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Abstract 

Background Hepatocellular carcinoma (HCC) is a common type of malignant tumor where the prognosis is dismal. 
Circular RNA (CircRNA) is a novel RNA that regulates downstream gene transcription and translation to influence 
the progression of HCC. However, the regulatory relationship that exists between E3 ligases, which is a class of post-
translational modifying proteins, and circRNA remains unclear.

Methods Based on the E3 ubiquitin ligase in the competitive endogenous RNA (ceRNA) network, a circRNA-regu-
lated E3 ubiquitin ligase signature (CRE3UL) was developed. A CRE3UL signature was created using the least absolute 
shrinkage and selection operator (Lasso) and Cox regression analysis and merged it with clinicopathologic character-
istics to generate a nomogram for prognosis prediction. The pRRophetic algorithm was utilized and immunological 
checkpoints were analyzed to compare the responses of patients in the high-risk group (HRG) and low-risk group 
(LRG) to targeted therapy and immunotherapy. Finally, experimental research will further elucidate the relationship 
between E3 ubiquitin ligase signature and HCC.

Results HRG patients were found to have a worse prognosis than LRG patients. Furthermore, significant variations 
in prognosis were observed among different subgroups based on various clinical characteristics. The CRE3UL signa-
ture was identified as being an independent prognostic indicator. The nomogram that combined clinical character-
istics and the CRE3UL signature was found to accurately predict the prognosis of HCC patients and demonstrated 
greater clinical utility than the current TNM staging approach. According to anticancer medication sensitivity predic-
tions, the tumors of HRG patients were more responsive to gefitinib and nilotinib. From immune-checkpoint markers 
analysis, immunotherapy was identified as being more probable to assist those in the HRG.

Conclusions We found a significant correlation between the CRE3UL signature and the tumor microenvironment, 
enabling precise prognosis prediction for HCC patients. Additionally, a nomogram was developed that performs well 
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Introduction
Liver cancer remains a global health challenge, with an 
estimated incidence of > 1 million cases by 2025. HCC 
is the most common form of liver cancer and accounts 
for ~ 90% of cases [1, 2]. It is ranked third in global can-
cer mortality and represents more than 8% of all can-
cer-related fatalities [3]. The causes of HCC include 
long-term infections with the hepatitis B and hepatitis C 
viruses, metabolic liver diseases, and alcoholism, which 
contribute to somatic genetic variation and epigenetic 
modifications and ultimately result in hepatocarcino-
genesis [4]. Despite advancements that have been made 
in treatment, those diagnosed with HCC, particularly 
in China, only have a 14.1% 5-year survival rate [5]. As 
a result, identifying subgroups of HCC with therapeutic 
relevance and new predictive biomarkers or signatures is 
imperative for improved risk classification and personal-
ized treatment [6].

CircRNAs are non-coding RNAs that occur due to the 
back-splicing of pre-mRNA [7]. The essential functions 
circRNAs perform include acting as miRNA sponges 
and regulating protein translation [8, 9]. Our previ-
ous research showed circRNAs to be involved in several 
characteristics, including cell aggression and immune 
infiltration [10, 11]. It was discovered that Circ 0061984 

(circPTTG1IP) functions as a competitive endogenous 
RNA (ceRNA) by binding to miR-16-5p, which increases 
the expression of the E3 ubiquitin ligase RNF125 
[12]. Sun et  al. discovered  that circ-ADD3 inhibits 
HCC metastasis through the promotion of EZH2 degra-
dation through CDK1-mediated ubiquitination [13]. One 
study found that circ 0026134 acts as a sponge for miR-
127-5p to upregulate TRIM25 and IGF2BP3 in HCC, 
which promotes HCC development and metastasis [14]. 
However, the direct relationship between circRNA and 
E3 ligase in the ceRNA network remains unclear.

The ubiquitin–proteasome system (UPS) is a crucial 
mechanism in cells that helps maintain protein home-
ostasis through the regulation of the degradation of 
unwanted or damaged proteins [15]. Ubiquitin is a modi-
fied molecule of 76 amino acids extensively conserved 
across eukaryotic cells that covalently binds and labels 
target substrates by a cascade reaction that involves 
ubiquitin-activating enzyme (E1), ubiquitin-conjugating 
enzyme (E2), and ubiquitin-protein ligase (E3) [16]. The 
ubiquitin-protein ligases (E3) are essential enzymes in 
the UPS that are responsible for the regulation of sev-
eral common HCC signaling pathways [17]. A growing 
amount of  evidence has suggested that several struc-
tural or functional abnormalities in E3 ligases contribute 

in predicting the overall survival (OS) of HCC patients. This provides valuable guidance for clinicians in devising spe-
cific personalized treatment strategies.
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to HCC development [17]. However, further research is 
required in order for the relationship between E3 ubiq-
uitin ligase and HCC to be fully understood. Further 
investigation of the mechanisms of E3 ligase dysfunc-
tion in HCC could also offer new insights into the disease 
while also promoting the development of novel treatment 
approaches.

In this research, a nomogram and CRE3UL signature 
were developed as a means of enhancing the capacity to 
evaluate the prognosis and therapeutic responses of HCC 
patients. CRE3UL was created by combining the expres-
sion data and clinical information of HCC patients. Using 
gene set variation analysis (GSVA), the functions of gene 
sets associated with cancer hallmarks and their relation-
ships to the prognoses of HCC patients were thoroughly 
investigated. A CRE3UL signature was created for eval-
uating the prognosis and treatment responsiveness of 
HCC patients. A nomogram for predicting the progno-
ses of HCC patients was then created using this signature 
and clinical data. Finally, experimental research was con-
ducted to deepen the connection between E3 ubiquitin 
ligase signature and HCC.

Materials and methods
Tissue samples and pertinent clinical information
Twenty-four patients with primary HCC at Northern 
Jiangsu People’s Hospital’s Department of Hepatobiliary 
Pancreatic Surgery were identified and underwent sur-
gical therapy. Twenty-four pairs of HCC and neighbor-
ing tissue samples were gathered from the patients in 
the hospital. This research was conducted in accordance 
with the guiding principles of the Declaration of Helsinki. 
Sample donors all signed informed consent forms.

