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Abstract 

Background  Liver ischemia–reperfusion injury (LIRI) is closely associated with immune infiltration, which commonly 
occurs after liver surgery, especially liver transplantation. Therefore, it is crucial to identify the genes responsible for LIRI 
and develop effective therapeutic strategies that target immune response. Methylation modifications in mRNA play 
various crucial roles in different diseases. This study aimed to identify potential methylation-related markers in patients 
with LIRI and evaluate the corresponding immune infiltration.

Methods  Two Gene Expression Omnibus datasets containing human liver transplantation data (GSE12720 
and GSE151648) were downloaded for integrated analysis. Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes pathway enrichment analyses were conducted to investigate the functional enrichment of differen-
tially expressed genes (DEGs). Differentially expressed methylation-related genes (DEMRGs) were identified by over-
lapping DEG sets and 65 genes related to N6-methyladenosine (m6A), 7-methylguanine (m7G), 5-methylcytosine 
(m5C), and N1-methyladenosine (m1A). To evaluate the relationship between DEMRGs, a protein–protein interaction 
(PPI) network was utilized. The core DEMRGs were screened using three machine learning algorithms: least absolute 
shrinkage and selection operator, random forest, and support vector machine-recursive feature elimination. After veri-
fying the diagnostic efficacy using the receiver operating characteristic curve, we validated the expression of the core 
DEMRGs in clinical samples and performed relative cell biology experiments. Additionally, the immune status of LIRI 
was comprehensively assessed using the single sample gene set enrichment analysis algorithm. The upstream micro-
RNA and transcription factors of the core DEMRGs were also predicted.

Results  In total, 2165 upregulated and 3191 downregulated DEGs were identified, mainly enriched in LIRI-related 
pathways. The intersection of DEGs and methylation-related genes yielded 28 DEMRGs, showing high interaction 
in the PPI network. Additionally, the core DEMRGs YTHDC1, METTL3, WTAP, and NUDT3 demonstrated satisfactory diag-
nostic efficacy and significant differential expression and corresponding function based on cell biology experiments. 
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Background
Ischemia–reperfusion injury (IRI), a pathophysiological 
process, involves two stages: reduction or interruption of 
blood supply and subsequent reperfusion and reoxygena-
tion of the target organs [1]. Several organs, including the 
liver, are known to be at high risk of developing IRI [2–5]. 
Liver IRI (LIRI) is an unavoidable condition that occurs 
during liver transplantation or resection (particularly 
when using the Pringle maneuver) [6, 7]. During the ini-
tial stage, the ischemic microenvironment exposes liver 
cells to hypoxia, ion disorder, and ATP depletion, leading 
to the accumulation of reactive oxygen species, calcium 
overload, cell injury, or even death [8]. Instead of resto-
ration after blood reperfusion, the liver cells suffer from 
damage and various forms of death due to the release of 
proinflammatory cytokines by immunocytes, mitochon-
drial dysfunction, and subsequent activation of multi-
ple inflammatory cascades [9]. The intricate network of 
pathophysiological mechanisms makes it challenging 
to search for more effective therapeutic targets that can 
potentially improve LIRI. Thus, it is necessary to identify 
novel target genes to treat LIRI.

In 2005, Professor Land stated that a proinflamma-
tory innate immune-dominated response may induce an 
adaptive immune response in IRI [10]. The LIRI-induced 
immune cascade is divided into two distinct stages. Ini-
tially, Kupffer cells are activated by sensing the damage-
associated molecular patterns, which are expressed on 
cells experiencing stress or damage, and subsequently 
secrete chemokines and cytokines. During the second 
stage, as circulating monocytes, neutrophils, and T cells 
are recruited for assistance, liver cells are further harmed 
[11]. As the immunologic process plays an indispensa-
ble role in LIRI, further exploration of the regulatory 
mechanism of immune cell activation in LIRI can offer 
potential targets for disease prediction and therapeutic 
intervention.

In 1942, Dr. Waddington suggested a link between gen-
otype and phenotype for the first time and proposed the 
name “epigenotype,” indicating the expression of genetic 
material throughout the life process in terms of the whole 
organism [12]. After the discovery of pseudouridine (Ψ), 
post-transcriptional RNA modification was first revealed, 

and researchers started exploring gene regulation at the 
RNA level [13]. Since then, the terms “RNA epigenetics” 
and “epitranscriptomics” have been successively coined 
[14, 15]. From the perspective of epigenetics, however, 
the intricate interplay of DNA methylation, histone acet-
ylation, and RNA modification contributes to the devel-
opment of IRI to a varying extent [16, 17]. Unlike DNA 
or histones, the types of RNA modifications are greater 
in number, with > 170 modifications identified to date, 
including N6-methyladenosine (m6A), 7-methylguanine 
(m7G), 5-methylcytosine (m5C), and N1-methyladen-
osine (m1A) [18]. Previous studies have indicated that 
RNA methylation affects the tumor immune microen-
vironment in hepatocellular carcinoma as well as the 
activities of various immune cells [19, 20]. It has been 
demonstrated that m6A, the most prevalent form of 
methylation modification, plays an important role in the 
progression of IRI [17]. Previous studies have suggested 
that kidney-specific knockout of methyltransferase-like 
3 (METTL3) may alleviate IRI-induced renal dysfunc-
tion, renal injury, and renal inflammation by inhibiting 
TAB3 m6A modification through insulin-like growth fac-
tor 2 mRNA binding protein 2 [21]. Moreover, the dem-
ethylase fat mass and obesity-associated protein (FTO) 
reduce the stability of cGAS mRNA during the progres-
sion of cerebral IRI, thereby alleviating brain inflamma-
tion by inhibiting the STING/NF-κB axis [22]. Recently, 
m7G modification was found to be associated with vari-
ous diseases, including hepatocellular carcinoma, posti-
schemic angiogenesis, heart failure, and cardiac fibrosis 
due to myocardial ischemia [23–25]. Similarly, the role of 
m5C in cells is being gradually recognized, with ALKBH1 
being identified as essential for mitochondrial function, 
thereby influencing atherosclerosis [26]. In addition, 
there is evidence that the abundance of m1A significantly 
reduces after cerebral ischemia and influences biologi-
cal regulation following stroke [27]. However, studies 
on whether these RNA methylation modifications play 
crucial roles in LIRI and how the relevant immune cells 
participate in biological processes remain limited, and 
further studies are urgently warranted.

