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Abstract 

Background Cisplatin (DDP) chemotherapy is commonly used in therapy for non-small cell lung cancer (NSCLC), 
but increased drug resistance has become a huge obstacle. Baicalin (BA) contributed to the sensitivity of NSCLC 
to DDP. Here, we aimed to further probe the pathophysiological mechanisms of BA in NSCLC.

Methods A549 and A549/DDP cells and xenograft mice were treated with BA and DDP. Xenograft mice were treated 
additionally with the NRF2 inducer (Bardoxolone methyl, BM) and KEAP1 knockdown. The levels of ferritinophagy-
related proteins and biomarkers were determined. The autophagosomes were observed. M1 macrophage polarization 
and the contents of related indicators were analyzed. The involvement of KEAP1/NRF2/HO-1 was determined.

Results BA inhibited cell development, and the effect of BA and DDP on cell development was additive. The abun-
dance of ferritinophagy-related proteins and the number of autophagosomes were induced by BA. BA also promoted 
the transition of GSH to GSSH. BA favored M1 macrophage polarization and affected the expression of related pro-
teins. When BA and DDP combined, these molecular phenomena were further exacerbated. BA induced accumula-
tion of KEAP1 and reduction of NRF2 and HO-1. However, BM and KEAP1 knockdown disrupted the synergistic effects 
of BA and DDP on inhibiting NSCLC growth. BM and KEAP1 knockdown reversed DDP and BA-promoted protein 
expression activity and M1 macrophage polarization.

Conclusion Our findings suggest that BA is involved in ferritinophagy and macrophage immunity 
through the KEAP1-NRF2/HO-1 axis, thereby improving the DDP sensitivity in NSCLC, which could provide new candi-
dates for treatment strategies.
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Introduction
Lung cancer is reported to be the most common malig-
nant tumor worldwide [1]. Non-small cell lung carci-
noma (NSCLC) accounts for about > 80% of types of lung 
cancer, and its incidence is increasing yearly [2]. Cur-
rently, chemotherapy combined with new drugs occu-
pies the mainstream position in the therapy for NSCLC. 
Among them, cisplatin (DDP)-based chemotherapy is the 
most common and effective treatment option in clinical 
practice [3]. However, due to enhanced drug resistance, 
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the efficacy of DDP is limited, thereby resulting in greatly 
increased relapse and mortality in patients [4]. Therefore, 
there is an urgent need to explain the potential regulatory 
network involved in DDP resistance, which will help to 
improve the therapeutic efficacy of DDP.

Studies reported that large amounts of reactive oxygen 
species (ROS) accumulate in cancer cells to meet their 
demands for rapid growth and reconnection of meta-
bolic networks due to abnormal metabolism and signal 
transduction [5]. If the concentration of ROS is exces-
sively high, exacerbated oxidative stress promotes cell 
death and damage, thereby reducing the viability of can-
cer cells [6]. Nuclear factor erythroid 2-related factor 2 
(NRF2) is described as an evolutionarily highly conserved 
transcription factor that targets transcriptional activation 
of oxidative stress-related genes, ultimately enhancing 
antioxidant capacity [7]. The activity of NRF2 is nega-
tively regulated by kelch-like ECH-associated protein 1 
(KEAP1) [8]. The KEAP1-NRF2 pathway is widely recog-
nized as a promising pharmacological target for the treat-
ment of NSCLC [9]. It has been reported that inhibition 
of NRF2 can promote autophagy to increase DDP chem-
osensitivity in NSCLC cells [10]. Autophagy was found to 
cause degradation of ferritin, which can lead to increased 
ROS levels, termed ferritinophagy [11]. Notably, NRF2 
regulates the expression of many ferroptosis-related pro-
teins and enzymes, including heme oxygenase 1 (HO-
1), to reduce lipid peroxidation and ferroptosis [12, 13]. 
However, whether the KEAP1-NRF2/HO-1 pathway can 
regulate DDP resistance through ferritinophagy remains 
to be further demonstrated.

The medicinal sites of Scutellariae Radix (SR) accumu-
late a large amount of flavonoids, which have been shown 
to have a clear protective effect against NSCLC [14]. Bai-
calin (BA), the main pharmacodynamic component in 
SR, was found to enhance chemosensitivity to DDP [15, 
16]. Studies have shown that the main active component 
complex of SR (containing BA) significantly enhanced 
macrophage viability and promoted M1 macrophage 
polarization in NSCLC to exert antitumor effects [17]. 
In addition, BA has been reported to regulate the mRNA 
expression of key autophagy genes, thereby inducing 
autophagy in cancer cells [18]. Interestingly, the formu-
lation with BA as the main pharmacological component 
exhibited a significant anti-oxidative stress effect, which 
involved the KEAP1-NRF2 pathway [19, 20]. However, 
little has been reported on the effect of BA on DDP 
resistance via KEAP1-NRF2/HO-1 signaling.