Data downloading and processing
The mRNA expression data and clinical information 
for three independent HCC cohorts were downloaded 
from The Cancer Genome Atlas (TCGA), the Interna-
tional Cancer Genomics Consortium (ICGC), and the 
Gene Expression Omnibus (GEO). The circRNA expres-
sion data were acquired from GSE97332 (371 HCC and 
neighboring tissues) and GSE94508 (50 HCC and neigh-
boring tissues) in the GEO database. Data collection 
was performed in accordance with the usage guidelines 
of the TCGA, ICGC, and GEO databases. For data nor-
malization, the values of the fragments per kilobase of 
transcript per million (FPKM) data (FPKM) in the three 
RNA-seq cohorts were transformed into transcripts 
per million kilobase (TPM) values using the R package 
“limma” [18]. Data that lacked complete clinical informa-
tion or patients with an overall survival time of < 30 days 
were excluded due to other potential mortality causes 
[19].

Identification of genes with differential expression
The R “limma” package was utilized to find differen-
tially expressed circRNAs (DEcircRNAs). The “edgeR” 
package in R was utilized for evaluating differentially 
expressed mRNAs (DEmRNAs) and miRNAs (DEmiR-
NAs). The cut-off values of differentially expressed 
genes (DEGs) were |log2-fold change (FC)|> 1.5 and 
p < 0.05.

Constructing the competing endogenous RNA network
The target miRNAs of DEcircRNAs were obtained 
by querying the Cancer-Specific CircRNA Database 
(CSCD), after which the overlapping target DEmiR-
NAs were obtained by intersecting with DEmiRNAs 
[20]. The miRDB and TargetScan databases were then 
used to anticipate the identified target mRNAs of the 
DEmiRNAs. Overlapping differentially expressed tar-
geted E3 ubiquitin ligases were obtained by the inter-
section of targeted mRNAs, DEmRNAs, in addition to 
differentially expressed E3 ubiquitin ligases [21, 22]. 
Finally, Cytoscape was used to visualize the ceRNA 
network, which consisted of circRNA–miRNA–mRNA 
[23].

Functional enrichment analysis
R package “clusterProfiler” and the KOBAS (KEGG 
Orthology-Based Annotation System) database were 
used to conduct Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis for 
studying the biological mechanism of CRE3UL signa-
ture regulation [24].

Consensus clustering
Unsupervised clustering was performed on all the 
HCC patients from TCGA using the “ConsensusClus-
terPlus” package for identifying distinct molecular 
patterns linked with diverse overall survival (OS) out-
comes based on prognostic gene sets [25]. This research 
determined k values where the cumulative distribution 
function (CDF) plots stabilized at a maximum and the 
consensus matrix had diagonal blocks that were rela-
tively prominent. The optimal clustering number was 
then established, which was validated using the pro-
portion of the ambiguous clustering (PAC) method [26, 
27].

Analysis of immunological function and immunological 
infiltration
GSVA was undertaken as a means of exploring the 
Hallmark pathway of HCC patients in ubiquitin (UB) 
clusters A and B. The stromal score, immune score, esti-
mate score, and immune cell infiltration in two clusters 



Page 4 of 21Wu et al. European Journal of Medical Research          (2024) 29:318 

were all examined using R packages “ESTIMATE” and 
“CIBERSORT”. The relative levels of infiltration by 23 
immune cells in HCC samples were determined using 
the Single-Sample Gene Set Enrichment Analysis 
(ssGSEA) method [28]. Finally, immune-checkpoint-
related genes were analyzed to assess the immune treat-
ment responses of UB cluster A and B HCC patients.

Construction and verification of the CRE3UL signature
342 HCC patients in the TCGA cohort were randomly 
divided into the training set (n = 206) and testing set 
(n = 136) with a ratio of 6:4 [29]. Univariate Cox regres-
sion was used for screening significant univariate genes 
in the training cohort. In the training cohort, these rel-
evant univariate genes were then subjected to LASSO 
Cox regression analysis to minimize the risk of overfitting 
between signatures [30, 31]. The five genes for building 
risk models were further selected using multivariate Cox 
regression, and their correlation coefficients were then 
computed. Internal validation was performed using the 
testing set and the complete TCGA cohort to validate the 
predictive efficacy of the model. The ICGC-LIRI cohort 
was used as external validation and time-dependent ROC 
analysis (t-ROC) was used to assess the sensitivity and 
specificity of the signature. The accuracy and discrimi-
nation of the prognostic risk model were compared with 
clinical characteristics. Finally, Principal Component 
Analysis (PCA) was used to further validate the capacity 
to group of the signature.

Development and assessment of the nomogram
R package “rms” was used to generate a nomogram 
including clinical characteristics and a risk score. The 
calibration curves for years 1, 2, and 3 were also drawn to 
validate the accuracy of the nomogram. The survival for 
progression-free survival (PFS) in HCC patients of the 
Kaplan–Meier integrated nomogram was then analyzed.

Assessing the tumor microenvironment (TME) and tumor 
mutation burden (TMB) correlation
Analyzing somatic mutations to evaluate the Tumor 
Mutational Burden scores. R package “maftools” was 
used to generate waterfall graphs for the high- and low-
risk groups. GSVA was used to study KEGG pathways in 
the high- and low-risk patients. In addition, the ssGSEA 
method was used to determine the relative levels of infil-
tration by 28 immune cells in HCC samples.

Immunotherapy drug sensitivity and effectiveness 
evaluation
R package “pRRophetic” was utilized for estimating 
chemotherapeutic sensitivity by measuring the 50% high-
est inhibitory concentration (IC50) of distinct groups 

of samples using ridge regression [32]. Immunotherapy 
response was subsequently predicted using the Tumor 
Immune Dysfunction, Exclusion, MSI Expr Sig, and 
TIDE Tool. Immune checkpoint-related genes were then 
used to assess the immune treatment responses of HRG 
and LRG HCC patients. Higher expression levels of genes 
associated with immunological checkpoints suggested 
the suitability of patients for immunotherapy. Immune 
Profile Score (IPS) analysis was then used as a means of 
evaluating the immunogenicity of both groups.

Quantitative real‑time PCR
Total RNA was isolated using the TRIzol reagent (Inv-
itrogen Carlsbad, CA, USA) according to the manu-
facturer’s instructions from 24 matched HCC and 
paracancerous tissues. Reverse transcription of cDNA 
was subsequently performed using the PrimeScriptTM 
RT reagent Kit (Takara Bio Inc., Japan). The SYBR-Green 
PCR kit (Takara, Osaka, Japan) was used in a Rotor-Gene 
3000 machine (Corbett Life Science, Sydney, Australia) 
for conducting real-time PCR. Finally, the  2-ΔΔCt method 
was utilized to perform data analysis.

Single‑cell sequencing analysis
Tumor Immune Single Cell Hub 2 (TISCH2) is a single-
cell RNA-seq database that enables interactive single-cell 
transcriptome visualization of the TME while also pro-
viding specific annotation of cell types [33]. The LIHC_
GSE166635 dataset in TISCH2 is a liver cancer dataset 
that is generated using the 10 × Genomics platform. It 
contains single-cell RNA-sequencing data for 10 liver 
cancer samples and 6 normal liver tissue samples [34].

