21 (12, 24) 19 (10, 23) 0 (0, 10) 0 (0,16) 0.106
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fluid balance trajectories using GBTM, which included 
decreased, low and high fluid balance, and the decreased 
Fluid Balance trajectory was associated with a low risk of 
hospital mortality. A prospective study also showed the 
trajectories of fluid balance in patients undergoing car-
diac and aortic surgery, which were significantly associ-
ated with risk of acute kidney injury and dialysis [18].

We choose fluid balance to classify ARDS patients for 
a few reasons. First, fluid balance was associated with 
clinical outcomes in ARDS. An observational cohort 
study showed that ARDS patients with a higher cumu-
lative fluid balance on day 7 had a longer length of ICU 
stay and shorter VFDs, further analysis found that a 
more positive fluid balance predicted mortality and a 
negative fluid balance indicated a trend towards sur-
vival [6]. Another study declared that time-varying fluid 
balance predict the 6-month death in ARDS patients 
[19]. Second, fluid balance or fluid overload might 
influence the respiratory mechanics. Compared to the 
liberal fluid strategy in ARDS, patients in the conserva-
tive group had a better oxygenation, lung compliance, 
and a lower plateau pressure during MV within the first 
7  days after randomization [10]. We also found that 
patients in Class 2 (persistent positive fluid balance) 
were accomplished with higher mechanical power, res-
piratory rate and lower P/F ratio. Third, positive fluid 
balance was correlated with excessive inflammation in 
ARDS. Based on pediatric patients with ARDS, a pro-
spective observational study demonstrated that day 1 
plasma interleukin-6 levels were associated with the 

development of day 3 positive cumulative fluid bal-
ance [20]. Although the inflammatory biomarkers were 
not measured in present study, but because patients in 
Class 2 presented with persistent positive fluid balance 
and high proportion of vasopressor use, we hypoth-
esized that Class 2 patients were concomitant with an 
excessive persistent inflammatory status. Future studies 
need to investigate the direct correlations between fluid 
balance trajectories and inflammation.

Classification of patients into phenotypes is aimed 
to design personalized treatment strategies. The origi-
nal FACTT trial found no difference in 60-day mortal-
ity between conservative and liberal fluid management 
[21]. After that, Famous et al. discovered that the con-
servative strategy was associated with improved mor-
tality in patients with hyperinflammatory phenotype 
but had the opposite effect in patients with hypoinflam-
matory phenotype [5]. Similar to the previous study, 
we declared that fluid management strategies had no 
effect in Class 1 patients, while Class 2 patients can 
particularly benefit from the liberal fluid strategy. As 
we discussed above, Class 2 may represent a persistent 
inflammatory response and organ failure, which was 
similar to the hypoinflammatory phenotype.

Our study is the first to identify four novel dynamic 
clinical phenotypes of ARDS using trajectories of fluid 
balance in NHLBI ARDS Network datasets, and validated 
in a separate cohort. In addition, both the two cohorts 
represent a large sample size for ARDS clinical trials. 
This study also has important limitations. First, although 

Fig. 3  Interaction between phenotypes and fluid management strategy on 60-day mortality in FACTT cohort. A The effect of fluid management 
strategy on 60-day mortality in patients assigned to Class 1; B The effect of fluid management strategy on 60-day mortality in patients assigned 
to Class 2



Page 8 of 9Wu et al. European Journal of Medical Research          (2024) 29:299 

we identified and validated the fluid balance trajectories 
in two separate cohorts, several factors might affect the 
fluid balance trajectories [22], such as the missing data, 
the use of diuretic and renal replacement therapy. Mean-
while, whether these two phenotypes persist in the real-
world clinical setting remains unclear. Future researches 
need to explore the generalization of fluid balance tra-
jectories in addition ARDS cohorts. Second, although 
numerous studies declared the deteriorating effect of 
positive fluid balance, the fluid balance targets are typi-
cally set during clinical rounds and monitored closely, 
which may reflect the quality of clinical decision-making 
and execution rather than the illness state itself. Third, 
our study represents a secondary analysis of randomized 
controlled trials, where potential imbalances in baseline 
characteristics may exist between conservative and lib-
eral fluid management strategies across the identified tra-
jectory groups. Additionally, the use of trajectory-based 
phenotypes in treatment effect analysis could potentially 
introduce bias. Further investigation is essential to com-
prehensively evaluate the effects of this methodology on 
the heterogeneity of treatment effects. Finally, we devel-
oped a simplified probabilistic model to predict the fluid 
balance trajectories, but the predictive value is relatively 
low in certain trajectory, which might limit its clinical 
utility. The main interpretation is that the fluid balance 
trajectories are dynamic, the predictive value of static 
values is limited. Future study needs to construct a more 
simplified and dynamic model to differentiate fluid bal-
ance trajectories.

Conclusion
In conclusion, the secondary analysis of FACTT and 
EDEN has discovered two novel fluid balance trajec-
tory phenotypes of ARDS patients. In FACTT, patients 
with persistent positive fluid balance could benefit more 
from liberal fluid strategy. We also developed a sim-
plified probabilistic model for patient assignment to 
phenotypes.
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