To address these research gaps, our study lever-
aged two Gene Expression Omnibus (GEO) datasets 

Furthermore, immune infiltration analyses indicated that several immune cells correlated with all core DEMRGs 
in the LIRI process to varying extents.

Conclusions  We identified core DEMRGs (YTHDC1, METTL3, WTAP, and NUDT3) associated with immune infiltration 
in LIRI through bioinformatics and validated them experimentally. This study may provide potential methylation-
related gene targets for LIRI immunotherapy.
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containing gene expression data from human liver trans-
plantation samples, representing the states of ischemia 
and reperfusion. Furthermore, we identified significantly 
differentially expressed genes (DEGs) and used previ-
ously identified m6A/m7G/m5C/m1A regulators, among 
which differentially expressed methylation-related genes 
(DEMRGs) were identified. Machine learning algorithms 
were employed to identify characteristic core DEMRGs, 
which were validated through real time-quantitative 
polymerase chain reaction (RT-qPCR) using clinical liver 
transplant specimens. We also performed cytological 
experiments to detect alterations in methylation levels 
following LIRI. Subsequently, functional validation was 
performed after modulating the expression levels of spe-
cific genes in cells. Additionally, the association between 
DEMRGs and infiltration of immune cells was exam-
ined to gain a more profound insight into the molecular 
immunological mechanisms related to methylation in the 
progression of LIRI.

Methods
Data acquisition and processing
Data acquisition was performed using the GEO database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/), a public reposi-
tory of high-throughput gene expression data [28]. We 
identified relevant GEO datasets based on the following 
inclusion criteria. Organism: Homo sapiens; experiment 
type: expression profiling via array or high-throughput 
sequencing; procedure: orthotopic liver transplantation; 
and sample types: pre- and post-transplant liver tissues. 
We then used the search terms “liver transplantation” as 
the MeSH term and “Homo sapiens” as the organism to 
detect prospective GEO datasets. We performed addi-
tional screening of datasets based on patient inclusion 
criteria, donor status, and specimen acquisition methods. 
Ultimately, two GEO datasets, namely, GSE12720 and 
GSE151648, were deemed eligible and then included in 
our study (Additional file 1: Table S1). To conduct addi-
tional analyses, we used clinical information from both 
datasets as covariates and employed the ComBat func-
tion from the ‘sva’ R package to eliminate batch effects 
between the two datasets [29]. To homogenize gene 
expression profiles, the “preprocessCore” package was 
used.

The regulators of m6A, m7G, m5C, and m1A modifica-
tions were obtained from prior research [19, 30].

Identification of DEGs and DEMRGs
The “limma” package in R software was utilized to detect 
DEGs. Adjusted P-value of < 0.05 was used as a criterion 
to identify significantly different expressions between 
pre-transplant and post-transplant groups. Furthermore, 
the packages “pheatmap” and “ggplot2” were employed to 

construct volcano and heatmap plots of DEGs. To iden-
tify DEMRGs, we decided to overlap methylation-related 
gene sets with upregulated and downregulated DEG sets 
separately.

Functional enrichment analyses
Functional enrichment analyses of Gene Ontology (GO), 
including three categories—biological process (BP), cel-
lular component (CC), and molecular function (MF)—
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
were conducted using the R package “clusterProfiler” 
[31].

Identification and validation of core DEMRGs
In this study, DEMRGs that play a crucial role through 
methylation modification during the LIRI process were 
considered core DEMRGs. These genes were screened 
using three machine learning algorithms: least abso-
lute shrinkage and selection operator (LASSO) logistic 
regression [32], random forests (RF) [33], and support 
vector machine-recursive feature elimination (SVM-RFE) 
[34]. This study performed LASSO logistic regression 
analysis using the R package “glmnet” [35]. The random 
forest method was applied using the R package “random-
Forest.” The SVM-RFE method was performed utilizing 
the R software package “kernlab.” To assess diagnostic 
efficacy, we constructed receiver operating character-
istic (ROC) curves for all core DEMRGs and calculated 
the area under the ROC curve (AUC) values using the R 
package “pROC.”

Immune infiltration analysis
To examine the extent of infiltration and differences in 
gene expression among 23 immune cell types in pre-
transplant and post-transplant groups, we use the single 
sample gene set enrichment analysis (ssGSEA) algorithm 
based on the “GSVA” package. A significant alteration 
in LIRI progression was observed for certain types of 
immune cells when the P-values were < 0.05. The correla-
tion between core DEMRGs and immune cells was ana-
lyzed using “ggplot2” in R, and only results with P-values 
of < 0.05 were displayed in the lollipop diagrams.