Statistical analysis
Kaplan–Meier and log-rank tests were used for evaluat-
ing the OS rates of HCC patients. The R 4.1.2 and Graph-
Pad Prism 8 were used for conducting statistical analyses 
and P < 0.05 indicated a statistically significant difference.

Results
Differentially expressed genes and the competing 
endogenous RNA network in HCC patients
The workflow of this study is illustrated in Fig.  1. 15 
DEcircRNAs in HCC tissues were obtained from the 
GSE97332 and GSE94508 datasets (|log2FC|> 1.5 and 
p < 0.05) (Fig.  2A–C). However, only 14 circRNAs were 
found in the database (Fig.  2D). 300 DEmiRNAs and 
6,565 DEmRNAs in HCC tissues were obtained from 
the TCGA database. Next, we obtained 897 E3 ubiquitin 
ligases from the IUUCD (http:// iuucd. biocu ckoo. org/). 
However, only 833 E3 ubiquitin ligases were extracted 
from the TCGA and ICGC databases. The 6565 DEmR-
NAs in the TCGA database were then intersected with 

http://iuucd.biocuckoo.org/
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833 E3 ubiquitin ligases to obtain an overlapping total 
of 344 differentially expressed E3 ubiquitin ligases. Fur-
thermore, the CSCD was used for predicting the target 
miRNAs of 14 circRNAs and 676 target miRNAs were 
obtained. The 300 DEmiRNAs in the TCGA database 
were then intersected with 676 target miRNAs, which 
resulted in an overlapping of 54 target DEmiRNAs. The 
miRDB and TargetScan databases were used for predict-
ing the targeted mRNAs of the 54 target DEmiRNAs, 
which yielded 776 targeted mRNAs. By intersecting the 
776 targeted mRNAs with the 344 differentially expressed 
E3 ubiquitin ligases, an overlapping total of 237 dif-
ferentially expressed targeted E3 ubiquitin ligases was 
obtained. Finally, the CRE3UL ceRNA network consist-
ing of 14 DEcircRNAs, 54 DEmiRNAs, and 237 DEmR-
NAs (E3) was constructed (Fig. 3A).

CircRNA‑regulated E3 ubiquitin ligase biological function 
analysis
Functional enrichment analyses were performed to elu-
cidate the biological roles of circRNA-regulated E3 

ubiquitin ligases. The biological process (BP) included 
protein polyubiquitination and proteasomal protein cata-
bolic process, the cellular component (CC) included the 
ubiquitin ligase complex, and the molecular function 
(MF) included ubiquitin-like protein transferase activ-
ity and ubiquitin-protein transferase activity (Fig.  3B). 
KEGG analysis showed the signature genes to be con-
nected with the ubiquitin-mediated proteolysis signaling 
pathways (Fig. 3C).

CRE3UL‑guided identification of UB clusters 
with prognostic significance
Unsupervised consensus clustering of CRE3UL was 
performed and it was classified into distinct molecular 
clusters. The findings showed the optimum number of 
clusters to be two, which resulted in the CDF plots stabi-
lizing at a maximum and the consensus matrix having a 
relatively prominent diagonal block. The PAC algorithm 
further corroborated this (Fig. 4A–C). The CRE3UL was 

Fig. 1 Flowchart of the analysis
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ultimately categorized into two separate clusters (Fig. 4D and E). Notably, Kaplan–Meier curve analysis showed a 
significantly better prognosis for UB cluster B than for 
UB cluster A (Fig. 4F).

Fig. 2 A Volcano plot of differentially expressed E3 ubiquitin ligase from GSE97332. B Volcano plot of differentially expressed E3 ubiquitin ligase 
from GSE94508. C Venn diagram to identify differentially expressed E3 ubiquitin ligase. D Interaction patterns of the 14 differentially expressed 
circRNAs in HCC. Red, blue, and green represent microRNA response elements, RNA-binding proteins, and open reading frames, respectively
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Relationship between CRE3UL‑based UB clusters 
and tumor microenvironment, immunological infiltration, 
immune function, and immune checkpoint
ssGSEA was used in the whole TCGA cohort to delin-
eate the infiltration of the immune cells to learn more 
about the potential clinical benefits of UB clusters. As 
can be seen in Supplementary Fig. 1A, UB cluster A was 
substantially connected with infiltrating immune cell 
types, including activated CD4 T cell, T follicular helper 
cell, and type 2  T helper cell. GSVA analysis showed 

that UB cluster A was substantially concentrated in 
processes linked to carcinogenic pathways, including 
the MYC, WNT, TGF, and PI3K signaling pathways, 
and UB cluster B was mainly found to be concentrated 
in processes linked to material metabolism, includ-
ing the cholesterol homeostasis, fatty acid metabolism, 
and xenobiotic metabolism (Supplementary Fig. 1B). In 
addition, the violin plot showed UB cluster B to exhibit 
higher Stroma, Immune, and ESTIMATE Scores 
(P < 0.05, Supplementary Fig.  1C). Immune function 

Fig. 3 Functional enrichment analysis of CRE3UL. A circRNA–miRNA–mRNA (E3) ceRNA network in CRE3UL. Red, yellow, and blue nodes indicate 14 
DEcircRNAs, 54 DEmiRNAs, and 237 DEmRNAs (E3), respectively. B GO enrichment analysis. C KEGG enrichment analysis. CRE3UL, circRNA-regulated 
E3 ubiquitin ligase; ceRNA, competing endogenous RNA; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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was evaluated using the ssGSEA methodology and type 
II and type I interferon responses showed that individ-
uals in UB Cluster B exhibited a higher level of cytol-
ytic activity (Supplementary Fig. 1D). Due to the role of 
immune-checkpoint inhibitors (ICIs) in HCC therapy, 
UB clusters A and B were analyzed for immunological 
checkpoint gene expression. The majority of immune 
checkpoints, including CD-274, PDCD-1 (PD-1), and 
CTLA4, were found to be expressed at a greater level in 
UB cluster A, which demonstrated that patients in UB 
cluster A would be resistant to immunotherapy (Sup-
plementary Fig. 1E).