To sum up, we explored the function of BA in the 
chemotherapy for NSCLC, which will help to uncover 
the underlying regulatory network of DDP resistance and 
develop novel drugs.

Methods
Cell culture and treatment
NSCLC cell line A549 cells (AW-CCH011, Abiowell) and 
their DDP-resistant cells (A549/DDP cells) (CL-0519, 
Procell) were fostered in DMEM and F-12  K medium, 
respectively, which were both supplemented with 10% 
fetal bovine serum (FBS) and 1% penicillin–streptomy-
cin. Cells were complemented with 8 µg/mL BA (N1778, 
ApexBio) as the BA group, and 4 µg/mL DDP (C489606, 
Aladdin) was added as the DDP group [15]. BA and DDP 
were added together as the DDP + BA group. The control 
group received no additional treatment. All cells were 
incubated for 24 h to carry out subsequent experiments.

The indirect co-culture system was used to observe 
the effect of BA on macrophages in NSCLC. 5 ×  105/
mL mouse macrophages (RAW264.7 cell line, ZQ0098, 
Shanghai Zhongqiao Xinzhou Biotechnology Co., Ltd.) 
were loaded into the upper chamber. 2.5 ×  105/mL of 
A549 or A549/DDP cells after treatment were added into 
the lower chamber. Then, RAW264.7 cells and A549 or 
A549/DDP cells were co-cultured for 24 h to obtain co-
cultured lung cancer cells.

Animal models
Sixty-six healthy nude mice (4-week-old) were provided 
from Hunan SJA Laboratory Animal Co., Ltd. All animal 
experiments in this study were approved by the Medi-
cal Ethics Committee of Shanghai Changzheng Hospital 
(No. LLSP20220420).

To investigate the role of BA, nude mice were ran-
domly divided into control, BA, DDP, BA + DDP, and 
BA + DDP + BM groups, with 3 mice in each group. Nude 
mice were injected subcutaneously with 100 μL of A549 
or A549/DDP cells at a concentration of 2 ×  106 cells for 
tumor formation. After 7  days of tumor formation, the 
mice were treated. In the control group, mice received 
the solvent used for BA (distilled water) orally, the solvent 
used for DDP (0.9% normal saline) by intraperitoneal 
injection, and the solvent used for bardoxolone methyl 
(BM, corn oil) by intraperitoneal injection. Mice in the 
BA group received 100  mg/kg BA (HY-N0197, MCE) 
orally [21] and 0.9% normal saline and corn oil by intra-
peritoneal injection. Mice in the DDP group received 
3 mg/kg DDP [22] and corn oil by intraperitoneal injec-
tion and distilled water orally. Mice in the DDP + BA 
group received 100  mg/kg BA orally and 3  mg/kg DDP 
and corn oil by intraperitoneal injection. Mice in the 
DDP + BA + BM group received 100 mg/kg BA orally and 
3 mg/kg DDP and 10 mg/kg BM (218600-53-4, Abmole) 
[23] by intraperitoneal injection.

To investigate the involvement of the KEAP1-NRF2/
HO-1 pathway, nude mice were randomly divided into 
control, sh-Keap1, BA + DDP, BA + DDP + sh-Keap1, 
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DDP + DTX and BA + DDP + DTX groups, with 3 mice 
in each group. In the control and BA + DDP groups, 
nude mice were injected subcutaneously with 100 μL of 
A549 or A549/DDP cells transfected with sh-NC (2 ×  106) 
for tumor formation. Nude mice in the sh-Keap1 and 
BA + DDP + sh-Keap1 groups were injected subcutane-
ously with 100 μL of A549 or A549/DDP cells transfected 
with sh-Keap1 (2 ×  106) for tumor formation. Nude mice 
in the DDP + DTX and BA + DDP + DTX groups, nude 
mice were injected subcutaneously with 100 μL of A549 
or A549/DDP cells (2 ×  106) to induce tumor formation. 
After 7 days of tumor formation, the mice were treated. 
Specifically, mice in the control group received orally dis-
tilled water (solvent for BA), intraperitoneal injection of 
0.9% normal saline (solvent for DDP) and tail vein injec-
tion of 20% SBE-β-CD (solvent for DTX). Mice in the sh-
Keap1 group did not receive any additional drugs. Mice in 
the BA + DDP group received 100 mg/kg BA orally, 3 mg/
kg DDP by intraperitoneal injection and 20% SBE-β-CD 
by tail vein injection. Mice in the BA + DDP + sh-Keap1 
group received 100 mg/kg BA orally and 3 mg/kg DDP by 
intraperitoneal injection. Mice in the DDP + DTX group 
received oral distilled water, intraperitoneal injection of 
3 mg/kg DDP and tail vein injection of 5 mg/kg docetaxel 
(DTX) [24]. Mice in the BA + DDP + DTX group received 
oral 100 mg/kg BA, intraperitoneal injection of 3 mg/kg 
DDP and tail vein injection of 5 mg/kg DTX.