Gene set enrichment analysis
We performed a correlation analysis to examine the rela-
tionship between the core DEMRGs and all genes in the 
GEO datasets. Heatmaps displayed the top 50 genes that 
exhibited a positive correlation with the core DEMRGs. 
Based on the findings of correlation analysis, we fur-
ther conducted a gene set enrichment analysis (GSEA) 
using the REACTOME pathway browser (https://​react​
ome.​org) [36]. The mountain map was used to present 
the top 20 pathways associated with each core DEMRG. 

https://www.ncbi.nlm.nih.gov/geo/
https://reactome.org
https://reactome.org
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Pathways with a P-value of < 0.05 were deemed statisti-
cally significant.

Construction of protein–protein interaction (PPI) network 
and regulatory network of microRNAs and transcription 
factors
We uploaded DEMRGs onto the Search Tool for the 
Retrieval of Interacting Genes (STRING) online database 
(http://​string-​db.​org) to construct a related PPI network 
[37]. To further explore gene regulation mechanisms, 
we predicted upstream microRNAs (miRNAs) and tran-
scription factors of the core DEMRGs by utilizing the 
regulatory network repository of transcription factor 
and microRNA-mediated gene regulations (RegNetwork) 
[38]. The network was input into Cytoscape software for 
visualization.

Clinical sample collection
We collected 10 pairs of liver tissue samples from 10 
patients who underwent liver transplantation at the First 
Affiliated Hospital of Harbin Medical University. Each 
pair consisted of pre-transplant and post-transplant sam-
ples. The pre-transplant sample was obtained from the 
donor’s liver at the beginning of surgery, representing 
the non-LIRI state. The sample from the post-transplant 
group, taken 2  h after allograft revascularization, rep-
resents the LIRI state. The collection protocols aligned 
with those of GSE151648 data methods. A professional 
pathologist was asked to assess whether the samples were 
usable in a blinded fashion. Written informed consent 
was obtained from all patients. This study was conducted 
in line with the guidelines of the Declaration of Helsinki 
and was approved by the ethics committee of the First 
Affiliated Hospital of Harbin Medical University.

Animal
Eight-week-old male C57BL/6 mice weighing 19–23  g 
were obtained from Vital River (Beijing, China) and 
housed under standard conditions (temperature: 
23 °C ± 2 °C, 12-h light/dark cycle) before surgery. All ani-
mal procedures were approved by the Ethics Committees 
of Harbin Medical University and conducted in accord-
ance with the NRC’s Guide for the Care and Use of Labo-
ratory Animals.

Isolation of primary mouse hepatocytes
Primary mouse hepatocytes were isolated following 
established procedures [39]. Briefly, mice were fully 
anesthetized, and their abdominal cavities were opened. 
Sequential perfusion of Hanks Balanced Salt Solutions 
(HBSS) and 0.05% IV collagenase solutions was per-
formed through the portal vein. Liver tissues were dis-
sected and incubated in 0.05% IV collagenase solution for 

20 min. After digestion, a cell suspension was obtained 
through filtration (70 μm). The hepatocytes were col-
lected by rinsing with PBS, followed by centrifugation.

Small interfering RNA (siRNA)
siRNAs, which were custom-designed and synthesized 
by Hanheng Biotechnology (Shanghai, China), were 
employed to silence gene expression. The sequences used 
are listed in Additional file 2: Table S2.

siRNA transfection
The siRNAs exhibiting the highest inhibition rates against 
the target genes were selected for subsequent functional 
experiments. Two experimental groups were established: 
the siRNA group, in which the cells were transfected with 
specific siRNAs, and the negative control (NC) group, in 
which the cells were transfected with nontargeting NC 
siRNAs. Briefly, 24 h before transfection, primary mouse 
hepatocytes were seeded into 6-well plates at a density of 
2 × 105 cells per well to ensure 30–50% confluency at the 
time of transfection. In the siRNA group, the cells were 
transfected with the specific siRNA at a concentration of 
100 nmol/L using Lipofectamine 3000 (Invitrogen, USA). 
Similarly, in the NC group, the cells were transfected 
with NC siRNA at the same concentration. The transfec-
tions were performed in triplicate at each time point. At 
various time points following the initiation of transfec-
tion, the cells were harvested for subsequent assays.

Hypoxia/reoxygenation (H/R) model construction
Hepatocytes in a good state were screened and cultured 
overnight, and the medium was replaced with glucose- 
and serum-free DMEM. Subsequently, the cells were 
transferred to a chamber (Biospherix, Lacona, NY, USA) 
under an atmosphere of 1% O2, 5% CO2, and 94% N2 for 
6 h. Then, the medium was replaced with DMEM sup-
plemented with 10% serum, and the cells were incubated 
under normoxic conditions (95% air and 5% CO2) for 
an additional 6 h. The medium in the control group was 
replaced with DMEM supplemented with 10% serum, 
and the cells were continuously cultured under normoxic 
conditions.