Development and validation of the CRE3UL signature
Next, samples from 342 and 229 HCC patients were 
obtained from the TCGA and ICGC databases. The 
whole TCGA cohort was randomly split about 6:4 into 
a training dataset (n = 206) and a validation dataset 
(n = 136) (Supplementary Table  1). Additionally, the 
whole TCGA and ICGC cohort further served as inter-
nal and external validations. LASSO regression and 
Cox proportional hazard model analysis were used for 
identifying the most appropriate model in the train-
ing dataset (Fig.  5A and B). Following a univariate Cox 
analysis, 102 differentially expressed E3 ubiquitin ligases 

Fig. 4 Identification of CRE3UL-based UB cluster. A The corresponding relative change in area under the cumulative distribution function (C, D, F) 
curves and the optimal number of clusters (k) was 2. B Consensus clustering CDF for k = 2 to 9. C Heatmap of sample clustering at consensus k = 2. 
D Heatmap showing the GSVA score of stage, grade, gender, age, and fustat in two UB clusters. E PCA plot visualizing the two UB clusters F Kaplan–
Meier survival plots of cluster 1 and cluster 2 for OS. OS, overall survival. PCA, principal component analysis. GSVA, Gene set variation analysis
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Fig. 5 Establishment of the circRNA regulatory E3 ubiquitin ligase prognostic signature for HCC patients. A, B Cross-validation for tuning 
the parameter selection in the LASSO regression. C Univariate Cox analysis of the genes selected by circRNA. D The presentation of five E3 ubiquitin 
ligases in multivariate Cox regression analysis
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related to overall survival (OS) were chosen (Fig.  5C). 
In addition, multivariate analysis identified the model 
formed by five E3 ubiquitin ligase risk scores, which 
were calculated through the use of the following for-
mula: Riskscore = −  0.45 * EXP SOCS2 + 0.27 * EXP 
PPP2R2C + 0.50 * EXP NOL10 + 0.26 * EXP FBXL7 + 0.52 
* EXP WDHD1) (Fig.  5D). HCC patients from different 
cohorts were separated into the HRG and LRG using the 
median risk score (Supplementary Fig. 2A and B). In vari-
ous datasets, Kaplan–Meier analysis showed high-risk 
patients to have considerably lower OS rates than low-
risk patients (Supplementary Fig.  2C). In addition, the 
t-ROC plot was used to assess the accuracy of the model. 
The area under the ROC curve (AUC) of each dataset in 
the 1-year, 2-year, and 3-year survival can be seen in Sup-
plementary Fig. 2D.

Subgroup analysis and Cox analyses of the CRE3UL 
signature
The CRE3UL signature was used for predicting the 
prognostic indicator for subgroups of TCGA database 
patients with different clinical features which can be seen 
in Supplementary Fig.  3. Regarding age, gender, grade, 
and clinical stage, the HRG exhibited lower OS rates than 
the LRG (P < 0.001). Univariate and multivariate Cox 
analyses found the CRE3UL signature to be an independ-
ent prognostic risk factor in the merged dataset. In the 
TCGA training set, univariate Cox regression analysis 
found the hazard ratio (HR) of the model to be 1.143 and 
a 95% CI of 1.077–1.212 (P < 0.001) (Fig. 6A). Multivariate 
Cox regression analysis then found the hazard ratio (HR) 
of the model to be 1.113 and a 95% CI of 1.046–1.185 
(P < 0.001) (Fig. 6B). In TCGA testing, whole TCGA, and 
ICGC cohorts, univariate Cox regression analysis yielded 
respective HR values of 1.303 (95% CI 1.219–1.393, 
P < 0.001), 1.198 (95% CI 1.150–1.247, P < 0.001), and 
1.195 (95% CI 1.086–1.316, P < 0.001) (Fig. 6C, E, and G). 
Multivariate Cox regression analysis then yielded respec-
tive HR values of 1.303 (95% CI 1.208–1.407, P < 0.001), 
1.168 (95% CI 1.120–1.219, P < 0.001), and 1.219 (95% CI 
1.098–1.353, P < 0.001) (Fig.  6D, F, and H). In addition, 
the relationship between CRE3UL and clinicopatho-
logic features was investigated, and it was found that 
tumor, grade, and stage were significantly associated with 
CRE3UL (Fig. 6I).

Comparing the accuracy and discrimination 
of the prognostic risk model with clinical characteristics
To evaluate the credibility of the model, candidate pre-
dictive factors, including tumor stage, age, gender, and 
pathological grade, were used to assess the ability of the 
risk score model to see whether patient survival could be 
accurately predicted. In addition, the 1-year prognosis 

AUC curve and the C-index were assessed. The risk 
score had the highest AUC values compared to other fac-
tors (Supplementary Fig.  4A). Similarly, the C-index of 
the risk score was consistently higher than other clini-
cal indicators over time (Supplementary Fig. 4B), which 
suggests a more accurate forecasting of the model when 
evaluating HCC prognosis. Moreover, the risk scores 
were significantly higher in tumor grades 3–4 (P < 0.001) 
or tumor stages III–IV (P < 0.001) when the relationship 
between risk scores and clinical features of HCC patients 
was monitored (Supplementary Fig. 4C and D). However, 
no notable relationship was observed between risk score 
and gender or age. (Supplementary Fig. 4E and F).

Principal component analysis (PCA) further confirms 
the grouping capability of the signature
PCA was performed with TCGA and ICGC genome 
expression profiles of five E3 ubiquitin ligases to discover 
the differences between the HRG and LRG. The relative 
distribution of five E3 ubiquitin ligases in the HRG and 
LRG based on TCGA and ICGC genome expression pro-
files can be seen in Supplementary Fig. 5A and, B. Next, 
t-distributed stochastic neighbor embedding (t-SNE2) 
was used to determine the distinctions between the HRG 
and LRG. The model showed distinct distributions for 
LRG and HRG (Supplementary Fig. 5C and D). The above 
findings show that the prognostic model was able to dif-
ferentiate distinctly between the two groups.

Development and assessment of the nomogram
The nomogram predicts 1, 2, and 3-year OS by combin-
ing the risk model and tumor stage information from 
the whole dataset (Fig. 7A). The calibration plots for 1-, 
2-, and 3-year OS show that the predictions and actual 
observations of the nomogram have a good consistency 
(Fig.  7B). The generated  nomogram outperforms a risk 
model alone in terms of prediction accuracy. In addition, 
decision curve analysis (DCA) was conducted to evaluate 
the clinical utility of the nomogram. The nomogram was 
found to outperform both the risk model and clinical fea-
tures regarding net benefit (Fig. 7C). Finally, the Kaplan–
Meier analysis for PFS demonstrated a significantly better 
prognosis for low-risk patients than high-risk patients 
(Fig. 7D). According to these results, the nomogram can 
more accurately predict the prognosis of HCC patients 
than a single clinical feature or our signature, which may 
facilitate easier clinical management and provide tailored 
treatment options.