The operation was terminated on the 28th day, and the 
mouse and tumor weight were recorded within 28 days. 
Mice were sacrificed after intraperitoneal injection of 
150  mg/kg pentobarbital sodium, and the tumors were 
weighed and collected for subsequent experiments.

Cell counting kit‑8 (CCK‑8) assay
Cell viability of A549 and A549/DDP cells was detected 
by CCK8 assay. Briefly, cells at a 5 ×  103/well density 
were seeded in 96-well plates. 10  μL of CCK8 (NU679, 
DOJIMDO) was added for incubation. The absorbance 
was read at 450 nm using a microplate reader (MB-530, 
HEALES).

Determination of cell cycle
A549 and A549/DDP cells were resuspended in pre-
chilled PBS solution and fixed with 75% ethanol over-
night at 4  °C. Ethanol was removed, and propidium 
iodide (MB2920, Meilunbio) was added for staining in 
the dark for 30  min. Finally, a flow cytometer (A00-1-
1102, Beckman) was utilized to examine the distribution 
of cell cycle phases.

Terminal deoxynucleotidyl transferase‑mediated dUTP 
nick end labeling (TUNEL) assay
Apoptosis in A549 and A549/DDP cells was assessed 
based on a kit instruction (40306ES50, YEASEN). Cells 
were mixed with TUNEL solution to incubate for 1  h. 
Nuclei were subsequently stained. The positive cells 
were counted using a fluorescence microscope (BA410T, 
Motic).

Transwell assay
The migratory and invasive abilities of A549 and A549/
DDP cells were assessed utilizing transwell chambers 
(3428, Corning). Extra Matrigel (354262, BD) were 
applied for cell invasion assay. Complete medium con-
taining 10% FBS was added to the lower chamber. Cells 
were trypsinized and resuspended in serum-free medium 
to a concentration of 2 ×  106 cells/mL. The cell plate was 
then placed at 37  °C for 48  h. Then, cells were stained 
with 0.1% crystal violet (AWC0333, Abiowell). Finally, 
cells were observed under a microscope, and the absorb-
ances were measured at 550 nm after destaining.

Quantitative real‑time PCR (qRT‑PCR)
Lung cancer cell supernatant was mixed with TRIzol 
(15596026, Thermo) to extract total RNA, followed by 
reverse transcription into cDNA using a cDNA synthesis 
kit (CW2569, CWBIO). The cDNA was amplified with 
the UltraSYBR Mixture (CW2601, CoWin Biosciences) 
and analyzed utilizing QuantStudio 1 Real-Time PCR 
(Thermo).  2−ΔΔCt was utilized to calculate the relative 
expression of target genes with β-actin as a reference. The 
primer sequences are exhibited in Table 1.

Table 1 Primer sequence

Gene F (5′‑3′) R (5′‑3′)