Cell viability assay
Cell viability was assessed using a CCK-8 kit obtained 
from Dongren Chemical Technology (Shanghai, China). 
Following transfection with specific siRNAs, the cells 
were seeded into 96-well plates at a density of 5 × 103 
cells per well in triplicate for each experimental group 
and subjected to H/R treatment. After a 2-h incubation 
at 37 °C in an incubator protected from light, the optical 
density was measured.

http://string-db.org
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Dot blot
RNA was extracted from primary mouse hepatocytes 
subjected to H/R stimulation and dotted onto a nitro-
cellulose (NC) membrane. The RNA was cross-linked 
with the membrane via ultraviolet irradiation after the 
membrane was dried naturally in the air. Methylene blue 
stain was used as a loading control. The membrane was 
washed with TBST, blocked with 5% BSA in TBST 1 h at 
room temperature, and then incubated at 4 °C overnight 
with m6A-specific antibody (Proteintech, 68055-1-Ig, 
1:1000) or m7G-specific antibody (Proteintech, 68302-1-
Ig, 1:2500). The following day, the membrane was incu-
bated with a fluorescent secondary antibody for 2 h. The 
Odyssey Infrared imaging system was used for imaging.

RT‑qPCR
Total RNA was extracted from the liver allograft biopsy 
sample using a commercial TRIzol reagent (AxyPrep 
Multisource Total RNA Miniprep Kit, Axygen®). RNA 
was used to synthesize complementary DNA (cDNA) 
using a cDNA synthesis kit (ReverTra Ace™ qPCR 
RT Master Mix, TOYOBO Inc., Japan). The primer 
sequences were designed and created by Generalbiol 
(Chuzhou, China) (Additional file 3: Table S3). RT-qPCR 
was performed using a ready-to-use master mix (Fast-
Start™ Universal SYBR® Green Master, Rox), and data 
analysis was performed via the 2−ΔΔCt method using 
GAPDH as a reference gene.

Statistical analysis
Bioinformatics analyses and statistical tests were per-
formed using R software version 4.2.2. The differences in 
individual genes between the two groups were assessed 
using the Student’s t-test. Pearson’s correlation test 
was used to evaluate relationships between variables. 
Adjusted P-values of < 0.05 were considered to indicate 
statistical significance.

Results
Identification of DEGs related to LIRI
In this study, two eligible datasets, namely, GSE12720 and 
GSE151648, were selected. We merged gene expression 
profiles from these two datasets and removed the batch 
effect using the “sva” package. The PCA cluster plots were 
displayed using the “FactoMineR” package and “factoex-
tra” package, which explicitly showed that the batch effect 
was efficiently removed (Fig. 1a, b). We obtained 19,426 
genes and 106 samples after removing the batch effect. 
Expression data were normalized using the “preprocess-
Core” package (Fig. 1c, d). After setting the parameter of 
adjusted P-value < 0.05, DEGs were identified using the 

“limma” package. Volcano plot and heatmap displayed 
genes that were upregulated and downregulated follow-
ing LIRI (Fig. 1e, f ).

Biological processes and pathway enrichment analysis 
of DEGs
To investigate the functional annotations of DEGs, we 
performed enrichment analyses of GO and KEGG path-
ways using the “clusterprofiler” package to illustrate the 
biological characteristics and related signaling pathways, 
respectively. GO terms are divided into three different 
categories: BP, CC, and MF (Fig. 2a–c). The top 20 signifi-
cantly enriched BPs, CCs, and MFs are shown in Fig. 2a–
c, respectively. In the BP category, “mononuclear cell 
differentiation” possessed the greatest gene ratio. In the 
CC category, DEGs were mostly enriched in the nuclear 
envelope and nuclear speck. Regarding MFs, DEGs were 
mainly enriched in DNA-binding transcription factor 
binding and DNA-binding transcription activator activ-
ity. Significantly enriched DEGs in KEGG pathways are 
shown in Fig. 2d. Among the top 20 pathways, the “Hippo 
signaling pathway,” “FoxO signaling pathway,” and “NF-
kappa B signaling pathway” are known to participate in 
the pathophysiological process of LIRI. Moreover, multi-
ple forms of cell death, such as “autophagy” and “apopto-
sis,” are involved in LIRI.

Identification of DEMRGs
To identify methylation-related genes that have a sig-
nificant impact on LIRI mechanisms, we obtained 28 
DEMRGs after intersecting 2165 upregulated and 3191 
downregulated DEGs with 65 methylation-related genes 
(Fig. 3a, b). The results of functional enrichment cluster 
analysis of 28 DEMRGs are shown in Fig. 3c, d. In the BP 
category, the “nucleobase-containing compound cata-
bolic process” constitutes the largest group. As demon-
strated in KEGG pathway enrichment analysis, “RNA 
degradation,” “nucleocytoplasmic transport,” “purine 
metabolism,” and “spliceosome” predominate among 
these pathways. To further analyze intuitively, we con-
structed visualized images. A volcano plot showed the 
distribution of these DEMRGs (Additional file 4: Fig S1a). 
A heatmap of the 28 DEMRGs was constructed (Addi-
tional file  4: Fig S1b). The violin plots showed that all 
28 genes were significantly differentially expressed after 
liver transplantation (Additional file 4: Fig S1c). The PPI 
network was constructed using the STRING database to 
interpret the interactions among DEMRGs (Additional 
file 5: Fig S2).