Relationship between the CRE3UL signature and somatic 
mutations
Mutation accumulation typically drives tumor devel-
opment and remodeling of the tumor immune 
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Fig. 6 Univariate and multivariate Cox analyses of HCC. Univariate Cox regression results in the A TCGA training set, C TCGA testing set, E whole 
TCGA cohort, and G ICGC cohort. Multivariate Cox regression results in the B TCGA training set, D TCGA testing set, F whole TCGA cohort, and H 
ICGC cohort. I Relationship between the CRE3UL signature and clinical characteristics (***p < 0.001, **p < 0.01, *p < 0.05)
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microenvironment (TIME). Therefore, the difference 
between HRG and LRG  regarding somatic  mutations 
was investigated. In the HRG, TP53 (40%), TTN (24%), 
CTNNB1 (21%), and MUC16 (16%) were found to have 
the most mutation frequencies (Fig.  8A). In the LRG, 
CTNNB1 (29%), TTN (19%), TP53 (14%), and MUC16 
(13%) were found to have the most mutation frequencies 
(Fig. 8B). The findings showed the HRG to have a greater 
number of immune-related mutations. The optimal TMB 
cutoff was then used to separate patients into low and 
high TMB groups. The findings showed that a higher 
TMB value was connected with a shorter OS (Fig.  8C, 
p < 0.001). Risk score and best TMB cut-off values were 
then used to separate TCGA patients into four groups. 
Patients with low TMB and risk levels were found to 
have a higher survival rate than those with high TMB and 
risk levels, as can be seen in the Kaplan–Meier analysis 
(Fig. 8D, p < 0.001).

CRE3UL signature was associated with the immunological 
state in the HCC tumor microenvironment
The immunological microenvironment of patients from 
HRG and LRG was then explored. ssGSEA was used in 
the whole TCGA cohort to delineate the infiltration of 
the immune cells. As can be seen in Fig.  9A, the HRG 
was substantially linked with infiltrating immune cells, 
including Activated dendritic cell, Activated CD4 T 
cell, Central memory CD4 T cell, Effector memory CD8 
T cell, Natural Killer T cell, T follicular helper cell, and 
Type 2T helper cell. GSVA analysis showed HRG to be 
substantially linked with homologous recombination, cell 
cycle, and oocyte meiosis. However, the LRG were pre-
dominantly linked with metabolism-related processes, 
including primary bile acid biosynthesis, phenylala-
nine, tyrosine metabolism, and linoleic acid metabolism 
(Fig. 9B). As previously stated, the findings demonstrate 
an apparent disparity in biological function between the 

Fig. 7 Establishment and assessment of a nomogram in the entire set. A The nomogram predicts the probability of the 1, 2, and 3 years of OS. B 
The calibration plot prediction via nomogram of the OS at 1, 2, and 3 years. C Decision curve analysis for the nomogram, age, gender, grade, stage, 
and risk score. D Kaplan–Meier survival analysis of the integrated nomogram for PFS in HCC patients
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HRG and LRG. Next, ssGSEA was used in the RNA-seq 
data of the TCGA-LIHC cohort to assess immune cell 
infiltration and associated function. It was found that 
the populations of immune cells that promote tumor-
killing actions, such as NK cell and Mast cell, were linked 
with LRG patients, while immune cell populations that 
have an inhibitory influence on the tumor-killing action, 
such as regulatory T cells (Tregs), were linked with 
HRG patients (Fig.  9C). Furthermore, type II interferon 
responses showed that individuals in low-risk groups 
exhibited a higher level of cytolytic activity (Fig. 9D). At 
the same time, the result of the immunological micro-
environment in the ICGC cohort was similar to that of 
the TCGA cohort (Fig. 9E and F). Generally, the findings 

revealed there to be a correlation between low-risk 
patient groups and an immunological milieu that pro-
motes tumor killing.

Drug susceptibility and immunotherapy prediction
How well the CRE3UL signature predicted the outcome 
of therapy for HCC was then examined. The pRRo-
phetic algorithm was used for calculating the IC50 val-
ues of four anticancer (gefitinib, nilotinib, gemcitabine, 
and sorafenib) medications. The findings showed gefi-
tinib and nilotinib therapy to be beneficial for HRG 
patients, while gemcitabine therapy was beneficial for 
LRG patients. The IC50 value of sorafenib was not statis-
tically different between HRG and LRG (Supplementary 

Fig. 8 Relationship between the E3 ubiquitin ligase signature and somatic mutation. Waterfall plots of 15 genes with the highest mutation rates 
in the high-risk group (A) and the low-risk group (B). C Kaplan–Meier analysis of TMB in HCC patients. D Kaplan–Meier analysis of the correlation 
between risk score and TMB
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Fig. 9 Overview of CRE3UL signature-related immune infiltration. A The box plot presents the relative composition of multiple cell types 
in the high-risk and low-risk groups of patients with the CRE3UL signature. B GSVA analysis of biological pathways between the two distinct 
risk groups. C Comparison of immune cell infiltration in the high- and low-risk groups in the TCGA-LIHC cohort. D Comparison of immune 
function in the high- and low-risk groups in the TCGA-LIHC cohort. E Comparison of immune cell infiltration in the high- and low-risk groups 
in the ICGC-JIHC cohort. F Comparison of immune function in the high- and low-risk groups in the ICGC-JIHC cohort. Statistical significance 
was denoted with *p < 0.05, **p < 0.01, and ***p < 0.001
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Fig. 6A–D). In addition, the investigation indicated that 
HRG patients had lower dysfunction scores (distribu-
tion of dysfunction in TCGA-HCC, Supplementary 
Fig.  6E, p < 0.001). Exclusion and MSI Expr Sig scores 
were greater in HRG than LRG patients (Supplementary 
Fig.  6F and H), while the TIDE scores were the inverse 
result (Supplementary Fig. 6G). Regarding immunother-
apy, expressions of PDCD1 (PD1), CTLA-4, and CD276 
were higher in HRG, which indicates that these patients 
would be resistant to immunotherapy (Supplementary 
Fig.  6I). Finally, IPS analysis was used for analyzing the 
immunogenicity of the two groups. According to the 
findings, ips ctla4 neg pd1 neg and ips ctla4 pos pd1 neg 
scores were greater in the group with low expression. 
(Supplementary Fig.  6J–M). The above findings provide 
additional reference values for the development of indi-
vidualized treatment strategies for HCC patients.

