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Abstract 

Background PCD-related long non-coding RNAs (PRLs) are rarely investigated in relation to clear cell renal carcinoma 
(ccRCC). As part of this study, we evaluated the immunological potential of PRL signatures as a biomarker for ccRCC 
prognosis and immunological function.

Materials and methods Data were downloaded from the International Cancer Genome Consortium (ICGC) and The 
Cancer Genome Atlas (TCGA) databases. A Pearson correlation analysis was conducted on the 27 PCD-associated 
genes to determine whether lncRNAs were significantly associated with PCD. Kaplan–Meier analysis, biological func-
tion identification, immune infiltration analysis, estimation of efficacy of immunotherapy and targeted drug screening, 
and exploration of the landscape of mutation status were conducted by analyzing the risk scores.

Results Seven PRLs, LINC02747, AP001636.3, AC022126.1, LINC02657, LINC02609, LINC02154, and ZNNT1, were used 
to divide patients with ccRCC into groups with high and low risk. High-risk patients had a worse prognosis than low-
risk patients, according to the results, and the PRL signature showed promising predictive ability. More immune cells 
were clustered in the high-risk group, whereas the immune cell function of the low-risk group was significantly sup-
pressed. The high-risk group was less sensitive to immunotherapy, whereas the low-risk group had positive responses 
to most drugs.

Conclusions Collectively, we established and verified a PRL signature that could competently guide the prog-
nostic survival and immunotherapy of ccRCC. In addition, molecular subtypes were determined for ccRCC based 
on PRL expression, which may help elucidate the underlying molecular mechanism of ccRCC and develop targeted 
treatments.
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Introduction
Renal cell carcinoma (RCC) is a common malignancy 
of the urinary system, approximately 70% of RCCs are 
clear cell carcinomas [1]. With the continuous update 
and development of clinical diagnostic instruments, 
the rate of early RCC diagnosis is rising steadily. How-
ever, approximately 30% of patients are diagnosed with 
distant metastases [2]. Although surgery is the pri-
mary treatment for RCC, it is sub-optimally managed 
in patients with distant metastases. Moreover, most 
chemotherapy and radiotherapy treatments for RCC are 
currently ineffective [3], and while immunotherapy has 
been a major breakthrough in RCC treatment, individ-
ualized therapeutic effectiveness remains inconsistent 
and unsatisfactory [4]. Therefore, to maximize the ther-
apeutic effects of treatment, patients must be stratified 
based on heterogeneity. Clear cell renal cell carcinoma 
(ccRCC) cells are distinguished by their characteristic 
morphology, featuring cytoplasm with accumulations 
of lipids and glycogen, forming clear vacuoles [5, 6]. At 
its core, ccRCC represents a metabolic disorder char-
acterized by the reprogramming of energy metabolism, 
driven by mutations in key genes involved in metabolic 
pathways. This metabolic reprogramming encompasses 
diverse processes including aerobic glycolysis, fatty 
acid metabolism, and the utilization of amino acids 
such as tryptophan, glutamine, and arginine [6]. The 
metabolic rewiring observed in ccRCC facilitates tumor 
cell survival under conditions of energy deprivation 
and hypoxia, enabling the synthesis of essential prolif-
erative components such as proteins, DNA, and mem-
branes. Additionally, it aids in evading host immune 
surveillance and mitigating oxidative stress. Perturba-
tions in the levels of biochemical enzymes, substrates, 
metabolites, and end products resulting from metabolic 
reprogramming serve as valuable diagnostic biomark-
ers. For instance, overexpression of SETD8 in RCC 
correlates closely with lipid accumulation, advanced 
tumor grading and staging, and poor prognosis [7–10]. 
Furthermore, aberrations in hormone secretion and 
energy metabolism likely play pivotal roles in the com-
plex process of programmed cell death in tumor cells, 
intricately linking with tumor initiation, progression, 
metastasis, and therapeutic response [11]. Moreover, 
the identification of long non-coding RNAs (lncRNAs) 
has provided insights into pathway elucidation. Acting 
as regulators, lncRNAs exhibit extensive and nuanced 
effects on the metabolic pathways and products of 
ccRCC, exerting influence either directly or indirectly. 
This integrated regulatory role underscores their sig-
nificance in advancing research on tumor metabolism, 
facilitating the discovery of novel tumor biomarkers, 

and pinpointing potential therapeutic targets for future 
investigations [5, 7, 10, 11].

Various cellular processes are regulated by pro-
grammed cell death (PCD), and disorders in PCD can 
cause a number of illnesses, such as neurodegenera-
tion, cancer, and autoimmune conditions [12]. The most 
intensively studied PCD mechanisms currently, includ-
ing ferroptosis, necroptosis, cuproptosis, apoptosis and 
pyroptosis, are considerably related to the regulation of 
the immunosuppressive and clinical outcomes of cancer 
treatment methods [13].

Long non-coding RNA (lncRNA)s, which were pre-
viously considered as genomic noise, were a kind of 
mRNA-like transcripts longer than 200 nucleotides [14]. 
Numerous literatures showed that lncRNAs play a criti-
cal role in the progression of multiple tumors, includ-
ing gastric cancer, hepatocellular carcinoma and renal 
cell carcinoma [14, 15]. The characteristics of PCD-
related lncRNAs in ccRCC is currently unknown. In this 
research, we aimed to utilize various bioinformatic tools 
and experimental procedures to explore the role of PRLs 
in ccRCC.

Materials and methods
Data collection and collation
This study’s flow diagram is shown in Fig.  1. The raw 
data, including RNA-sequencing profiles and specific 
clinical characteristics of kidney renal clear cell carci-
noma (KIRC), were derived from TCGA (https:// portal. 
gdc. cancer. gov) and ICGC databases (https:// dcc. icgc. 
org/ relea ses/ curre nt/ Proje cts). To ensure the quality of 
subsequent analysis, patients with missing clinical data 
and incomplete prognostic information were removed. 
Subsequently, 620 KIRC samples derived from the TCGA 
and ICGC were contained in the study. Transcripts per 
million were calculated from raw data [16]. Further 
analysis was conducted on 517 PCD genes, including 
ferroptosis-related genes [17], apoptosis-related genes 
[18], cuproptosis-related genes [19], necroptosis-related 
genes [20], and pyroptosis-related genes [21]. Genes 
with extremely low expression levels were excluded. Sub-
sequently, 432 PCD genes were included in the down-
stream analysis.

Screening and analysis of the prognostic genes
By using the limma package in R, we screened for dif-
ferentially expressed genes (DEGs) between renal can-
cer tissues and normal kidney tissues [22]. The screening 
criteria for the DEGs were performed as follows (Sup-
plementary Table S1): |logFC|> 2.0 and a false-discovery 
rate (FDR) < 0.05. To identify PCD genes that are related 
to OS by univariate COX analysis, p = 0.01 was used as a 
cutoff value. To test the correlation between PCD-related 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://dcc.icgc.org/releases/current/Projects
https://dcc.icgc.org/releases/current/Projects
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DEGs. The interaction network diagram of the proteins 
was shown by SRTING (https:// www. string- db. org/).