Screening of core DEMRGs
Among the 28 DEMRGs, we identified the core DEMRGs 
using 3 machine learning algorithms. LASSO regression 
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Fig. 1  Identification of DEGs. a PCA cluster plot of GSE12720 and GSE151648 before batch effect removal and correction. b The PCA cluster plot 
showed that the batch effect has been removed. c The gene expression box chart before normalization. d The gene expression box chart displayed 
normalized gene arrays. e Volcano plot of DEGs between pre-transplant and post-transplant groups. f Heatmap for the top 20 upregulated 
and down-regulated DEGs between pre-transplant and post-transplant groups. Red: up-regulation, Blue: down-regulation. DEGs differentially 
expressed genes, FC foldchange
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algorithm was applied to identify 13 genes (Fig.  4a), RF 
was used to select 10 genes in descending order of impor-
tance (Fig. 4b), and SVM-RFE was employed to select 4 
genes among the original 28 DEMRGs (Fig. 4c). We used 
a Venn diagram to determine the overlapping region of 

three groups of genes analyzed using the machine learn-
ing algorithms (Fig.  4d). The three algorithms identi-
fied YTH N6-methyladenosine RNA binding protein C1 
(YTHDC1), METTL3, Wilms tumor 1-associated protein 
(WTAP), and Nudix hydrolase 3 (NUDT3) as overlapping 

Fig. 2  Functional analysis of DEGs. a–c GO enrichment analysis, category BP (a), CC (b), and MF (c) were shown in the pattern of dot plots. d KEGG 
pathway enrichment analysis. DEGs differentially expressed genes, GO gene ontology, BP biological process, CC cellular component, MF molecular 
function, KEGG Kyoto Encyclopedia of Genes and Genomes
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DEMRGs at the core. Correlation analysis of the four 
genes is displayed in the chord diagram, which was con-
structed using the “circlize” package. In this diagram, 

the red lines represented a positive correlation, and the 
genes connected by green lines represented a negative 
correlation. Moreover, the darker the color, the stronger 

Fig. 3  Identification of DEMRGs. a The Venn diagram showed 14 DEMRGs by overlapping 65 methylation-related genes and the upregulated 
DEGs set. b Another 14 DEMRGs were screened by overlapping 65 methylation-related genes and the set of down-regulated DEGs. c Top 10 terms 
significantly enriched in three GO categories by DEMRGs. d KEGG pathway enrichment analysis on DEMRGs. DEMRGs differentially expressed 
methylation-related genes, DEGs differentially expressed genes, GO gene ontology, KEGG Kyoto Encyclopedia of Genes and Genomes

(See figure on next page.)
Fig. 4  Detection of the core DEMRGs using machine learning methods. a The LASSO logistic regression algorithm was used to screen 13 
candidate genes. b RF algorithm was used to pick the top 10 genes in importance order. c SVM-RFE was used to identify four candidate genes. d 
A Venn diagram was constructed by intersecting the candidate genes obtained by the three algorithms above. e The chord diagram manifested 
the correlation among the core DEMRGs. f The ROC curve for the verification of diagnostic efficacy verification. DEMRGs differentially expressed 
methylation-related genes, LASSO least absolute shrinkage and selection operator, RF random forest, SVM-RFE support vector machine-recursive 
feature elimination, ROC receiver operating characteristic, AUC​ area under the ROC curve
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Fig. 4  (See legend on previous page.)
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the correlation (Fig. 4e). To assess the predictive ability of 
LIRI, we constructed the gene prediction model using the 
“pROC” package (Fig. 4f ). A higher AUC value indicates 
superior diagnostic performance. The ROC curves for 
YTHDC1, METTL3, WTAP, and NUDT3 demonstrated 
a reasonably satisfactory prediction accuracy, with AUCs 
of 0.819, 0.835, 0.933, and 0.862, respectively. As shown 
in Additional file  6: Fig S3, following LIRI, a notable 
increase was observed in the expression of YTHDC1 and 
WTAP, whereas the expression of METTL3 and NUDT3 
decreased significantly.

Validation of core DEMRG expression and cytological 
experiments
We examined the changes in the expression of core 
DEMRGs in 10 pairs of liver transplantation samples. 
The results were consistent with those of transcriptome 
analysis. Compared with liver tissue before transplanta-
tion, a significant increase was observed in the mRNA 
expression of YTHDC1 and WTAP post-transplanta-
tion, whereas the mRNA expression of METTL3 and 
NUDT3 decreased significantly (Fig.  5a). Subsequently, 
we isolated and cultured primary mouse hepatocytes and 
established a H/R model, with cells undergoing 6  h of 
hypoxia followed by 6 h of reoxygenation. After extract-
ing RNA from cells, we compared the expression of the 
core DEMRGs before and after H/R stimulation, and the 
results indicated that the changes in the expression of 
the four DEMRGs were consistent with those observed 
in the clinical samples (Fig.  5b). Among the four types 
of methylation modifications identified in our previ-
ous analysis, only genes related to m6A or m7G showed 
significant changes. Therefore, we determined whether 
there were alterations at the level of m6A and m7G meth-
ylation in hepatocytes after LIRI. We performed dot blot 
assays to detect changes in m6A and m7G methylation in 
hepatocytes. The results revealed a significant increase in 
the overall levels of m6A and m7G methylation follow-
ing H/R stimulation (Fig. 5c). Next, we performed func-
tional validation of each core DEMRG. Three siRNAs 
were designed for each gene, and RT-qPCR was used to 
determine the siRNA that inhibited gene expression most 
effectively (Additional file 7: Fig S4). Next, we evaluated 
the effect of each core DEMRG on cell viability using the 
CCK-8 assay. We demonstrated that altering the expres-
sion of core DEMRGs within cells under normoxic 
conditions did not significantly affect cell viability. Sub-
sequently, we subjected the cells to H/R stimulation and 
then performed CCK-8 assay. The results indicated that 
after reducing the expression of YTHDC1 or NUDT3, cell 
viability increased significantly in the siRNA group com-
pared with that in the NC group. Conversely, decreas-
ing the expression of METTL3 or WTAP resulted in 

significantly lower cell viability in the siRNA group than 
in the NC group (Fig. 5d).