Functional enrichment analyses of five E3 ubiquitin ligases 
and qRT‑PCR verification of their expression in HCC
Gene Set Enrichment Analysis (GSEA) was used for 
investigating the KEGG pathway enrichment in two 
groups. Cell cycle, Cytokine receptor interaction, and 
ECM receptor interaction pathways were substantially 
found to be linked with HRG patients (Fig.  10A). Simi-
larly, Alanine aspartate and glutamate metabolism, Beta-
alanine metabolism, Limonene, and pinene degradation 
pathways were found to be substantially enriched in 
LRG patients (Fig.  10B). qRT-PCR was then employed 
to assess the CRE3UL (NOL10, PPP2R2C, FBXL7, 
WDHD1, and SOCS2) expression in HCC. The mRNA 
expression levels in 24 HCC tissues and paracancerous 
tissues were evaluated. The findings revealed NOL10, 
PPP2R2C, and FBXL7 to be expressed more in HCC tis-
sues than in paracancerous tissues, while SOCS2 showed 
the inverse results. However, the WDHD1 gene exhib-
ited no great differences (Fig.  10C–F). The expression 
of SOCS2 in HCC tissues has been reported in existing 
literature studies [35]. Finally, TISCH2 was utilized for 
identifying the expression distribution of five E3 ubiqui-
tin ligases at the single-cell level to investigate the TME 
heterogeneity. The GSE166635 dataset was divided into 
11 types of cells (Fig. 10G). Figure 10H shows the number 
of cells in each cell type, with the distribution and num-
ber of various TME-related cells presented. Single-cell 
analysis showed that five E3 ubiquitin ligases expression 
was distributed in most immune cell types, which sug-
gests that five E3 ubiquitin ligases are closely related to 
the TME in HCC (Fig. 10I–M).

Discussion
HCC is susceptible to metastasis and has a poor prog-
nosis [36]. Therefore, finding predictive prognostic 

biomarkers for HCC to improve the treatment results of 
HCC patients is essential. Increasing evidence indicates 
that E3 ligases play a crucial role in HCC by regulating 
the degradation of tumor promoters and repressors [17]. 
CircRNA-based signatures accurately predict the prog-
noses of cancer patients. However, it is uncertain if the 
CRE3UL signature can predict HCC prognosis.

This study focused on the CRE3UL signature. First, 
ubiquitin ligase-associated competitive endogenous RNA 
was constructed. CRE3ULs were established based on 
E3 ubiquitin ligase in the competitive endogenous RNA 
network. GO and KEGG analysis was then conducted 
on circRNA-regulated E3 ubiquitin ligases to elucidate 
their biological roles. Using GSVA, the functions of gene 
sets associated with cancer hallmarks and their relation-
ships to the prognosis of HCC patients were thoroughly 
investigated. Two subgroups with differing prognostic 
outcomes were discovered. Next, two clusters were com-
pared to the  tumor microenvironment, immunological 
infiltration, immune function, and checkpoint. LASSO 
regression and Cox proportional hazard model analy-
sis were used to identify the most appropriate model in 
the TCGA training dataset. Following univariate Cox 
analysis, 102 differentially expressed E3 ubiquitin ligases 
related to overall survival (p < 0.05) were chosen. Mul-
tivariate analysis also identified the model formed by 
five E3 ubiquitin ligase risk scores. According to ROC 
analysis and C-index, the model exceeded conventional 
clinical features in the prediction of HCC survival. A 
nomogram was used to evaluate the 1-, 2-, and 3-year 
overall survival rates of HCC patients, and the pre-
dicted and observed values were found to be consistent. 
As indicated by the C-index and DCA analyses, the cre-
ated nomogram predicted the prognosis of HCC patients 
more accurately and reliably. The findings show that the 
model outperforms TNM staging. It has been proven 
that TMB is related to immunotherapy efficacy and prog-
nosis for several different cancers. However, the precise 
mechanism of action in HCC was not identified [37]. 
Therefore, the somatic mutation differences between the 
two groups were compared. TP53 showed the greatest 
mutation rate (40%) in the HRG, while CTNNB1 exhib-
ited the highest mutation rate (29%) in the LRG. Accord-
ing to previous results, the most commonly observed 
mutations in HCC are the TP53 and CTNNB1 genes 
[38, 39]. Exome sequencing studies surprisingly revealed 
CTNNB1 mutation to be substantially connected with 
alcohol-related HCC, while TP53 mutation was found 
to be prevalent in HBV-related HCC [40]. Theoretically, 
drinkers may be referred to the low-risk category, while 
more HBV-infected individuals may be referred to the 
high-risk category. This is consistent with the research 
findings. The immunological microenvironment of 
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Fig. 10 KEGG enrichment analysis for the high-risk (A) and low-risk groups (B) of CRE3UL. Validation of mRNA expression by real-time PCR 
and mRNA expression of five genes associated with E3 ubiquitin ligase in 24 HCC tissues and paracancerous tissues. ns, not statistically significant; 
*p < 0.05; **p < 0.01; ***p < 0.001 (C–F). G, H The cell types and their distribution in the GSE166635 dataset. I–M The distribution of five genes 
associated with E3 ubiquitin ligase in different cell types was analyzed using single-cell resolution in the GSE166635 dataset
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patients from HRG and LRG was subsequently analyzed. 
The populations of immune cells that promote tumor-
killing actions, such as NK cell and Mast cell, were found 
to be linked with LRG patients, while immune cell popu-
lations that have an inhibitory influence on the tumor-
killing action, such as regulatory T cells (Tregs), were 
found to be linked with HRG patients. Recent investi-
gations have found HCC development and progression 
to be linked to a distinctive immune response profile of 
the liver microenvironment where CD4 + CD25 + Foxp3 
regulatory T cells (Tregs) play a crucial role with their 
immunosuppressive function. Tregs are characterized 
by the expression of the transcription factor Foxp3 and 
various mechanisms ranging from cell-to-cell contact to 
secretion of inhibitory molecules have been implicated 
in their function. It is notable that Tregs amply express 
checkpoint molecules such as cytotoxic T lymphocyte-
associated antigen 4 (CTLA4) and programmed cell-
death 1 (PD1) receptor and represent a direct target of 
immune-checkpoint inhibitor (ICI) immunotherapy [41]. 
Regarding drug sensitivity prediction, the IC50 values 
of four anticancer (gefitinib, nilotinib, gemcitabine, and 
sorafenib) medications were calculated to predict how 
HRG and LRG patients would respond to anticancer drug 
therapy. Gefitinib and nilotinib treatment may be advan-
tageous for HRG patients, but LRG patients may ben-
efit from gemcitabine therapy, which demonstrates that 
the CRE3UL signature can be utilized to personalize the 
treatment of HCC patients. Immunotherapy response is 
generally predicted by immune-checkpoint molecule and 
IPS expression [42]. In this study, the high-risk patients 
had greater CTLA4, PD1, and PD-L1 expression levels 
and higher IPS values. Regarding immunotherapy, HRG 
patients were found to be better immunotherapy candi-
dates than LRG patients. The aforementioned findings 
have revealed risk score to be a crucial indicator for the 
evaluation of immunological state. Recent studies have 
discussed the fundamental principles, effectiveness, 
and safety of Tyrosine Kinase Inhibitor (TKI) combined 
with Immune Checkpoint Inhibitor (ICI) treatment for 
hepatocellular carcinoma. These studies have also dis-
cussed the available results from other clinical trials that 
have used similar combinatorial therapeutic approaches 
[43]. The validation of the findings of this study can be 
enhanced by increasing the dataset through the collec-
tion of a larger sample size of hepatocellular carcinoma 
patients who are undergoing combined TKI + ICI ther-
apy. The aim of this approach is to bolster the robust-
ness of the results. Finally, qRT-PCR was employed 
for assessing the CRE3UL (NOL10, PPP2R2C, FBXL7, 
WDHD1, and SOCS2) expression levels in 24 HCC and 
paracancerous tissues. The findings revealed that NOL10, 
PPP2R2C, and FBXL7 were expressed more in HCC than 