Identification of PCD‑related LncRNAs (PRLs)
To identify the PRLs, raw data were downloaded and 
collated, then the expression data for LncRNAs were 
obtained using R and Perl program. The lncRNAs that 
correlated strongly with the 27 PCD genes were identi-
fied in ccRCC samples using Pearson correlation analysis 
(|Cor Pearson|> 0.4 and p < 0.001). LncRNAs with dif-
ferential expression levels were screened out using fold 
change and p values  (log2 FC > 1, FDR < 0.05).

Establishment and verification of PRL prognostic 
signatures
To obtain an effective prognostic prediction model, uni-
variate Cox analysis was conducted to identify PRLs 
with a considerable association with ccRCC prognosis 
(p < 0.05), following that, 530 samples were randomly 
split into two subgroups: training (265 patients) and 
testing (265 patients). Next, the training set data were 
employed to establish the prognostic model to obtain the 
prognostic signatures and correlation coefficients, and its 
validity was also verified simultaneously in both the test-
ing set and the overall dataset. PRLs with mutually high 
correlations were removed by LASSO regression analy-
sis. Subsequently, using multivariate Cox analysis, inde-
pendent prognostic factors were identified. To conclude, 
we created a reliable prognostic prediction model com-
prising seven PRLs. Calculation of risk scores for patients 
was carried out according to the following formula:

KIRC patients were categorized into high- and low-risk 
subgroups based on their median risk scores. Kaplan–
Meier survival curves were employed to evaluate OS. 
ROC curves and areas under the curves (AUCs) were 
used to gauge sensitivity and specificity of the prognostic 
model. Analyses of univariate and multivariate Cox were 
conducted to determine whether the risk score and clini-
cal features were independent prognostic factors. Addi-
tionally, the prognostic model was validated using ICGC 
data. Next, a nomogram for 1 year, 3 year, and 5-year OS 
was generated on basis of gender, age, T, M, tumor stage, 
risk score, and tumor grade. We evaluated the predicted 
and practical outcomes using the calibration plot curve 
analysis.

Analysis of biological function and immune infiltration 
level
Limma [22] was selected to screen for differentially 
expressed genes (DEGs). Then, Gene Ontology (GO) 
and KEGG analyses were performed using the R pack-
ages clusterProfiler, ggplot2, org.Hs.eg.db, enrichplot, 
and ggpubr [17]. Furthermore, a Gene Set Enrichment 
Analysis (GSEA) in R was employed to identify the differ-
ences in cancer signaling pathways. An immune and stro-
mal score was calculated using the ESTIMATE algorithm 
for comparison of two subgroups. TIMER [23], XCELL 
[24], Microenvironment Cell Populations-counter (MCP-
counter) [25], CIBERSORT [26, 27], QUANTISEQ 
[28], and the Estimating the Proportions of Immune 

Riskscore =
∑n

i=1
coef (i) ∗ lncRNA(i)expression.

Fig. 1 Study workflow

https://www.string-db.org/
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and Cancer cells (EPIC) algorithm [29] were applied 
to evaluate the abundance of immune cells. Finally, two 
subgroups were assessed using the Wilcoxon test and 
the GSVA package, respectively, to determine immune 
checkpoints and immune pathways differences.

Immunotherapy and targeted drug screening
Data from http:// tide. dfci. harva rd. edu were downloaded 
to assess the value of immunotherapy in the different sub-
groups. A waterfall map depicting the mutational profiles 
of the two different subgroups was created by Maftools 
package [30]. Using pRRophetic [20], chemotherapeutic 
drug sensitivity was assessed for different subgroups of 
cancer patients.

Analysis of PRL‑defined KIRC subtypes
ConsensusClusterPlus [31] was selected for identification 
of potential molecular subgroups based on PRL expres-
sion. T-SNE and PCA [32] were conducted in R to deter-
mine whether the prognostic prediction model could 
accurately divide KIRC patients into two risk subgroups. 
Prognostic value, clinicopathological features, immune 
and risk scores in each cluster were demonstrated by R2.

Cell line culture, RNA transcription, and qRT‑PCR
Four ccRCC cell lines ACHN, 769-P, 786-O, and CAKI-
1, as well as the human kidney cell line 293  T were 
purchased from the ATCC (Manassas, VA, USA) and 
cultivated in RPMI-1640 supplemented with streptomy-
cin (25 mg/ml), penicillin (25 U/ml) and 10% fetal bovine 
serum (FBS). Detailed primer sequences are provided in 
the Supplementary Material (Supplementary Table  S2). 
RNA transcription and qRT-PCR were operated as 
described previously [33].

Statistical analyses
The R version 4.0.5 and the Perl program were applied 
to process and analyze the data. Single-factor analyses of 
variance revealed differential expression of PCD-related 
genes in ccRCC versus normal kidney tissues. Univari-
ate and multivariate Cox proportional hazards regression 
analysis was performed to estimate the prognostic value. 
p values < 0.05 implied statistical significance.

Results
Identification of 27 differentially expressed prognostic 
PCDs and PRLs in KIRC patients
The screening criteria led to the selection of 50 differ-
entially expressed genes, 27 of which were associated 
with prognosis (Fig.  2A and D). It is shown in Fig.  2B 
that 27 intersection genes have different expression lev-
els between KIRC tissues and normal kidney tissues. 
The interactive information of 27 intersection genes 

is displayed in Fig.  2C. We then screened 659 lncRNAs 
that were closely related to the 27 PCD genes (Fig.  3A, 
Supplementary Table  S3), and 491 LncRNAs with con-
siderably differential expression levels were identified 
(Supplementary Fig. 1, Table S4).

Developing and validating a PRL prognostic model 
for KIRC patients
Univariate Cox proportional hazards regression analy-
ses was employed to determine 147 lncRNAs that were 
considerably related to the OS (p < 0.05), and then multi-
variate Cox analysis and LASSO analysis were conducted 
to screen the PRLs. Seven PRLs were used to estab-
lish a prognostic risk model: LINC02747, AP001636.3, 
AC022126.1, LINC02657, long intergenic non-protein 
coding RNA 2609 (LINC02609), lncRNA associated with 
SART3 regulation of splicing (LINC02154), and ZNF706 
neighboring transcript 1 (ZNNT1). The risk scores of the 
seven lncRNAs were calculated using their expression 
levels and regression analysis coefficients (Fig.  3B–D). 
Risk was calculated as follows: Risk score = LINC02747*(-
0.160234181791124) + A P00 163 6.3 *(- 2.2 160 060 41442
98) + AC022126.1*(1.07480838933924) + LINC02657
*(0.806615089929543) + LINC02609*(0.34964876422
504) + LINC02154*(0.478170693602118) + ZNNT1*(-
0.447721371873328). Low-risk patients in the training set 
had a notably lower mortality rate than high-risk patients 
(Fig. 4A and D). Figure 4G illustrates the expression pat-
terns of the seven PRLs in the training set. In the train-
ing set, Fig. 4J reveals that the low-risk patients are more 
likely to survive than high-risk patients. The prognostic 
risk model was then validated in the testing set (Fig. 4B, 
E, H, and K), overall set (Fig. 4C, F, I, and L), ICGC set 
(Fig.  5A), and results from them were highly consistent 
with those from the training set.