Assessment of infiltration of immune cells
The ssGSEA method from the “GSVA” R package was 
used to assess the correlation among immune cells, with 
a darker red color representing a greater association 
between any two types of cells (Fig.  6a). We compared 
immune cell infiltration between pre- and post-trans-
plant samples according to ssGSEA scores. As shown in 
the box plot, activated CD4 T cells, activated dendritic 
cells, mast cells, CD65dim natural killer cells, natural 
killer T cells, regulatory T cells, T helper 1 cells, T helper 
2 cells, T helper 17 cells, eosinophils, and neutrophils 
were more abundant in the post-transplant group than in 
the pre-transplant group (Fig. 6b). We then investigated 
the potential association between the expression levels of 
each of the core DEMRGs and 23 types of immune cells 
(Fig. 6c). The lollipop diagrams indicated that the expres-
sion of WTAP and YTHDC1 was significantly positively 
correlated with the infiltration levels of activated CD4 T 
cells, mast cells, eosinophils, and CD65dim natural killer 
cells. In contrast, the expression of NUDT3 was nega-
tively correlated with the infiltration levels of CD65dim 
natural killer cells, mast cells, eosinophils, and neutro-
phils. Additionally, the expression of METTL3 was nega-
tively correlated with the infiltration levels of activated 
CD4 T cells, eosinophils, T helper 1 cells, mast cells, and 
activated dendritic cells.

Further research on core DEMRGs
To explore the possible function of core DEMRGs in 
LIRI, including the interrelated pathways, we performed 
a correlation analysis between each of the core DEMRGs 
and the rest of the genes. Then, we revealed the top 50 
genes most positively associated with the core DEM-
RGs by constructing heatmaps (Fig.  7). GSEA based on 
REACTOME was performed to determine the significant 
pathways mainly associated with the mechanisms of LIRI. 
Ridgeline plots of the top 20 pathways obtained using the 
“clusterProfiler” R package are displayed in Fig.  8. With 
an adjusted P-value of 0.01823362, the enrichment of 
Interleukin-10 signaling, Interleukin-4, and Interleu-
kin-13 signaling, Signaling by interleukins, and Cytokine 
signaling in the immune system was negatively associated 
with the expression of METTL3. Similarly, the enrich-
ment of Toll-like receptor 2 cascade, Toll-like recep-
tor 4 cascade, interleukin-10 signaling, interleukin-4, 
and interleukin-13 signaling was significantly negatively 
associated with the expression of NUDT3. In contrast, 
the enrichment of interleukin-10 signaling, interleu-
kin-4, interleukin-13 signaling, cytokine signaling in 
the immune system, Toll-like receptor 4 cascade, and 
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Fig. 5  Expression and function validation of core DEMRGs. a The mRNA expression level of core DEMRGs in clinical liver transplantation samples. 
b The mRNA expression level of core DEMRGs in hepatocytes after treated by H/R. c m6A and m7G level detection by using Dot Blot in vitro. d The 
viability of cells in each group was evaluated by the CCK-8 assay. The P-values were shown as: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns 
non-significant, DEMRGs differentially expressed methylation-related genes, H/R hypoxia/reoxygenation
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Toll-like receptor 3 cascade was significantly associated 
with the expression of WTAP. Furthermore, the enrich-
ment of mitochondrial translation initiation, mitochon-
drial translation, mitochondrial translation termination, 
and respiratory electron elongation was significantly 
negatively associated with the expression of YTHDC1. 
These results suggest that the core DEMRGs are asso-
ciated with many pathways in the progression of LIRI, 
especially immune-related and oxidative metabolism 
pathways. We then predicted the upstream miRNAs and 
transcription factors of the four core DEMRGs using 
the RegNetwork data repository and constructed the 
network using Cytoscape (Additional file  8: Fig S5). As 
shown in the network, activating the transcription factor 
family might be the crucial upstream transcription fac-
tor of YTHDC1 and NUDT3. Additionally, the E2F family 
showed potential as the upstream transcription factors of 
YTHDC1 and METTL3. Seven miRNAs, including hsa-
miR-181a, hsa-miR-181b, hsa-miR-181c, hsa-miR-543, 
hsa-miR-141, hsa-miR-200a, and hsa-miR-451, showed 
the possibility of being present upstream of WTAP and 
YTHDC1. Among all miRNAs and transcription fac-
tors, MYC showed the best match as the predictive fac-
tor, which could be an upstream transcription factor of 
YTHDC1, NUDT3, and METTL3.

Discussion
In general, LIRI is caused by multiple liver surgeries or 
various forms of trauma. It inflicts liver function through 
intricate biological processes, including but not limited 
to oxidative stress, calcium overload, apoptosis, pyrop-
tosis, and ferroptosis. However, despite complicated and 
specific mechanisms, LIRI always starts with activated 
Kupffer cells, followed by the process of immune infiltra-
tion [3, 11]. Studies have reported that RNA modifica-
tion, particularly represented by m6A, m5C, m1A, and 
m7G, plays a significant role in various biological pro-
gresses [40]. Immune responses, including innate and 
adaptive immune responses, are regulated via RNA mod-
ification by altering the modified bases [41, 42]. Although 
the partial correlation between RNA modification and 
LIRI has been shown, it remains unclear whether it is 
affected by immune processes and specific targets [43]. 
To further illustrate how RNA methylation modifications 
participate in the immune modulatory mechanisms of 
LIRI, we performed a series of analyses systematically.