paracancerous tissues, while SOCS2 showed the inverse 
result. However, the WDHD1 gene exhibited no great 
differences. This lack of significance could be attributed 
to the limited sample size and non-parallel protein and 
mRNA expressions.

Circ 0004913, which is a component of the developed 
E3 ubiquitin ligase-related ceRNA network for HCC, 
was downregulated in HCC tissues. High expression of 
circ 0004913 was found to be linked with a longer OS 
in all HCC patients [44]. One study has found that circ 
0004913 sponges miR-1290 and regulates FOXC1 to 
inhibit the proliferation of HCC [45]. Zhou et  al. found 
that circ 0001806 promotes HCC development through 
the miR-193a-5p/MMP16 axis [46]. Another study found 
the overexpression of circ 0067934 to be connected with 
a worse outcome in HCC patients [47]. However, there 
have been few investigations on other circRNAs in HCC 
and further research in this area is necessary. The risk 
prognostic model was subsequently established using 
LASSO and Cox regression analysis, based on five E3 
ubiquitin ligases: SOCS2, NOL10, PPP2R2C, FBXL7, 
and WDHD1. SOCS2 (Suppressor of Cytokine Signal-
ing 2) is a protein that is a member of the family of cel-
lular regulators that is involved in negative feedback in 
cell signaling. The basic structure of SOCS2 includes an 
N-terminal domain, a central SOCS box, and a C-termi-
nal tail, which enables its interaction with other signal-
ing molecules for signal modulation. SOCS2 is one of the 
most critical circRNA-regulated E3 ubiquitin ligases in 
the network, and it has been found to be downregulated 
in HCC tissues and cells. Ren et  al. discovered SOCS2 
negatively regulated the activation of the JAK/STAT 
pathway in HCC cells, thereby inhibiting HCC progress 
[48]. Available research has shown SOCS2 overexpres-
sion to decrease HCC invasion and migration, while 
SOCS2 knockdown increases HCC development, which 
suggests that SOCS2 may limit the formation of HCC 
[49]. Furthermore, numerous investigations have sug-
gested that SOCS2 also exerts significant effects in the 
central nervous system, metabolic regulation, immune 
response, mammary gland development, and other 
cytokine-dependent signaling pathways [50]. Another 
E3 ubiquitin ligase, NOL10 is a nucleolar protein, and 
its basic structure is likely to include domains that are 
associated with nucleolar functions. These domains may 
be involved in processes including ribosome biogenesis 
and RNA processing. Hu et al. discovered NOL10 to pro-
mote HCC migration and invasion. A higher expression 
of NOL10 has robust connections with poorer overall 
survival, relapse-free survival, post-progression survival, 
and disease-specific survival. ROC curves analysis has 
shown NOL10 to be a potential biomarker for HCC diag-
nosis with great sensitivity and specificity [51]. PPP2R2C, 
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which is also known as Protein Phosphatase 2 Regulatory 
Subunit B, Gamma, is a subunit of protein phosphatase 
2A (PP2A) that plays an important role in the regulation 
of cellular protein phosphorylation. Fan et  al. discov-
ered that PPP2R2C overexpression reduces the devel-
opment of human glioma cells by inhibiting the mTOR 
pathway [52]. One study has revealed that MiR-572 pro-
motes human ovarian cancer cell growth by inhibiting 
PPP2R2C expression [53]. Another study discovered that 
miR-1301 increases prostate cancer growth by directly 
targeting PPP2R2C [54]. In addition, F-box and leucine-
rich repeat protein 7 (FBXL7), an F-box protein that is 
accountable for substrate recognition in the SKP1-Cul-
lin-1-F-box (SCF) ubiquitin ligases, assumes a growing 
function in the control of tumorigenesis and tumor pro-
gression. FBXL7 induces polyubiquitylation and break-
down of various substrates and is involved in numerous 
biological processes, including apoptosis, cell prolifera-
tion, cell migration and invasion, tumor metastasis, DNA 
damage, glucose metabolism, planar cell polarity, and 
drug resistance [55]. FBXL7 exhibits aberrant expression 
in a variety of cancers. Patients who exhibited elevated 
levels of FBXL7 were found to demonstrate poorer OS 
across multiple cancer types, including colon adenocar-
cinoma, rectum adenocarcinoma, stomach cancer, liver 
cancer, thyroid cancer, lung cancer, and urothelial can-
cer. However, better survival outcomes were observed 
in kidney renal clear cell carcinoma, which suggests the 
oncogenic nature of FBXL7 [55]. WD repeat and high-
mobility group box DNA-binding protein 1 (WDHD1), 
also recognized as acidic nucleoplasmic DNA-binding 
protein 1 (AND-1), and human chromosome transmis-
sion fidelity factor 4 (CTF4), is a relatively evolutionarily 
conserved protein with 1129 amino acids and homologs 
in most eukaryotes [56]. A recent investigation showed 
WDHD1 to modulate the cancer cell cycle checkpoint, 
engage in oncogene-induced re-replication, and impact 
tumor growth and metastasis [57]. Cui et al. discovered 
WDHD1 mRNA levels exhibited a substantial increase 
in more than 20 types of tumor tissues. Heightened 
WDHD1 expression is correlated with significantly 
shorter OS in ten tumors. Furthermore, WDHD1 expres-
sion showed a significant association with higher histo-
logical grades and pathological stages in uterine corpus 
endometrial carcinoma (UCEC) and liver hepatocellular 
carcinoma (LIHC) [58]. There is limited research on the 
aforementioned genes in HCC and this investigation has 
validated the effectiveness of the prognostic risk model, 
utilizing these five genes for precisely predicting the 
survival outcomes of HCC patients. This model enables 
a more personalized prognosis assessment and consid-
ers genetic variations and molecular differences among 
individual patients. It helps physicians better evaluate 