KEAP1 CGT GGC TGT CCT CAA TCG TCT ATT GCT GTG ATC ATT CGC CACT 

NRF2 CAA CTC AGC ACC TTA TAT CTCG ACA AGG AAA ACA TTG CCA TC

HO-1 CAC ACC CAG GCA GAG AAT GCT GGC TCT CCT TGT TGC GCT CA

SLC7A11 CTC CAG GTT ATT CTA TGT TGC GTC T CAA AGG GTG CAA AAC AAT AAC AGC 

GPX4 CGC CTT TGC CGC CTA CTG AAGC AAC CAT GTG CCC GTC GAT GTCC 

β-actin ACC CTG AAG TAC CCC ATC GAG AGC ACA GCC TGG ATA GCA AC
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Western blot
The collected A549 and A549/DDP cells or mouse lung 
tissue were mixed well with RIPA lysate (AWB0136, 
Abiowell). The supernatant was obtained after centrifu-
gation at 4  °C, and the sample concentration was deter-
mined using a BCA kit (AWB0104, Abiowell). Total 
protein was separated by electrophoresis and transferred 
to membranes. Membranes were mixed with primary 
antibodies at 4  °C, including KEAP1 (1:5000, 10503-2-
AP, Proteintech), NRF2 (1:1000, 16396-1-AP, Protein-
tech), HO-1 (1:3000, 10701-1-AP, Proteintech), SLC7A11 
(1:1000, 26864-1-AP, Proteintech), GPX4 (1:1000, 67763-
1-Ig, Proteintech), SLC40A1 (1:1000, bs-4906R, Bioss), 
transferrin (1:1000, 17435-1-AP, Proteintech), LC3 
(1:500, 18725-1-AP, Proteintech) and β-actin (1:5000, 
66009-1-Ig, Proteintech). Then, HRP-labeled mouse anti-
body (1:5000, SA00001-1, Proteintech) or rabbit antibody 
(1:6000, SA00001-2, Proteintech) was added for incuba-
tion. Protein bands were visualized using ECL Plus ultra-
sensitive luminescence solution (AWB0005, Abiowell).

Immunofluorescence (IF) analysis
The expression of HO-1 (1:50, 10701-1-AP, Protein-
tech) and LC3 (1:100, 14600-1-AP, Proteintech) were 
analyzed by IF. Briefly, cells were incubated with 0.3% 
triton for 30 min after fixation. Cells were blocked with 
0.5% BSA for 60  min and incubated with primary anti-
body overnight at 4  °C. Cells were then mixed with 
CoraLite488-conjugated Goat Anti-Rabbit IgG (H + L) 
(1:200, SA00013-2, Proteintech) for incubation. Nuclei 
were stained with DAPI. Finally, the green fluorescence 
was captured by microscopy.

Transmission electron microscope (TEM) analysis
A549 and A549/DDP cells were resuspended in 2.5% 
glutaraldehyde (AWI0097, Abiowell) and 1% osmium 
tetroxide (18456, TED PELLA). Cells were sequentially 
dehydrated, embedded, sectioned, and stained. Finally, 
the autophagy situation in cells was observed by a micro-
scope (JEM1400, JEOL).

ROS assay
ROS levels were evaluated by a ROS kit (S0033S, Beyo-
time). 10  μmol/L DCFH-DA was added for co-incuba-
tion with cells at 37 °C for 20 min. The labeled cells were 
trypsinized, and the fluorescence intensity was measured 
by flow cytometry.

Lipid peroxidation assay
Lipid peroxidation levels were detected by applying C11-
BODIPY (D3861, Thermofisher). 5 μmol/L C11-BODIPY 

was added and then cells were incubated at 37  °C for 
30  min. Fluorescence intensity was detected by flow 
cytometry after washing with PBS.

Immunophenotyping
The tumors were ground and then centrifuged at 
1500  rpm for 10  min to obtain cell pellets. Cells were 
resuspended in the erythrocyte lysate, and the superna-
tant was removed after centrifugation. After washing 
with PBS, F4/80-FITC (11-4801-82, eBioscience) and 
CD11c-PE (12-0114-82, eBioscience) probes were added 
for incubation in the dark, ultimately detecting the per-
centages of F4/80+ and  CD11c+.

Determination of biomarkers of ferritinophagy
The  Fe2+ levels were detected using a microplate reader. 
The activities of reduced glutathione (GSH) and oxidized 
glutathione (GSSG) in lung cancer cells were assessed 
using the GSH assay kit (A006-2) and Toal glutathione/
GSSG assay kit (A061-1, Nanjing Jiancheng Bioengineer-
ing Institute). All operations were performed based on 
the instructions.

Enzyme‑linked immunosorbent assay (ELISA)
The contents of VEGFA (KE00216, Proteintech), TNF-α 
(KE00068, Proteintech), TGF-β1 (KE00002, Proteintech), 
and iNOS (CSB-E08148h, Elabscience) were identified 
based on the operation of ELISA kit.

Statistical analysis
Statistical analysis was performed by applying Graph-
pad Prism 8. Each value was presented as mean ± stand-
ard deviation. Differences between the two groups 
were monitored by t-test. One-way analysis of variance 
(ANOVA) was used to determine the differences more 
than the two groups. P < 0.05 was explained as statisti-
cally significant.