In this study, according to the etiology of liver ischemia 
and reperfusion, we found two applicable sets of liver 
transplantation samples from the GEO database and then 
merged them. We removed the batch effect for the fol-
lowing analyses. We identified DEGs with an adjusted 
P-value of < 0.05 and subsequently performed GO and 
KEGG enrichment analyses. The BP category in GO 
analysis showed that all DEGs were mainly associated 
with multiple immune cell differentiation, regulation 
of cytokine production, regulation of T cell activation, 
and regulation of autophagy, indicating immunological 
processes. In the CC category, most terms were related 
to the nuclear envelope, ribonucleoprotein granule, and 
organelle outer membrane, including the mitochondrial 
outer membrane, suggesting that DEGs participated 
in the transcription and translation processes within 
cells. In addition, the MF category demonstrated that 
the DEG functions were largely concentrated in DNA-
binding transcription activator activity, ubiquitin-like 
protein transferase activity, and ubiquitin-like pro-
tein ligase activity, suggesting that the cell death forms 
derived from ubiquitination were mainly involved in 
LIRI. KEGG enrichment analysis revealed that DEGs 
possessed some correlation with Herpes simplex virus 
1 infection, autophagy, apoptosis, and several canonical 
signaling pathways, including the Wnt signaling pathway, 
FoxO signaling pathway, IL-17 signaling pathway, and 
NF-kappa B signaling pathway. We obtained 28 DEM-
RGs after overlapping the DEG sets and 65 methylation-
related genes and then constructed a PPI network of the 
core genes using the STRING database. Three types of 
machine learning techniques were applied to identify 
the core DEMRGs, each of which had a unique method 
for screening potential makers. Notably, YTHDC1, 
METTL3, WTAP, and NUDT3 were selected, and as all 
four AUC values were > 0.8, the predictive model showed 
satisfactory predictive performance. The ssGSEA method 
was used to analyze the immune infiltration process that 
occurs during LIRI.

As the pivotal core of the inflammatory cytotoxic cycle 
in LIRI, the immune infiltration process is undoubtedly 
characterized by sensitive and explorable changes. Neu-
trophils, being the primary line of defense against invad-
ing pathogens, are mobilized to the site of ischemia/
reperfusion and considered a biomarker for LIRI [44]. 
CD4 T cells are considered essential inflammatory 

(See figure on next page.)
Fig. 6  The normalized data set for the evaluation of the degree of immune cell infiltration. a Correlation coefficient diagram showing 
the relationship among immune cells. The b box plot showed the differences in immune cell infiltration between the pre-transplant 
and post-transplant groups. c Lollipop diagrams showed the correlation between the core DEMRGs and immune cells. *P < 0.05, only immune cells 
with P < 0.05 are shown. DEMRGs differentially expressed methylation-related genes
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Fig. 6  (See legend on previous page.)
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mediators in the LIRI process [45]. Activated CD4 T cells 
were shown to activate innate immunity and amplify the 
subsequent cascade reaction [46]. Furthermore, origi-
nal CD4 T cells undergo differentiation into diverse T 
cell subtypes, such as regulatory T, T helper 1, T helper 
2, and T helper 17 cells. These subtypes play different 
roles in modifying inflammatory responses [47]. Another 
type of CD4 T cells—natural killer T cells—recruit and 
activate natural killer cells directly and play a role in the 
response of pro- or anti-inflammation in LIRI according 
to different subsets [48, 49]. Recently, eosinophils have 
been reported to accumulate in the liver after LIRI and 
possess a fairly strong protective function [50].

METTL3, METTL14, and WTAP together form the 
m6A methyltransferase complex that regulates the m6A 
methylation level of RNA in cells [51]. The results indi-
cated significant alterations in the expression levels of 
METTL3 and WTAP, which exhibited certain protec-
tive effects on hepatocytes during LIRI. In addition, a 

significant increase in total m6A levels was observed in 
hepatocytes following H/R stimulation, which suggests 
that METTL3 and WTAP may be the primary reason for 
the increased m6A levels during LIRI, which potentially 
influences the pathophysiology of LIRI. Research has 
shown that METTL3 expression level alters the prolif-
eration and differentiation of T cells via the IL-7 signaling 
pathway, which is consistent with our results [52]. Fur-
thermore, by altering the mRNA m6A methylation lev-
els, METTL3 promotes the function of DC cells, which 
play a different role in LIRI, depending on the location of 
DC cells in vivo [53, 54]. METTL3-mediated m6A modi-
fication primarily affects IL-13-encoding stability of the 
mRNA in mast cells [55]. Additionally, evidence suggests 
that degranulation of gastrointestinal mast cells in rats 
is positively correlated with LIRI-induced damage [56]. 
Regarding WTAP, Wang et al. [57] revealed a strong link 
between WTAP and myocardial IRI. They demonstrated 
that knocking down WTAP protects cardiomyocytes 