Analysis of the clinical characteristics of the PRL prognostic 
risk model
In order to evaluate the model’s accuracy, ROC curves 
and AUC values were calculated. As of the training 
set, AUC values were 0.750, 0.770, and 0.811 for 1-, 
3-, and 5-year OS (Fig.  5C), which indicates that the 
prognostic risk model we constructed had a promis-
ing predictive ability in the training set. Moreover, 
ICGC data were used to validate the model’s predic-
tive ability (Fig.  5B), the testing dataset (Fig.  5D) and 
the overall dataset (Fig.  5E). This study also examined 
whether a prognostic signature could be more accurate 
at predicting prognosis than common clinicopathologi-
cal characteristics through multivariate ROC analysis. 
Based on the training set, AUC value for risk score was 
0.751, which was higher than that of age (0.672), gender 
(0.499), and grade (0.725), but lower than stage (0.805) 

http://tide.dfci.harvard.edu
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Fig. 2 Identification of the prognostic PCD-related DEGs in the KIRC cohort. A Venn diagram showing the overlapping genes between PCD-related 
DEGs and OS-related genes; B heatmap showing the candidate genes expression; C the correlation network of candidate genes; D forest plots 
showing the candidate genes identified by univariate Cox regression analysis
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(Fig. 5F). AUC values for the testing and the overall set 
are shown in Fig.  5G and H, respectively, which were 
similar to the training set, indicating that the combina-
tion of the prognostic signature and TNM stage may be 
more valuable for diagnosis. Additionally, as shown in 
Fig. 6A and B, each of the p values for age, stage, grade, 
and risk score was less than 0.05, indicating that they 
could be considered independent variables. In order 
to facilitate clinical decision-making, a nomogram 
was constructed based on clinical characteristics and 
the risk score. Clinicopathological features includ-
ing age, metastasis, gender, as well as AJCC T stage, 
grade, stage, and the risk score are all shown in Fig. 6C. 
In ccRCC patients, the nomogram predicting OS was 
highly accurate according to the calibration curve.

Subgroup analysis of prognosis‑related clinical features
To clarify whether PRLs retain their prognostic ability in 
different subgroups and to assess their prognostic abil-
ity, in order to stratify patients according to their clini-
cal characteristics, we conducted a stratification analysis. 
In Fig.  7A–N, p < 0.05, nearly all low-risk patients had 
significantly longer OS compared to high-risk patients 
with varying clinical characteristics, except in Fig.  7H 
(p = 0.863), which might be caused by an insufficient 
sample size.

Analysis of biological functions and immune cell 
infiltration levels
Aims to identify the potential causes of prognostic dif-
ferences between two risk subgroups, GSEA enrich-
ment analysis, GO, and KEGG were conducted on the 
DEGs within the subgroups. As shown in Supplementary 

Fig. 3 Identification of a prognostic PRL signature in KIRC. A Sankey diagram of the relationship between PCD and PRLs; B LASSO coefficient 
distribution of PRLs; C variable selection cross-validation in the LASSO analysis; D coefficients of the seven chosen PRLs
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Fig.  2A, ERBB, TGF-BETA, JAK-STAT, MTOR, VEGF, 
MAPK, and WNT signaling pathways were notably 
enriched in low-risk patients. According to the KEGG 
analysis, DEGs from the entire population mainly control 
the interaction between cytokine receptors, complement, 
and coagulation cascades, and the signaling pathway for 
IL-17 (Supplementary Fig. 2B). Based on the GO analy-
sis, DEGs had a very high immune pathway enrichment 
(Supplementary Fig. 2C). Figure 8A depicts the intrinsic 
link between immune cells infiltration levels and differ-
ent risk scores. There was a significant positive relation-
ship between the high-risk subgroup and B cells, M0 
macrophages, cancer-associated fibroblasts and T cells, 
as well as a negative relationship between the high-risk 
subgroup and endothelial and NK cells. Based on Fig. 8B 
and C, the immune and ESTIMATE scores of the high-
risk patients were significantly higher than those of the 

low-risk patients, however, the stromal score did not 
show a significant difference (Fig.  8D), indicating that 
immune molecules were more enriched in high-risk 
patients. Compared to the low-risk subgroup, high-risk 
patients exhibited greater immune cell infiltration and 
immunity (Fig. 8E and F).

Analysis of immunotherapy and drug sensitivity
Given the special status of immune checkpoints in tumor 
immunotherapy, both risk subgroups were compared 
regarding their expression levels (Fig.  9A). Compared 
with the low-risk subgroup, high-risk patients had higher 
levels of immune checkpoint expression, signifying that 
immunotherapy might be more effective in high-risk 
patients. Moreover, as shown in Fig. 9B and C, we investi-
gated whether two different risk subgroups had different 
somatic mutations and found that the mutation rates of 

Fig. 4 Prognostic analysis of the risk model in different sets. A–C The overall survival risk score distribution; D–F the distribution of survival time 
and survival status; G–I heatmaps of the expressions of the seven PRLs; J–L survival outcomes of different sets
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PBRM1, SETD2, and BAP1 varied significantly; in par-
ticular, the mutation rate of SETD2 varied by up to 14%, 
and high-risk patients had a higher frequency of genetic 
mutations, which might lead to their poor prognoses. 
To determine whether TMB score correlates with KIRC 
patient prognosis, a survival analysis was conducted. As 
shown in Fig. 9D, those with low TMB scores had a better 
prognosis than those with high scores. As illustrated in 
Fig. 9E, low PRL risk score groups with low TMB scores 

had a palpable survival benefit. Meanwhile, the drug sen-
sitivity of the various groups was determined using TIDE 
analysis, and it seems that immunotherapy may be less 
effective in the high-risk subgroup as a result of lower 
scores on TIDE and dysfunction (Fig. 9F and H). Finally, 
the results of the drug sensitivity analysis showed that 
patients in the low-risk group were generally sensitive to 
most drugs, such as sorafenib, paclitaxel, sunitinib, vin-
blastine, and temsirolimus (Supplementary Figs. 3A–Y).