Results
BA promoted DDP‑induced chemosensitivity of human 
lung cancer cell
We evaluated the effect of DDP and BA on human lung 
cancer cells. The results showed that DDP and BA caused 
a significant decrease in cell viability compared to the 
Control group, and the combination of DDP and BA 
further aggravated this phenomenon (Fig.  1A). In A549 
and A549/DPP cells, DDP and BA greatly induced G1 
cell cycle arrest while decreasing the percentage of cells 
in the G2 phase, and BA further enhanced the effect of 
DDP (Fig. 1B). DDP and BA increased the proportion of 
apoptosis in A549 and A549/DPP cells, and the highest 
level of apoptosis was observed in the DDP + BA group 
(Fig.  1C). Transwell experiments showed that DDP and 
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Fig. 1 BA strengthened the susceptibility of A549 and A549/DDP cells to DDP. A Cell viability was estimated by CCK8 assay; B Flow cytometry 
was applied to assess the distribution of cell cycle phase; C The level of apoptosis was measured by TUNEL assay, scale bar = 50 μm; D Transwell 
assay was employed to analyze cell migration, scale bar = 100 μm. E Transwell assay was used to analyze cell invasion, scale bar = 100 μm. *P < 0.05 vs 
Control; #P < 0.05 vs DDP
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BA reduced the migration and invasion of A549 and 
A549/DDP cells, and the combination of the two accel-
erated this trend (Fig.  1D and E). These results sug-
gested that BA sensitizes A549 and A549/DDP cells to 
DDP, which is manifested in delayed cell cycle, enhanced 
cancer cell apoptosis, and reduced cancer cell viability, 
migration, and proliferation.

BA activated KEAP1‑NRF2/HO‑1 pathway and accelerated 
autophagy
To investigate whether BA regulates KEAP1-NRF2/HO-1 
signaling in A549 and A549/DDP cells, the accumula-
tion of KEAP1, NRF2, and HO-1 wA measured. Separate 
BA or DDP significantly increased the accumulation of 
KEAP1 and inhibited the levels of NRF2 and HO-1, and 
the combination of the two further induced the expres-
sion trend of KEAP1, NRF2 and HO-1 (Fig.  2A and B). 
As shown in Fig.  2C, the results of IF further verified 
that the expression of HO-1 was regulated by BA and 
DDP. In addition, the activity of the autophagy-related 
protein LC3 was positively regulated by BA and DDP, 
and BA accelerated the DDP-induced accumulation of 
LC3 (Fig.  2D). BA or DDP alone increased the ratio of 
LC3 II/I compared to the control group, and the com-
bination of the two further increased the ratio (Fig. 2E). 
The observation results displayed that the number of 
autophagosomes in the control group was less, and the 

organelle structure was relatively complete. The number 
of autophagosomes in the BA or DDP groups was higher 
than that in the control group, and a large number of 
autophagolysosomes were found in the DDP + BA group 
(Fig. 2F). Taken together, these data manifested that BA 
activated KEAP1-NRF2/HO-1 signaling and induced 
increased autophagy in vitro to improve DDP-enhanced 
anticancer effects.

BA‑induced ferritinophagy in A549 and A549/DDP cells
Previous reports demonstrated that excessive activa-
tion of autophagy promotes ferroptosis [25]. Ferroptosis 
involves the accumulation of ROS and lipid peroxidation 
[26]. Flow cytometry results illustrated that BA and DDP 
were beneficial to the increase of ROS and lipid peroxida-
tion in A549 and A549/DDP cells, and the combination 
of the two significantly further promoted ROS produc-
tion and lipid peroxidation (Fig. 3A and B). The content 
of  Fe2+ was greatly increased in the BA and DDP groups, 
and the abundance of  Fe2+ was further increased in the 
DDP + BA group (Fig. 3C). The contents of solute carrier 
family 7 member 11 (SLC7A11), glutathione peroxidase 
4 (GPX4), and SLC40A1 were decreased by BA and DDP, 
and transferrin increased (Fig.  3D and E). BA further 
increased DDP-enhanced expression activity of these 
markers. Changes in the levels of GSH and GSSG can be 
used to measure ferritinophagy in cells [27]. As shown in 

Fig. 1 continued



Page 7 of 17Chen et al. European Journal of Medical Research          (2024) 29:387  

Fig. 2 BA regulated DDP sensitivity through the KEAP1-NRF2/HO-1 pathway. A The relative levels of KEAP1, NRF2, and HO-1 in A549 and A549/DDP 
cells were examined by qRT-PCR; B Western blot was utilized to measure the protein abundance of KEAP1, NRF2, and HO-1; C IF assay was applied 
to analyze the activities of HO-1, scale bar = 25 μm; D The level of LC3 was assessed by IF, scale bar = 25 μm; E Western blot was used to measure 
the expression of LC3 II and I; F Cell autophagy was observed on a TEM, scale bar = 500 nm. *P < 0.05 vs Control; #P < 0.05 vs DDP
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Fig. 2 continued
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Fig. 3 BA accelerated ferritinophagy in A549 and A549/DDP cells. A ROS levels were assessed by flow cytometry; B Changes in lipid peroxidation 
were detected; C The activity of  Fe2+ was examined; D qRT-PCR was used to measure the relative mRNA levels of SLC7A11, and GPX4 in cells; E The 
relative abundances of SLC7A11, GPX4, SLC40A1, and transferrin were determined by western blot; F GSH and GSSH levels were calculated. *P < 0.05 
vs Control; #P < 0.05 vs DDP
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Fig.  3F, BA and DDP induced a decrease in GSH levels 
and an increase in GSSH levels, and the combination of 
the two accelerated this trend. In short, these findings 
illustrated that BA promoted ferritinophagy in A549 and 
A549/DDP cells.