the survival risks of patients and formulate personal-
ized treatment plans. By controlling the degradation or 
repressors of tumor promoters, E3 ligases play an impor-
tant role in HCC, as evidence suggests. It has also been 
conclusively demonstrated that several E3 ligase targets 
regulate several significant HCC-related signal pathways 
and pathological processes, including the Wnt/-catenin 
pathway, PI3K/AKT/mTOR pathway, RAS/RAF/MEK/
ERK pathway, and HBV infection [17]. The aforemen-
tioned findings correspond with the results of this study. 
However, the regulatory link between the E3 ubiqui-
tin ligase-related ceRNA network remains unknown. 
E3 ubiquitin ligase-related ceRNA network regulation 
mechanism must be studied experimentally to find novel 
approaches for the personalized treatment of HCC.

Nomograms have recently been extensively applied as 
reliable and personalized cancer prognosis tools. Zhang 
et  al. developed a nomogram that incorporated apop-
totic-related lncRNA signature, age, stage, and T stage, 
and have demonstrated its clinical utility [59]. Many 
researchers have used ceRNA regulatory networks for 
studying molecular biological regulatory mechanisms 
that influence HCC patient prognosis [60]. Bai et  al. 
developed an lncRNA predictive model for HCC patients 
based on 13 lncRNAs discovered via a ceRNA regula-
tion network [61]. One investigation of ceRNA network 
identified potential biomarkers for the prediction of 
the recurrence of liver cancer [62]. circRNA, miRNA, 
and mRNA expression data and clinical information of 
HCC patients were extracted from the GEO, TCGA, and 
ICGC databases. Subsequently, a differential circRNA–
miRNA–mRNA regulation network was built and essen-
tial genes were identified and confirmed. By combining 
this network with the online tool-based ceRNA network, 
an HCC-specific ceRNA network was generated and reg-
ulating circRNA–miRNA–mRNA axes were obtained. 
The CRE3UL signature was combined with clinico-
pathologic characteristics to predict prognosis using a 
nomogram.

Personalized therapeutic strategies for HCC still 
remain a significant challenge [63]. In this research, a 
prognostic signature using 5-CRE3UL in HCC was sug-
gested and its validity was confirmed in two independent 
datasets on distinct platforms. The prognostic immune 
signature can further classify patients defined by clini-
cal criteria [for example, early stage (I and II) and late 
stage (III and IV)] into subgroups with varying survival 
outcomes. Univariate COX analysis found there to be 
a significant correlation between TNM stage and the 
CRE3UL signature with HCC prognosis. Multivariate 
COX analysis showed that both TNM stage and the prog-
nostic signature could serve as independent prognostic 
factors. As a consequence, the prognostic signature in 
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this study has potential for personalized prognosis, diag-
nosis, and treatment of HCC patients and can be readily 
applied in clinical practice. In conclusion, the proposed 
CRE3UL signature offers precise prognostic predictions 
for HCC patients and provides valuable guidance for the 
formulation of specific treatment strategies by clinicians. 
In addition, it elucidates the association between this sig-
nature and the responsiveness to immune checkpoints 
and targeted medications. These findings could enhance 
the efficacy of therapeutic interventions for HCC patients 
[64]. Despite promising predictive performance in 
research, there may be obstacles to transitioning gene 
signatures into routine clinical practice, including the 
acceptance of new technologies by healthcare profession-
als, patient understanding and acceptance, and the chal-
lenges of formulating corresponding treatment decisions. 
In conclusion, further validation, standardization, and 
the overcoming of implementation barriers will be neces-
sary before the integration of these findings into everyday 
clinical practice will be possible.

Although many databases were utilized to create the 
CRE3UL signature, there are still deficiencies. First, 
despite the validation in two cohorts, notable heteroge-
neity persisted among tumor samples marked by diverse 
regional and ethnic attributes, and even within individ-
ual samples. Previous investigations have found tumor 
heterogeneity to markedly impact the effectiveness of 
immunotherapy or chemotherapy. Second, the research 
sample was taken from a retrospective investigation and 
the results must be confirmed by a prospective multi-
center study with a bigger sample size. Therefore, con-
ducting extensive prospective studies and undertaking 
functional and mechanistic experiments to validate and 
elucidate the connection between E3 ubiquitin ligase 
and HCC are essential. Third, the HCC data and sam-
ples that were utilized in this study were sourced from 
the TCGA and ICGC databases. Detailed information on 
the specific etiology, such as distinguishing between viral 
and non-viral liver diseases, was regrettably not avail-
able in the publicly accessible datasets that were used in 
this study. While the significance of this aspect is recog-
nized, the limitation lies in the inherent constraints of 
the TCGA and ICGC databases, in which comprehen-
sive clinical information, including detailed liver disease 
etiology, may not be uniformly provided. The provided 
clinical information is also not sufficient for the applica-
tion of the Barcelona Clinic Liver Cancer (BCLC) stag-
ing system. In future studies, every effort must be made 
to incorporate detailed information on the etiology of 
liver disease, particularly distinguishing between viral 
and non-viral origins if it is available in the datasets or by 
collaborating with institutions that possess such detailed 
clinical data. Furthermore, the clinical information for 

the application of the BCLC staging system must be 
enhanced. Finally, this study utilized LASSO multivari-
ate Cox regression analysis to establish the model, but 
his method has certain limitations, including exces-
sive penalization, selective bias, parameter estimation 
bias, and restriction to linear relationships. In contrast, 
machine learning models have greater representational 
power, which allows for nonlinear relationships to be 
captured and reduces overfitting risks through ensem-
ble learning methods. Therefore, machine learning [65] 
should be employed to further enhance the methodology 
in subsequent research.

Conclusions
A CRE3UL signature was developed for predicting the 
prognosis of HCC patients, which may assist doctors in 
making treatment choices. Furthermore, the nomogram 
that combined clinical characteristics and the CRE3UL 
signature was superior to TNM staging in clinical prog-
nosis. It is anticipated that the nomogram will offer new 
insights into prognostic prediction and therapy for HCC 
patients. This provides valuable guidance for clinicians in 
devising specific personalized treatment strategies.
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