Fig. 5 Accuracy assessment of the risk characteristics. A Validation of the prognostic signature for KIRC patients in ICGC cohorts; B validation 
of prognostic model effectiveness in ICGC cohorts; C evaluation of prognostic model effectiveness in training; D testing, E overall; F–H comparison 
of single prognostic factor and nomogram prognostic efficacy
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Immunotherapy and PRL subgroup generation in KIRC
To explore the relationship between PRL expression 
levels and KIRC subtypes, KIRC patients were classi-
fied using the ConsensusClusterPlus package, and two 
groups were found to be the optimal clustering method 
(Fig.  10A). In order to identify clinical differences 
between the two clusters, as a first step, we compared 
survival curves of two groups and found significant dif-
ferences in prognosis (Fig. 10B). Furthermore, using PCA 
and t-SNE, patients with different risks within clusters 
were well separated in two directions (Fig. 10C–F). Then, 
in order to obtain a better understanding of the clinical 
implications of the seven PRLs in ccRCC, we correlated 
clinicopathological variables with their expression lev-
els (Fig.  10G). Risk scores varied significantly based on 
lymph node metastasis, tumor metastasis, cluster strati-
fication, age, gender, AJCC T stage, grade, stage, and 
immune core. Additionally, tumors in cluster 2 were sig-
nificantly more likely to be infiltrated by immune cells 
than tumors in cluster 1 (Fig. 11A). In cluster 1, immune 
checkpoint expression was higher than in cluster 2, which 
may have contributed to the lower overall survival of 

cluster 2 (Fig. 11B). Subsequently, according to our analy-
sis, patients in cluster 1 displayed greater drug sensitivity, 
such as paclitaxel, vinblastine, sunitinib, sorafenib, and 
temsirolimus (Fig. 12A–Y). Based on these findings, clus-
ter 1 and low-risk groups should have better outcomes 
and respond better to immunotherapy.

Seven PRL expression levels in KIRC cells
Seven PRLs were determined by qRT-PCR in the 293 T 
and 4 ccRCC cell lines, 769-P, ACHN, 786-O, and 
CAKI-1. When compared to 293  T, the expression of 
LINC02657, ZNNT1, and LINC02747 was consider-
ably higher in the four KIRC cell lines (Fig.  13A, B and 
D). In contrast, LINC02154 and AC022126.1 were sig-
nificantly downregulated in KIRC cell lines (Fig.  13C 
and E). AP001636.3 has three subtypes: AP001636.3–1, 
AP001636.3–2, and AP001636.3–3, all of which had 
higher expression in tumor cell lines than in normal kid-
ney cells (Fig. 13F–H). Similarly, LINC02609 has two sub-
types, and the expression trends of both subtypes were 
consistently downregulated in tumor cells (Fig. 13I–J).

Fig. 6 Development of a nomogram by integrating the risk score and clinicopathological features in the KIRC cohort. A Univariate Cox analysis; 
B multivariate Cox analysis; C nomogram for clinical prognosis assessment (1-year, 3-year, and 5-year); D calibration curve to assess nomogram 
accuracy; *p < 0.05, **p < 0.01, ***p < 0.001, ns, non-significant
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Fig. 7 Kaplan–Meier curve analysis for the high- and low-risk groups stratified by clinical features, including A, B gender; C, D grade; E, F M; G, H N; 
I, J stage; K, L T; M, N; D age
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Fig. 8 Analysis of immune infiltration in different risk subgroups. A Immune cell bubbles of the different groups; B ESTIMATE scores 
of the low- and high-risk subgroups; C immune scores of the low- and high-risk subgroups; D stromal score of the low- and high-risk subgroups; E 
the ssGSEA scores of immune cells in different risk groups; F immune function scores of different risk groups. *p < 0.05, **p < 0.01, ***p < 0.001, ns, 
non-significant
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Fig. 9 Analysis of immunotherapy. A Expression of immune checkpoints in different risk groups; B waterfall plot of tumor somatic mutation 
in the high-risk subgroup; C waterfall plot of tumor somatic mutation in the low-risk subgroup, D Kaplan–Meier curve analysis of high- and low-TMB 
groups in TCGA database; E Kaplan–Meier curve analysis of TCGA KIRC data stratified by TMB and risk score; F–H TIDE, IFNG, and dysfunction scores 
of high- and low-risk subgroups. *p < 0.05, **p < 0.01, ***p < 0.001, ns, non-significant
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Fig. 10 Analysis of KIRC subtypes. A KIRC divided into two clusters; B Kaplan–Meier curve analysis of OS in clusters; C PCA analysis of the two risk 
groups; D t-SNE analysis of the two risk groups; E PCA analysis of the two clusters; F t-SNE analysis of the two clusters; G heatmap of correlations 
among clinical features, immune scores, and risk scores. *p < 0.05, **p < 0.01, ***p < 0.001, ns, non-significant



Page 14 of 18Wang et al. European Journal of Medical Research          (2024) 29:292 

Fig. 11 Analysis of immune infiltration in the different clusters. A Heatmap of immune cells in the different clusters; B expression of immune 
checkpoints in the different clusters. *p < 0.05, **p < 0.01, ***p < 0.001, ns, non-significant

Fig. 12 Drug sensitivity analysis in the different clusters (A–Y)
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Discussion
Renal cancer, especially ccRCC, usually has a bad prog-
nosis due to its advanced stage with distant metastases 
[34]. With more treatment options for ccRCC, promis-
ing biomarkers are urgently needed to monitor the prog-
nosis of the disease [35]. Clear cell renal cell carcinoma 
(ccRCC) is fundamentally characterized as a metabolic 
disorder, marked by a reprogramming of energy metab-
olism. Transcriptomic, proteomic, and metabolomic 
analyses of ccRCC tissues delineate the distinct charac-
teristics of metabolic reprogramming. These include the 
upregulation of aerobic glycolysis (known as the War-
burg effect), the pentose phosphate pathway, fatty acid 
synthesis, glutamine and glutathione metabolism, along 
with the downregulation of the tricarboxylic acid (TCA) 
cycle, fatty acid beta-oxidation (FAO), and oxidative 
phosphorylation. Studies suggest that the downregula-
tion of the TCA cycle, coupled with the upregulation of 
the pentose phosphate pathway and fatty acid synthesis, 
may correlate with the aggressiveness of ccRCC tumors 
and unfavorable patient prognosis [6, 7, 10, 11]. Metab-
olomic analyses reveal a significant increase in glucose 
uptake and utilization in ccRCC tumor samples, primar-
ily attributed to compromised mitochondrial bioener-
getics and oxidative phosphorylation processes, further 
facilitated by heightened glucose utilization through 
the pentose phosphate pathway. Moreover, extensive 
research indicates the involvement of cell programmed 
cell death in various tumor metabolic pathways, intri-
cately intertwined with tumor progression [36–39]. 
According to evidence accumulated over the last decade, 
tumor progression and metastasis are facilitated by pro-
grammed cell death (PCD) [40, 41]. However, most stud-
ies have looked at how PCD affects the development of 
tumors and their treatment, with few studies addressing 

the prognostic and immunotherapeutic value of PRLs 
in various cancer. Considering the role lncRNAs play in 
tumorigenesis and cancer development, a comprehensive 
investigation of PRLs and their role in renal cancer prog-
nosis and immunotherapy was the goal of this study. This 
study included various forms of PCD, including ferropto-
sis, apoptosis, cuproptosis, necroptosis, and pyroptosis.