BA contributed to anticancer immune responses
Substantial evidence reveals that the complex tumor 
microenvironment (TME) is critical for the treatment of 
NSCLC [28]. As shown in Fig. 4A, the ratio of F4/80+ to 
 CD11c+ was markedly up-regulated by BA and DDP in 
A549 and A549/DDP cells, and the combination of the 
two further increased the ratio. BA and DDP increased 
secretion of M1-related cytokines, including induc-
ible nitric oxide synthase (iNOS) and tumor necrosis 
factor-α (TNF-α), and decreased secretion of M2-related 
cytokines, including vascular endothelial growth fac-
tor-A (VEGF-A) and transforming growth factor-β 
(TGF-β), and BA further enhanced the level changes of 

DDP-regulated cytokines (Fig. 4B). These data suggested 
that BA contributed to M1 macrophage polarization in 
lung cancer cells to enhance DDP sensitivity.

BM reversed BA‑induced effects in mice
The KEAP1-NRF2/HO-1 pathway has been reported to 
be involved in ferroptosis in  vitro and in  vivo [29]. We 
administered an NRF2 inducer (BM) to explore whether 
BA modulates DDP sensitivity through KEAP1-NRF2/
HO-1 signaling in  vivo [23]. We developed xenograft 
mouse models of A549 and A549/DDP cells. Compared 
with the Control group, the BA and DDP groups showed 
a self-evident inhibitory effect on the NSCLC tumor in 
mice, and the combination of the two further improved 
NSCLC in the mice. Interestingly, the DDP + BA + BM 
group exhibited similar tumor volume and weight to 
the Control group, disrupting the therapeutic effects 
of BA and DDP (Fig.  5A, B and C). We further ana-
lyzed the potential regulatory mechanisms in  vivo. The 

Fig. 4 BA promoted M1 macrophage polarization. A The proportion of M1 macrophages (F4/80+ and  CD11c+) was evaluated by flow cytometry; B 
The expressions of iNOS, TNF-α, VEGF-A, and TGF-β were examined by ELISA. *P < 0.05 vs Control; #P < 0.05 vs DDP
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regulation of KEAP1, NRF2, HO-1, and LC3 II/I levels 
by BA and DDP was consistent with the cellular experi-
ments, and BM clearly reversed the functions of BA and 
DDP (Fig. 5D). Then, we examined the proportion of M1 
macrophages in the tumor. Compared with the Control 
group, BA and DDP induced M1 macrophage polariza-
tion, and the DDP + BA group exhibited a higher propor-
tion of M1 macrophages, while BM sharply suppressed 
the effects of BA and DDP (Fig.  5E). These results con-
firmed in  vivo that BA could promote the sensitivity of 
NSCLC to DDP by triggering autophagy and M1 mac-
rophage polarization through the KEAP1-NRF2/HO-1 
pathway.

KEAP1 knockdown disrupted the protective effects of DDP 
and BA
The involvement of the KEAP1-NRF2/HO-1 pathway in 
the BA-mediated sensitivity of NSCLC to DDP was fur-
ther elucidated. The results showed that compared to 
the control group, sh-Keap1-intervened mice exhibited 
increased tumor volume and weight, while the BA/DDP 
combination and the DDP/DTX combination exerted 
protective effects. Compared to the BA + DDP group, 
sh-Keap1 intervention disrupted the therapeutic effects 
of BA/DDP, resulting in decreased body weight and 
increased tumor volume and weight. Compared to the 
DDP + DTX group, BA further enhanced the protective 
effect of the DDP/DTX combination (Fig. 6A, B and C). 
Compared to the control group, sh-Keap1 resulted in 
downregulation of KEAP1 and LC3 II/I expression and 
upregulation of NRF2 and HO-1 expression, while the 
BA/DDP combination and the DDP/DTX combination 
exerted opposite effects. Compared to the BA + DDP 
group, sh-Keap1 reduced the expression of KEAP1 and 
LC3 II/I and promoted the expression of NRF2 and 
HO-1. Compared to the DDP + DTX group, BA further 
increased the expression of KEAP1 and LC3 II/I and 
decreased the expression of NRF2 and HO-1 (Fig. 6D and 
E). Mice injected with sh-Keap1-transfected cells showed 
a decreased proportion of M1 macrophages in the tumors 
compared to the BA + DDP group. The DDP/DTX com-
bination increased the proportion of M1 macrophages in 
the tumors compared to the control group and BA ampli-
fied this effect (Fig. 6F). Furthermore, the BA + DDP + sh-
Keap1 group showed increased expression of SLC7A11, 
GPX4 and SLC40A1 and decreased expression of 