Fig. 7  Heat map of the top 50 positively correlated genes in the core DEMRGs. DEMRGs differentially expressed methylation-related genes
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from endoplasmic reticulum stress by decreasing the sta-
bility of activating transcription factor 4 (ATF4) mRNA. 
However, the mechanism underlying the role of WTAP 
in LIRI has not yet been reported. In particular, increased 
WTAP expression enhances YTH domain-containing 
family protein 1-mediated translation efficiency of fork-
head box O1, which results in upregulated protein levels, 
ultimately promoting regulatory T cell differentiation and 
function [58]. Furthermore, WTAP-induced m6A meth-
ylation is crucial for the activation of TCR-dependent 
CD4+ and CD8+ T cells as well as the survival of activated 

T cells [59]. YTHDC1, one of the classic readers of m6A, 
together with WTAP has been demonstrated to regulate 
the immune microenvironment in ischemic cardiomyo-
pathy [60]. Furthermore, YTHDC1 alleviates ischemic 
stroke by promoting the degradation of phosphatase 
and tensin homolog mRNA following Akt phosphoryla-
tion [61]. To date, evidence regarding the influence of 
YTHDC1 on immune infiltration is limited, with only 
a few studies suggesting its ability to modulate immune 
response in cancer [62]. Our results provide further evi-
dence regarding the association between YTHDC1 and 

Fig. 8  Gene set enrichment analysis of single-core DEMRGs based on the REACTOME database. DEMRGs differentially expressed 
methylation-related genes
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immune infiltration, which is mediated by activated CD4 
T cells and neutrophils during LIRI.

In addition to m6A, we identified NUDT3, one of the 
related genes of m7G, as a core DEMRG, but no other 
characteristic genes were detected in the group of genes 
related to m1A or m5C. m7G was first discovered at the 
5′-cap of mRNAs; it plays an essential role in stabilizing 
transcripts against exonucleolytic degradation [63]. Cap 
modification also affects several stages of mRNA lifes-
pan, including transcription elongation [64], pre-mRNA 
splicing [65], and translation [66]. m7G sites were also 
detected in transfer RNA [67] and ribosomal RNA [68] 
and were discovered internally within mRNA in 2019 
[69]. Unlike the well-studied pattern of the modification, 
i.e., regulating the level of methylation with “writers” and 
“erasers” and executing with “readers,” methyltransferase-
like 1 (METTL1) and WD repeat domain 4 (WDR4), 
together forming a functional methyltransferase com-
plex, have been perceived to be the only two clear factors 
serving as the “writers” of m7G modification. However, 
in July 2023, Quaking proteins have been reported as 
the first “reader” of m7G modification [70, 71]. No 
prior studies have examined the potential relationship 
between m7G modification and LIRI. The current study 
revealed a significant elevation in total m7G levels in 
hepatocytes following H/R stimulation. This suggests 
dynamic alterations in m7G methylation and demethyla-
tion during LIRI, which warrants further investigation. 
Similarly, postischemic angiogenesis could be enhanced 
via METTL1 by promoting the translation of vascu-
lar endothelial growth factor A mRNA [24]. Wang et al. 
showed that METTL1 ablation in fibroblasts decreases 
the expression of m7G methylated fibrotic genes, thereby 
alleviating myocardial infarction-induced cardiac fibro-
sis [25]. The Nudix superfamily, a series of hydrolases 
that possess a conserved nucleoside diphosphate linked 
to another moiety X (Nudix), serving as divalent cation-
regulated enzymes that hydrolyze various dinucleotides 
and inositol pyrophosphates (PP-InsPs), contains 8 of 22 
Nudix proteins in the human genome, namely, Nudt2, 
Nudt3, Nudt12, Nudt15, Nudt16, Nudt17, Nudt19, and 
Dcp2 (Nudt20), and possesses the ability to decap RNA 
[72, 73]. Notably, Nudt3 was shown to play a crucial role 
in maintaining cell viability during oxidative stress, act-
ing as a Zn2+-dependent polyphosphate hydrolase both 
in vitro and in vivo [74]. Furthermore, the study revealed 
the potential protective effect of downregulating NUDT3 
in LIRI and its robust association with natural killer cells, 
neutrophils, and T helper 17 cells. m7G modification 
associated with NUDT3 may serve as a promising and 
innovative therapeutic target after additional validation.

This study has some limitations, despite the compre-
hensive analysis of methylation modification in LIRI and 

the relevant immune infiltration. First, it was a retrospec-
tive study based on public databases. A validation study 
with a larger clinical sample size is warranted to further 
demonstrate the potential of core DEMRGs in predicting 
LIRI progression. Second, it is necessary to further inves-
tigate whether the crucial genes related to m1A or m5C 
play roles in LIRI, as the current study only identified the 
central genes related to m6A and m7G.

Conclusions
This study revealed that the methylation-related genes 
YTHDC1, METTL3, WTAP, and NUDT3 emerge as core 
DEMRGs, indicating their distinct biological pivotal roles 
as diagnostic markers for LIRI. Furthermore, the analy-
ses underscored the potential involvement of immune 
cells in the progression of LIRI, with YTHDC1, METTL3, 
WTAP, and NUDT3 showing numerous associations 
across a diverse array of immune cell types. These find-
ings highlighted that immune cells tend to exert a sig-
nificant influence on the advancement of LIRI. Thus, a 
comprehensive exploration of these immune cells could 
offer valuable insights into determining targets for immu-
notherapy and optimizing immunomodulatory strategies 
to improve post-liver transplantation recovery.
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