It was discovered that 27 PCDs and 147 PRLs had sig-
nificant correlations with OS and would be better predic-
tors of patients with ccRCC. Our prognostic prediction 
model was constructed using LASSO and univariate 
Cox analysis and validated with the ICGC dataset. As 
revealed in survival analyses conducted by TCGA and 
ICGC, high-risk groups had significantly worse out-
comes than low-risk groups. Moreover, a significant 
difference was found between patients with different 
risk scores in terms of various clinical characteristics. 
Furthermore, this model had good predictive value due 
to its high predictive accuracy and calibration. There 
has been a great deal of success in predicting the one-, 
three-, and five-year survival rate by using an independ-
ent predictor nomogram (age, AJCC T stage, grade, and 
prognostic models), which could be utilized to improve 
individualized therapy and plan short-term follow-up for 
each patient. The clinical significance of the prognostic 
signature was also clarified using multiple and univariate 
Cox analyses, as well as stratification analyses. According 
to the results, various factors such as age, grade, and risk 
score were independently associated with a poor progno-
sis for patients with ccRCC with a high-risk score. Our 
PRL signature has great value in tumor diagnosis, treat-
ment, and prognosis, which provides a solid theoretical 
foundation for identifying and treating ccRCC patients 
effectively. Additionally, in a biological function analysis, 
various signaling pathways were found to be significantly 

Fig. 13 qRT-PCR analysis of the seven PRLs. A LINC02657; B ZNNT1; C LINC02154; D LINC02747; E AC022126.1; F–H AP001636.3; I, J LINC02609. 
*p < 0.05, **p < 0.01, ***p < 0.001, ns, non-significant
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enriched in the low-risk group, suggesting that a greater 
influence was exerted by low-risk PRLs compared to 
high-risk PRLs.

Several biomarkers implicated in our PRL signature 
have been identified in various cancers. For instance, in 
ccRCC, LINC02747 acts as an oncogene, upregulating 
the expression of TFE3 to promote RCC proliferation 
[42]. It is known that breast cancer promote the activity 
of SART3 through the action of LINC02651 [43]. Fur-
thermore, in stomach adenocarcinomas and lung cancer, 
LINC02657 is associated with tumor proliferation and 
metastasis [44, 45]. LINC02154 accelerates the progres-
sion of hepatocellular carcinoma by activating PI3K-AKT 
[46]. The autophagy-induced ZNNT1 acts as a protec-
tive factor against uveal melanoma [47]. There are cur-
rently no studies focusing on the diagnosis, prognosis, 
and therapeutic value of the other lncRNAs, including 
AP001636.3, LINC02609, and AC022126.1. Prelimi-
nary analysis of the seven PRLs in RCC cell lines showed 
significant upregulation of LINC02657, AP001636.3, 
LINC02747, and ZNNT1 in the four RCC cell lines, 
whereas LINC02609, LINC02154, and AC022126.1 were 
downregulated. Owing to the vital diagnostic and prog-
nostic value of lncRNAs, additional experiments will be 
required for a better understanding of ccRCC’s molecular 
mechanisms.

Additionally, clear cell renal cell carcinoma (ccRCC) is 
highly immune-infiltrated and vascularized, represent-
ing an aggressive malignancy [48]. Given its resistance to 
chemotherapy, anti-angiogenic therapy emerges as a pri-
mary targeted approach. The tumor microenvironment 
(TME) significantly impacts tumor biology and therapeu-
tic responses, influencing immune cell function through 
metabolite dysregulation. Aberrant aerobic glycolysis in 
tumor cells leads to lactate accumulation and TME acidi-
fication, hindering immune cell activity [49, 50]. Under-
standing immune cell metabolism holds potential for 
metabolism-targeted therapies, enhancing immunother-
apeutic efficacy. Previous studies have demonstrated that 
T cell regulatory cells, B cell memory cells [51], cancer-
associated fibroblasts, and M0 macrophages are related 
to a poor prognosis of various tumors [52–55]. Our find-
ings are highly concordant with these studies, the poor 
OS among high-risk patients may be explained by this 
factor. Furthermore, according to the results of the ssGEA 
and TME analysis, the immune scores of high-risk par-
ticipants were higher, as well as the ESTIMATE scores, 
CCR scores, and T cell co-stimulation scores for the par-
ticipants. In ccRCC, our characteristics may influence the 
microenvironment of the tumor immune system in such 
a way that suppresses the immune response and pro-
motes tumor. Different molecular subtypes have different 
immune scores, which may result in different prognoses 

[56, 57]. High-risk patients had significantly higher TIDE 
and dysfunction scores, indicating that immunotherapy 
may be less effective, which was consistent with the drug 
sensitivity analysis. Although our model has good predic-
tive power and can provide effective therapeutic strate-
gies, two clusters of ccRCC patients were identified using 
an expression level analysis of PRL, to make our model 
more predictive and provide more precise treatment. In 
regard to prognosis, the two clusters were significantly 
different; immune cells were more prevalent in cluster 2, 
and risk scores varied significantly in lymph node metas-
tasis, tumor metastasis, cluster stratification, age, gender, 
AJCC T stage, grade, stage, and immune score. Immu-
notherapy response and prognosis were better in clus-
ter 1 and low-risk groups. Although this study has some 
strengths. There are also a few limitations to it. First, the 
model was built and validated by online datasets, necessi-
tating the requirement for prospective research to assess 
the clinical effect of this model. Second, to elucidate the 
molecular mechanisms of the seven PRLs in ccRCC, 
additional experimental evidence is still needed. Thirdly, 
the interaction between PRLs and the metabolic path-
ways in renal cancer awaits further experimental valida-
tion. However, as a result of our findings, in addition to 
understanding how PRLs and TMEs interrelate, immu-
notherapy is also made clearer.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40001- 024- 01883-8.

Additional file 1.

Additional file 2.

Additional file 3.

Additional file 4.

Acknowledgements
We thank the TCGA and ICGC databases for providing meaningful raw data for 
this study.

Author contributions
AFT and XSZ designed and supervised this study. HW, YL performed relevant 
experiments, the data analysis, and wrote. All authors contributed to the 
article and approved the submitted version.

Funding
This work was supported by funding from the National Natural Science Foun-
dation of China (Grant nos. 82172928, 82071637, 82371635 and 82272961), 
Shenzhen Second People’s Hospital Clinical Research Fund of Guangdong 
Province High-level Hospital Construction Project (Grant No. 20193357027); 
Sanming Project of Medicine in Shenzhen (No. SZSM202111007); Shenzhen 
Key Medical Discipline Construction Fund (No. SZXK020).

Data availability
The raw data, including RNA-sequencing profiles and specific clinical charac-
teristics of kidney renal clear cell carcinoma (KIRC), were derived from TCGA 
(https:// portal. gdc. cancer. gov) and ICGC databases (https:// dcc. icgc. org/ relea 
ses/ curre nt/ Proje cts). The datasets used and analyzed during the current study 
available from the corresponding author on reasonable request.

https://doi.org/10.1186/s40001-024-01883-8
https://doi.org/10.1186/s40001-024-01883-8
https://portal.gdc.cancer.gov
https://dcc.icgc.org/releases/current/Projects
https://dcc.icgc.org/releases/current/Projects


Page 17 of 18Wang et al. European Journal of Medical Research          (2024) 29:292  

Declarations

Ethics approval and consent to participate
Ethical review and approval were not required for this study on human partici-
pants by the local legislation and institutional requirements, and neither the 
written informed consent for participation.