transferrin compared to the BA + DDP group. The 
DDP/DTX combination attenuated the expression 
of SLC7A11, GPX4 and SLC40A1 and promoted the 
expression of transferrin and BA further amplified these 
trends (Fig.  6G). Compared with the control group, sh-
Keap1 induced an increase in GSH levels and a decrease 
in GSSH levels, while the BA/DDP combination and the 
DDP/DTX combination had opposite effects. sh-Keap1 
weakened the effect of the BA/DDP combination, and 
BA enhanced the effect of the DDP/DTX combination 
(Fig. 6H). Importantly, nude mice in the BA + DTX group 
showed similar results to the DDP + DTX group (Fig. 6). 
These results further confirmed in vivo that BA regulated 
ferritinophagy and M1 macrophage polarization through 
the KEAP1-NRF2/HO-1 pathway.

Discussion
SR is a traditional Chinese medicinal material widely 
used as an adjuvant for chemotherapy in clinical prac-
tice [30]. Currently, more than 60 flavonoids have been 
isolated and identified in SR, and these compounds show 
strong antioxidant activities [31]. Among them, wogonin, 
baicalein and BA are the main active components of SR, 
which have excellent antitumor effects against multiple 
types of cancer, such as glioblastoma, colorectal cancer, 
prostate cancer, gastric cancer, etc. [32]. Evidence sug-
gests that SR can be applied to prevent and treat NSCLC 
[14, 33]. However, few reports have focused on the func-
tion of SR in the sensitivity of NSCLC to cisplatin chemo-
therapy. In our study, we reported that BA decreased cell 
viability, reduced cell migration and invasion, acceler-
ated apoptosis and cell cycle arrest in NSCLC parental 
cell line (A549) and cisplatin-resistant cell line (A549/
DDP), ultimately modulating chemotherapy response 
in NSCLC. The single application of BA and DDP con-
tributed to inhibiting NSCLC growth, and the confeder-
ate application of the two further enhances the efficacy 
of BA and DDP. DTX, as an effective chemotherapeutic 
agent, exhibits excellent antitumor and targeted activi-
ties in NSCLC [34, 35]. Combination therapy of DTX and 
DDP has shown promising treatment outcomes [36, 37]. 
BA could improve current adjuvant therapies such as the 
DDP/DTX combination in NSCLC.

The KEAP1-NRF2/HO-1 pathway plays a significant 
role in regulating cellular redox status. In unstressed con-
ditions, NRF2 is located in the cytoplasm, and KEAP1 

Fig. 5 BA modulated the sensitivity of NSCLC to DDP via the KEAP1-NRF2/HO-1 pathway in vivo. A Mouse growth curve in different groups; 
B Tumor volume was estimated twice a week; C Tumors were weighed on the 28th day; D The abundance of KEAP1, NRF2, HO-1, and LC3 
was detected by western blot; E Flow cytometry was applied to measure the ratio of M1 macrophages (F4/80+ and  CD11c+). *P < 0.05 vs Control; 
#P < 0.05 vs DDP; &P < 0.05 vs DDP + BA

(See figure on next page.)
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promotes NRF2 ubiquitination and proteasomal degra-
dation to maintain NRF2 levels at a very low concentra-
tion. Once the accumulation of ROS in cells is abnormal, 
NRF2 is released from KEAP1 and translocated into 
the nucleus, thereby activating the transcription of 

antioxidant genes, including HO-1 [38]. We reported that 
BA promoted the accumulation of KEAP1 and inhibited 
NRF2 and HO-1 in  vitro and in  vivo models, impeding 
KEAP1-NRF2/HO-1 signaling in NSCLC. In xenografted 
mice, the NRF2 inhibitor (BM) disrupted the beneficial 

Fig. 6 The KEAP1-NRF2/HO-1 pathway was involved in BA-mediated sensitivity of NSCLC to DDP in vivo. A Mouse growth curve in different groups; 
B Tumor volume was estimated twice a week; C Tumors were weighed on the 28th day; D The expression of KEAP1 was determined by qRT-PCR 
and western blot; E The abundance of NRF2, HO-1, and LC3 was detected by western blot; F Flow cytometry was applied to measure the ratio 
of M1 macrophages (F4/80+ and  CD11c+). G The protein levels of SLC7A11, GPX4, SLC40A1, and transferrin were determined by western blot; H GSH 
and GSSH levels were determined. *P < 0.05 vs Control; #P < 0.05 vs BA + DDP; &P < 0.05 vs DDP + DTX
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effects of BA and DDP, as evidenced by enhanced NSCLC 
xenograft tumor growth. In addition, KEAP1 knockdown 
reversed the protective effects of BA and DDP, showing 
accelerated NSCLC progression. These results explained 
that BA modulated the sensitivity of NSCLC to DDP in 
part through the KEAP1-NRF2/HO-1 pathway.