Consent to publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Urology, The First Affiliated Hospital of Anhui Medical 
University, Hefei, China. 2 Department of Urology, The First Affiliated Hospital 
of Shenzhen University, Second People’s Hospital, ShenzhenShenzhen, China. 
3 Department of Oncology, Yantian District People’s Hospital, Shenzhen, China. 
4 Science and Educational Center of Shenzhen Luohu People’s Hospital, The 
Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China. 

Received: 24 March 2024   Accepted: 12 May 2024

References
 1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBO-

CAN estimates of incidence and mortality worldwide for 36 cancers in 
185 countries. CA Cancer J Clin. 2021;71(3):209–49. https:// doi. org/ 10. 
3322/ caac. 21660.

 2. Li F, Jin Y, Pei X, et al. Bioinformatics analysis and verification of gene 
targets for renal clear cell carcinoma. Comput Biol Chem. 2021;92: 
107453. https:// doi. org/ 10. 1016/j. compb iolch em. 2021. 107453.

 3. Ljungberg B, Bensalah K, Canfield S, et al. EAU guidelines on renal cell 
carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24. https:// doi. org/ 
10. 1016/j. eururo. 2015. 01. 005.

 4. Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus axitinib ver-
sus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 
2019;380(12):1103–15. https:// doi. org/ 10. 1056/ NEJMo a1816 047.

 5. di Meo NA, Lasorsa F, Rutigliano M, et al. The dark side of lipid 
metabolism in prostate and renal carcinoma: novel insights into 
molecular diagnostic and biomarker discovery. Expert Rev Mol Diagn. 
2023;23(4):297–313. https:// doi. org/ 10. 1080/ 14737 159. 2023. 21955 53.

 6. Bianchi C, Meregalli C, Bombelli S, et al. The glucose and lipid 
metabolism reprogramming is grade-dependent in clear cell renal cell 
carcinoma primary cultures and is targetable to modulate cell viability 
and proliferation. Oncotarget. 2017;8(69):113502–15. https:// doi. org/ 
10. 18632/ oncot arget. 23056.

 7. van de Pol JAA, Ferronika P, Westers H, et al. Evaluation of a seven gene 
mutational profile as a prognostic factor in a population-based study 
of clear cell renal cell carcinoma. Sci Rep. 2022;12(1):6478. https:// doi. 
org/ 10. 1038/ s41598- 022- 10455-x.

 8. Girgis H, Masui O, White NM, et al. Lactate dehydrogenase A is a poten-
tial prognostic marker in clear cell renal cell carcinoma. Mol Cancer. 
2014;13:101. https:// doi. org/ 10. 1186/ 1476- 4598- 13- 101.

 9. Lucarelli G, Loizzo D, Franzin R, et al. Metabolomic insights into patho-
physiological mechanisms and biomarker discovery in clear cell renal 
cell carcinoma. Expert Rev Mol Diagn. 2019;19(5):397–407. https:// doi. 
org/ 10. 1080/ 14737 159. 2019. 16077 29.

 10. di Meo NA, Lasorsa F, Rutigliano M, et al. Renal cell carcinoma as a 
metabolic disease: an update on main pathways, potential biomarkers, 
and therapeutic targets. Int J Mol Sci. 2022. https:// doi. org/ 10. 3390/ 
ijms2 32214 360.

 11. Lakhani A, Kang DH, Kang YE, Park JO. Toward systems-level metabolic 
analysis in endocrine disorders and cancer. Endocrinol Metab (Seoul). 
2023;38(6):619–30. https:// doi. org/ 10. 3803/ EnM. 2023. 1814.

 12. Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kand-
havelu M. Programmed cell death detection methods: a systematic 

review and a categorical comparison. Apoptosis. 2022;27(7–8):482–
508. https:// doi. org/ 10. 1007/ s10495- 022- 01735-y.

 13. Liu J, Hong M, Li Y, Chen D, Wu Y, Hu Y. Programmed cell death tunes 
tumor immunity. Front Immunol. 2022;13: 847345. https:// doi. org/ 10. 
3389/ fimmu. 2022. 847345.

 14. Wang H, Liu Y, Tang A. Prognostic values of long noncoding RNA 
linc00152 in various carcinomas: an updated systematic review and 
meta-analysis. Oncologist. 2020;25(1):e31–8. https:// doi. org/ 10. 1634/ 
theon colog ist. 2018- 0358.

 15. Panni S, Lovering RC, Porras P, Orchard S. Non-coding RNA regula-
tory networks. Biochim Biophys Acta Gene Regul Mech. 2020;1863(6): 
194417. https:// doi. org/ 10. 1016/j. bbagrm. 2019. 194417.

 16. Wu XN, Su D, Mei YD, et al. Identified lung adenocarcinoma metabolic 
phenotypes and their association with tumor immune microenviron-
ment. Cancer Immunol Immunother. 2021;70(10):2835–50. https:// doi. 
org/ 10. 1007/ s00262- 021- 02896-6.

 17. Shi J, Wu P, Sheng L, Sun W, Zhang H. Ferroptosis-related gene signa-
ture predicts the prognosis of papillary thyroid carcinoma. Cancer Cell 
Int. 2021;21(1):669. https:// doi. org/ 10. 1186/ s12935- 021- 02389-7.

 18. Chen B, Dong D, Yao Q, Zou Y, Hu W. A novel prognostic cancer-related 
lncRNA signature in papillary renal cell carcinoma. Cancer Cell Int. 
2021;21(1):545. https:// doi. org/ 10. 1186/ s12935- 021- 02247-6.

 19. Lv H, Liu X, Zeng X, et al. Comprehensive analysis of cuproptosis-
related genes in immune infiltration and prognosis in melanoma. 
Front Pharmacol. 2022;13: 930041. https:// doi. org/ 10. 3389/ fphar. 2022. 
930041.

 20. Wu Z, Huang X, Cai M, Huang P, Guan Z. Novel necroptosis-related 
gene signature for predicting the prognosis of pancreatic adenocarci-
noma. Aging (Albany NY). 2022;14(2):869–91. https:// doi. org/ 10. 18632/ 
aging. 203846.

 21. Ye Y, Dai Q, Qi H. A novel defined pyroptosis-related gene signature 
for predicting the prognosis of ovarian cancer. Cell Death Discov. 
2021;7(1):71. https:// doi. org/ 10. 1038/ s41420- 021- 00451-x.

 22. Liu S, Wang Z, Zhu R, Wang F, Cheng Y, Liu Y. Three differential expres-
sion analysis methods for RNA sequencing: limma, EdgeR, DESeq2. J Vis 
Exp. 2021. https:// doi. org/ 10. 3791/ 62528.

 23. Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating 
immune cells. Nucleic Acids Res. 2020;48(W1):W509–14. https:// doi. 
org/ 10. 1093/ nar/ gkaa4 07.

 24. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular 
heterogeneity landscape. Genome Biol. 2017;18(1):220. https:// doi. org/ 
10. 1186/ s13059- 017- 1349-1.

 25. Becht E, Giraldo NA, Lacroix L, et al. Estimating the population abun-
dance of tissue-infiltrating immune and stromal cell populations using 
gene expression. Genome Biol. 2016;17(1):218. https:// doi. org/ 10. 1186/ 
s13059- 016- 1070-5.

 26. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell 
subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7. 
https:// doi. org/ 10. 1038/ nmeth. 3337.

 27. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling 
tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 
2018;1711:243–59. https:// doi. org/ 10. 1007/ 978-1- 4939- 7493-1_ 12.

 28. Finotello F, Mayer C, Plattner C, et al. Molecular and pharmacological 
modulators of the tumor immune contexture revealed by deconvolu-
tion of RNA-seq data. Genome Med. 2019;11(1):34. https:// doi. org/ 10. 
1186/ s13073- 019- 0638-6.

 29. Racle J, Gfeller D. EPIC: a tool to estimate the proportions of differ-
ent cell types from bulk gene expression data. Methods Mol Biol. 
2020;2120:233–48. https:// doi. org/ 10. 1007/ 978-1- 0716- 0327-7_ 17.

 30. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome 
Res. 2018;28(11):1747–56. https:// doi. org/ 10. 1101/ gr. 239244. 118.

 31. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery 
tool with confidence assessments and item tracking. Bioinformatics. 
2010;26(12):1572–3. https:// doi. org/ 10. 1093/ bioin forma tics/ btq170.

 32. David CC, Jacobs DJ. Principal component analysis: a method for 
determining the essential dynamics of proteins. Methods Mol Biol. 
2014;1084:193–226. https:// doi. org/ 10. 1007/ 978-1- 62703- 658-0_ 11.

 33. Liu Y, Wang H, Ni B, et al. Loss of KCNJ15 expression promotes malignant 
phenotypes and correlates with poor prognosis in renal carcinoma. Can-
cer Manag Res. 2019;11:1211–20. https:// doi. org/ 10. 2147/ CMAR. S1843 68.

https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.compbiolchem.2021.107453
https://doi.org/10.1016/j.eururo.2015.01.005
https://doi.org/10.1016/j.eururo.2015.01.005
https://doi.org/10.1056/NEJMoa1816047
https://doi.org/10.1080/14737159.2023.2195553
https://doi.org/10.18632/oncotarget.23056
https://doi.org/10.18632/oncotarget.23056
https://doi.org/10.1038/s41598-022-10455-x
https://doi.org/10.1038/s41598-022-10455-x
https://doi.org/10.1186/1476-4598-13-101
https://doi.org/10.1080/14737159.2019.1607729
https://doi.org/10.1080/14737159.2019.1607729
https://doi.org/10.3390/ijms232214360
https://doi.org/10.3390/ijms232214360
https://doi.org/10.3803/EnM.2023.1814
https://doi.org/10.1007/s10495-022-01735-y
https://doi.org/10.3389/fimmu.2022.847345
https://doi.org/10.3389/fimmu.2022.847345
https://doi.org/10.1634/theoncologist.2018-0358
https://doi.org/10.1634/theoncologist.2018-0358
https://doi.org/10.1016/j.bbagrm.2019.194417
https://doi.org/10.1007/s00262-021-02896-6
https://doi.org/10.1007/s00262-021-02896-6
https://doi.org/10.1186/s12935-021-02389-7
https://doi.org/10.1186/s12935-021-02247-6
https://doi.org/10.3389/fphar.2022.930041
https://doi.org/10.3389/fphar.2022.930041
https://doi.org/10.18632/aging.203846
https://doi.org/10.18632/aging.203846
https://doi.org/10.1038/s41420-021-00451-x
https://doi.org/10.3791/62528
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1007/978-1-0716-0327-7_17
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1007/978-1-62703-658-0_11
https://doi.org/10.2147/CMAR.S184368


Page 18 of 18Wang et al. European Journal of Medical Research          (2024) 29:292 

 34. Wang W, Hu W, Wang Y, Yang J, Yue Z. MicroRNA-508 is downregulated in 
clear cell renal cell carcinoma and targets ZEB1 to suppress cell prolifera-
tion and invasion. Exp Ther Med. 2019;17(5):3814–22. https:// doi. org/ 10. 
3892/ etm. 2019. 7332.

 35. Liu Z, Sun B, Qi L, Li H, Gao J, Leng X. Zinc finger E-box binding 
homeobox 1 promotes vasculogenic mimicry in colorectal cancer 
through induction of epithelial-to-mesenchymal transition. Cancer Sci. 
2012;103(4):813–20. https:// doi. org/ 10. 1111/j. 1349- 7006. 2011. 02199.x.

 36. Dai X, Wang D, Zhang J. Programmed cell death, redox imbalance, and 
cancer therapeutics. Apoptosis. 2021;26(7–8):385–414. https:// doi. org/ 10. 
1007/ s10495- 021- 01682-0.

 37. Nguyen TT, Wei S, Nguyen TH, et al. Mitochondria-associated pro-
grammed cell death as a therapeutic target for age-related dis-
ease. Exp Mol Med. 2023;55(8):1595–619. https:// doi. org/ 10. 1038/ 
s12276- 023- 01046-5.

 38. Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: the bright 
side of the moon. Exp Mol Med. 2020;52(2):192–203. https:// doi. org/ 10. 
1038/ s12276- 020- 0384-2.

 39. Green DR, Galluzzi L, Kroemer G. Cell biology. Metabolic control of cell 
death. Science. 2014;345(6203):1250256. https:// doi. org/ 10. 1126/ scien ce. 
12502 56.

 40. Tang R, Xu J, Zhang B, et al. Ferroptosis, necroptosis, and pyroptosis in 
anticancer immunity. J Hematol Oncol. 2020;13(1):110. https:// doi. org/ 10. 
1186/ s13045- 020- 00946-7.

 41. Green DR. The coming decade of cell death research: five riddles. Cell. 
2019;177(5):1094–107. https:// doi. org/ 10. 1016/j. cell. 2019. 04. 024.

 42. Ju X, Sun Y, Zhang F, Wei X, Wang Z, He X. Long non-coding RNA 
LINC02747 promotes the proliferation of clear cell renal cell carcinoma 
by inhibiting miR-608 and activating TFE3. Front Oncol. 2020;10: 573789. 
https:// doi. org/ 10. 3389/ fonc. 2020. 573789.

 43. De Troyer L, Zhao P, Pastor T, et al. Stress-induced lncRNA LASTR fosters 
cancer cell fitness by regulating the activity of the U4/U6 recycling factor 
SART3. Nucleic Acids Res. 2020;48(9):5198–9. https:// doi. org/ 10. 1093/ nar/ 
gkaa2 80.

 44. Xia M, Zhu W, Tao C, Lu Y, Gao F. LncRNA LASTR promote lung cancer pro-
gression through the miR-137/TGFA/PI3K/AKT axis through integration 
analysis. J Cancer. 2022;13(4):1086–96. https:// doi. org/ 10. 7150/ jca. 66067.

 45. Wang G, Sun L, Wang S, et al. Ferroptosis related long noncoding RNAs 
and the roles of LASTR in stomach adenocarcinoma. Mol Med Rep. 2022. 
https:// doi. org/ 10. 3892/ mmr. 2022. 12634.