Previous reports revealed that NRF2 promoted 
NSCLC cell proliferation and inhibited apoptosis by 
enhancing autophagic activity [39]. Under certain 
conditions, autophagy mechanisms may overlap with 
cell death [40]. Ferroptosis is the newly defined iron-
dependent cell death, described as the accumulation 

Fig. 6 continued
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of ROS triggering iron metabolism imbalance and lipid 
peroxidation [41]. Ferritinophagy is a specialized type 
of selective autophagy, and overactivation of ferritin-
ophagy induces iron overload to increase cellular sus-
ceptibility to ferroptosis [42]. One study demonstrated 
that ferritinophagy was involved in mediating the sen-
sitivity of NSCLC cells to DDP [43]. We reported that 
BA and DDP favorably enhanced the activity of LC3 
and increased the number of autophagosomes. In addi-
tion, BA and DDP significantly increased ROS level and 
lipid peroxidation and regulated the abundance of fer-
roptosis-related proteins SLC7A11, GPX4, SLC40A1, 
and transferrin, and simultaneously promoted the tran-
sition of GSH to GSSH. The combined use of BA and 
DDP further enhanced the effect of BA and DDP on 
A549 and A549/DDP cells. We concluded that BA and 
DDP promoted ferritinophagy in NSCLC cells, and BA 
enhanced DDP sensitivity. The KEAP1-NRF2 pathway 
is closely related to ferroptosis [44, 45]. Overexpres-
sion of KEAP1 exacerbates the degradation of NRF2, 
reduces the expression of HO-1, and promotes oxida-
tive damage and ferroptosis in tumors [46]. Activation 
of the KEAP1/NRF2/HO-1 pathway may be triggered 
in ferroptosis of gastric cancer cells mediated by fer-
ritinophagy [47]. However, studies on KEAP1/Nrf2/
HO-1 targeting ferritinophagy in NSCLC are still lack-
ing. In this study, BM reversed the accumulation of LC3 
induced by BA and DDP in xenografted mice, showing 
that NRF2 suppressed autophagic activity in NSCLC. 
KEAP1 knockdown decreased the expression of LC3 
II/I and transferrin and promoted the expression of 
SLC7A11, GPX4 and SLC40A1. KEAP1 knockdown 
also inhibited the transition of GSH to GSSH. These 
findings indicated the critical role of KEAP1-NRF2 in 
mediating ferritinophagy in NSCLC.

Tumor-associated macrophages are one of the rela-
tively abundant cell types in the TME, and accumulat-
ing studies have shown that macrophages polarize to an 
M1 or M2 phenotype once stimulated by the environ-
ment [48]. M1-like macrophages initially functioned in 
the TME to suppress cancer cell growth [49]. It has been 
reported that the density of M1 macrophages is pro-
portional to the survival time and prognostic effect of 
NSCLC patients [50]. Studies have shown that the NRF2/
HO-1 pathway is involved in macrophage polarization to 
regulate inflammation and oxidative stress-related disor-
ders [51, 52]. Furthermore, SR contributes to M1 mac-
rophage polarization in NSCLC cells [17]. Therefore, we 
speculated that BA might contribute to M1 macrophage 
polarization in NSCLC through the KEAP1-NRF2/HO-1 
pathway. In our experiments, BA and DDP increased 
the ratio of F4/80+ and  CD11c+ and induced the accu-
mulation of iNOS and TNF-α in cells and inhibited the 

activities of VEGF-A and TGF-β, indicating that BA and 
DDP promote M1 macrophage polarization in NSCLC. 
Joint administration of BA and DDP further enhanced 
M1 macrophage polarization in NSCLC. More impor-
tantly, BM and KEAP1 knockdown blocked the pro-
moting effects of BA and DDP on M1 macrophage 
polarization.

In conclusion, BA treatment not only induced ferritin-
ophagy in NSCLC but also promoted the polarization 
of M1 macrophages, ultimately improving the sensitiv-
ity of NSCLC to DDP. This process was regulated by the 
KEAP1-NRF2/HO-1 pathway. Our findings enhanced 
our understanding of BA in the treatment of NSCLC and 
provided a candidate therapeutic mechanism.
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