 46. Yue H, Wu K, Liu K, Gou L, Huang A, Tang H. LINC02154 promotes the 
proliferation and metastasis of hepatocellular carcinoma by enhanc-
ing SPC24 promoter activity and activating the PI3K-AKT signaling 
pathway. Cell Oncol (Dordr). 2022;45(3):447–62. https:// doi. org/ 10. 1007/ 
s13402- 022- 00676-7.

 47. Li P, He J, Yang Z, et al. ZNNT1 long noncoding RNA induces autophagy 
to inhibit tumorigenesis of uveal melanoma by regulating key autophagy 
gene expression. Autophagy. 2020;16(7):1186–99. https:// doi. org/ 10. 
1080/ 15548 627. 2019. 16596 14.

 48. Tamma R, Rutigliano M, Lucarelli G, et al. Microvascular density, mac-
rophages, and mast cells in human clear cell renal carcinoma with and 
without bevacizumab treatment. Urol Oncol. 2019;37(6):355 e11-355 e19. 
https:// doi. org/ 10. 1016/j. urolo nc. 2019. 01. 025.

 49. Lasorsa F, Rutigliano M, Milella M, et al. Complement system and the 
kidney: its role in renal diseases, kidney transplantation and renal cell 
carcinoma. Int J Mol Sci. 2023. https:// doi. org/ 10. 3390/ ijms2 42216 515.

 50. Lasorsa F, di Meo NA, Rutigliano M, et al. Immune checkpoint inhibitors in 
renal cell carcinoma: molecular basis and rationale for their use in clinical 
practice. Biomedicines. 2023. https:// doi. org/ 10. 3390/ biome dicin es110 
41071.

 51. Yu Y, Chang Z, Han C, et al. Long non-coding RNA MINCR aggravates 
colon cancer via regulating miR-708-5p-mediated Wnt/beta-catenin 
pathway. Biomed Pharmacother. 2020;129: 110292. https:// doi. org/ 10. 
1016/j. biopha. 2020. 110292.

 52. Nagorsen D, Voigt S, Berg E, Stein H, Thiel E, Loddenkemper C. Tumor-
infiltrating macrophages and dendritic cells in human colorectal cancer: 
relation to local regulatory T cells, systemic T-cell response against tumor-
associated antigens and survival. J Transl Med. 2007;5:62. https:// doi. org/ 
10. 1186/ 1479- 5876-5- 62.

 53. Cui Z, Sun G, Bhandari R, et al. Comprehensive analysis of glycolysis-
related genes for prognosis, immune features, and candidate drug 

development in colon cancer. Front Cell Dev Biol. 2021;9: 684322. https:// 
doi. org/ 10. 3389/ fcell. 2021. 684322.

 54. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive 
human breast carcinomas promote tumor growth and angiogenesis 
through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48. 
https:// doi. org/ 10. 1016/j. cell. 2005. 02. 034.

 55. Xiang H, Ramil CP, Hai J, et al. Cancer-associated fibroblasts promote 
immunosuppression by inducing ROS-generating monocytic MDSCs in 
lung squamous cell carcinoma. Cancer Immunol Res. 2020;8(4):436–50. 
https:// doi. org/ 10. 1158/ 2326- 6066. CIR- 19- 0507.

 56. Zeng D, Li M, Zhou R, et al. Tumor microenvironment characterization in 
gastric cancer identifies prognostic and immunotherapeutically relevant 
gene signatures. Cancer Immunol Res. 2019;7(5):737–50. https:// doi. org/ 
10. 1158/ 2326- 6066. CIR- 18- 0436.

 57. DeBerardinis RJ. Tumor microenvironment, metabolism, and immuno-
therapy. N Engl J Med. 2020;382(9):869–71. https:// doi. org/ 10. 1056/ 
NEJMc ibr19 14890.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3892/etm.2019.7332
https://doi.org/10.3892/etm.2019.7332
https://doi.org/10.1111/j.1349-7006.2011.02199.x
https://doi.org/10.1007/s10495-021-01682-0
https://doi.org/10.1007/s10495-021-01682-0
https://doi.org/10.1038/s12276-023-01046-5
https://doi.org/10.1038/s12276-023-01046-5
https://doi.org/10.1038/s12276-020-0384-2
https://doi.org/10.1038/s12276-020-0384-2
https://doi.org/10.1126/science.1250256
https://doi.org/10.1126/science.1250256
https://doi.org/10.1186/s13045-020-00946-7
https://doi.org/10.1186/s13045-020-00946-7
https://doi.org/10.1016/j.cell.2019.04.024
https://doi.org/10.3389/fonc.2020.573789
https://doi.org/10.1093/nar/gkaa280
https://doi.org/10.1093/nar/gkaa280
https://doi.org/10.7150/jca.66067
https://doi.org/10.3892/mmr.2022.12634
https://doi.org/10.1007/s13402-022-00676-7
https://doi.org/10.1007/s13402-022-00676-7
https://doi.org/10.1080/15548627.2019.1659614
https://doi.org/10.1080/15548627.2019.1659614
https://doi.org/10.1016/j.urolonc.2019.01.025
https://doi.org/10.3390/ijms242216515
https://doi.org/10.3390/biomedicines11041071
https://doi.org/10.3390/biomedicines11041071
https://doi.org/10.1016/j.biopha.2020.110292
https://doi.org/10.1016/j.biopha.2020.110292
https://doi.org/10.1186/1479-5876-5-62
https://doi.org/10.1186/1479-5876-5-62
https://doi.org/10.3389/fcell.2021.684322
https://doi.org/10.3389/fcell.2021.684322
https://doi.org/10.1016/j.cell.2005.02.034
https://doi.org/10.1158/2326-6066.CIR-19-0507
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://doi.org/10.1056/NEJMcibr1914890
https://doi.org/10.1056/NEJMcibr1914890

	Molecular subtypes of clear cell renal carcinoma based on PCD-related long non-coding RNAs expression: insights into the underlying mechanisms and therapeutic strategies
	Abstract 
	Background 
	Materials and methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Data collection and collation
	Screening and analysis of the prognostic genes
	Identification of PCD-related LncRNAs (PRLs)
	Establishment and verification of PRL prognostic signatures
	Analysis of biological function and immune infiltration level
	Immunotherapy and targeted drug screening
	Analysis of PRL-defined KIRC subtypes
	Cell line culture, RNA transcription, and qRT-PCR
	Statistical analyses

	Results
	Identification of 27 differentially expressed prognostic PCDs and PRLs in KIRC patients
	Developing and validating a PRL prognostic model for KIRC patients
	Analysis of the clinical characteristics of the PRL prognostic risk model
	Subgroup analysis of prognosis-related clinical features
	Analysis of biological functions and immune cell infiltration levels
	Analysis of immunotherapy and drug sensitivity
	Immunotherapy and PRL subgroup generation in KIRC
	Seven PRL expression levels in KIRC cells

	Discussion
	Acknowledgements
	References


