

Comparative effectiveness of ultrathin vs. standard strut drug-eluting stents: insights from a large-scale meta-analysis with extended follow-up

Ahmed Hassan^{1,2*}, Ahmed Mazen Amin³, Ahmed Farid Gadelmawla⁴, Ahmed Mansour⁵, Hamed Abdelma'aboud Mostafa⁶, Mariam Tarek Desouki⁷, Mostafa Mahmoud Naguib⁶, Bilal Ali⁸, Aisha Siraj⁹, Mustafa Suppah¹⁰ and Diaa Hakim¹¹

Abstract

Background Newer generation ultrathin strut stents are associated with less incidence of target lesion failure (TLF) in patients undergoing percutaneous coronary intervention (PCI) in the short term. However, its long-term efect on diferent cardiovascular outcomes remains unknown.

Objectives We aim to identify the efects of newer-generation ultrathin-strut stents vs. standard thickness secondgeneration drug-eluting stents (DES) on long-term outcomes of revascularization in coronary artery disease.

Methods We searched PubMed, Web of Science, Cochrane Library databases, and Scopus for randomized controlled trials (RCTs) and registries that compare newer-generation ultrathin-strut (<70 mm) with thicker strut (>70 mm) DES to evaluate cardioprotective efects over a period of up to 5 years. Primary outcome was TLF, a composite of cardiac death, target vessel myocardial infarction (TVMI) or target lesion revascularization (TLR). Secondary outcomes included the components of TLF, stent thrombosis (ST), and all-cause death were pooled as the standardized mean diference between the two groups from baseline to endpoint.

Results We included 19 RCTs and two prospective registries (103,101 patients) in this analysis. The overall efect on the primary outcome was in favor of second-generation ultrathin struts stents in terms of TLF at ≥1 year, ≥2 years, and ≥3 years (*P* value=0.01, 95% CI [0.75, 0.96]), *P* value=0.003, 95% CI [0.77, 0.95]), *P* value=0.007, 95% CI [0.76, 0.96]), respectively. However, there was no reported beneft in terms of TLF when we compared the two groups at ≥5 years (*P* value=0.21), 95% CI [0.85, 1.04]). Some of the reported components of the primary and secondary outcomes, such as TLR, target vessel revascularization (TVR), and TVMI, showed the same pattern as the TLF outcome.

Conclusion Ultrathin-strut DES showed a beneficial effect over thicker strut stents for up to 3 years. However, at the 5-year follow-up, the ultrathin strut did not difer in terms of TLF, TLR, TVR, and TVMI compared with standardthickness DES, with similar risks of patient-oriented composite endpoint (POCE), MI, ST, cardiac death, and all-cause mortality.

Keywords Ultrathin-strut drug-eluting stent, DES, Percutaneous coronary intervention, Meta-analysis

*Correspondence: Ahmed Hassan 20161300@o6u.edu.eg Full list of author information is available at the end of the article

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit [http://creativecommons.org/licenses/by/4.0/.](http://creativecommons.org/licenses/by/4.0/) The Creative Commons Public Domain Dedication waiver ([http://creativeco](http://creativecommons.org/publicdomain/zero/1.0/) [mmons.org/publicdomain/zero/1.0/](http://creativecommons.org/publicdomain/zero/1.0/)) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction

Percutaneous coronary intervention (PCI) is the recommended revascularization approach for restoring blood flow to the heart in patients with stable coronary artery disease (SCAD) when medical treatment fails to enhance prognosis or alleviate symptoms (chest pain, weakness, short of breath) [\[1\]](#page-20-0). Additionally, it is the recommended reperfusion strategy for patients presenting with acute ST-segment elevation myocardial infarction (STEMI) [[2\]](#page-20-1). The implementation of first-generation drug-eluting stents (DES) decreased the occurrence of restenosis compared to bare metal stents. However, this advancement was at the expense of higher rates of stent thrombosis (ST). The incidence of definite very late ST ranges from 0.6 to 0.7% per year, while the rate of major adverse cardiac events (MACE) showed a steady increase of 2.6% annually $[3]$ $[3]$. The occurrence of unfavorable outcomes with the frst-generation and contemporary permanent polymer-based DES provides a chance for step-by-step enhancement [[4](#page-20-3)[–9](#page-20-4)].

Improved stent design, enhanced polymer coating, and the rate of release of antiproliferative agents have contributed to DES's increased safety and efficacy. Secondgeneration thin-strut DES have demonstrated a reduced risk of restenosis, ST, myocardial infarction (MI), or even death compared to older-generation DES or bare metal stents [\[10,](#page-20-5) [11](#page-20-6)]. Additionally, newer generations of stents with ultrathin strut thickness or biodegradable polymers can accelerate endothelialization, enhance healing, reduce infammation and arterial injury, and decrease neointimal proliferation and thrombogenicity [\[12\]](#page-20-7).

Recent research showed that ultrathin-strut DES with a thickness of less than $70 \mu m$ can enhance outcomes even more than second-generation DES [\[13](#page-20-8)]. Ultrathin second-generation DES has been found to have lower rates of target lesion failure (TLF) at both 2 years and 3 years compared to second-generation DES with standard thickness, as demonstrated by a recent meta-analysis $[14]$ $[14]$. Nevertheless, the long-term safety and efficacy of the initial advantages granted by ultrathin second-generation DES is still unknown. Hence, we conducted an updated systematic review and meta-analysis, with an extended follow-up period of 5 years, to compare the clinical outcomes between ultrathin-strut and standard thickness second-generation DES.

Methods

Data collection and extraction

We searched PubMed, Scopus, Web of Science, and Cochrane Library databases up to November 2023 using the search terms: (Ultrathin strut OR Thin strut OR Orsiro stent) AND (Sirolimus-eluting stent OR SES OR drug-eluting stents OR DES) AND (Coronary artery intervention OR Percutaneous coronary intervention OR Coronary angioplasty OR Stent implantation).

Endnote software (Clarivate Analytics, PA, USA) removed duplicates. The retrieved references were screened in two steps: the frst consisted of screening the titles/abstracts independently by (A.M, M.N, and A.H) to determine their relevance, and the second consisted of screening the full-text articles of the identifed abstracts for final eligibility to the quantitative analysis. The Rayyan website was used in the selection process [\[15](#page-20-10)].

Our search identifed 994 results after duplicates were removed. Following the title and abstract screening, 53 papers were selected for full-text review. Of them, 50 studies were included in the meta-analysis. No further papers were included after manually searching the references of the included studies. The selection process is illustrated in the PRISMA fow diagram of the study in Fig. [1](#page-2-0) and was registered on PROSPERO (CRD42024506460).

Studies enrolled patients with coronary artery disease undergoing PCI, comparing ultrathin sirolimus-eluting stent vs. standard thickness second-generation DES in RCTs, and registries reporting clinical outcomes were included in our meta-analysis. Animal studies, non-English studies, abstracts without available data, and unpublished studies were excluded. The data were extracted to a uniform standardized data extraction sheet, including (1) a summary of study characteristics, (2) stent characteristics, (3) baseline patient characteristics, (4) lesion characteristics and treatment procedures, and (5) clinical outcomes.

Outcomes

The primary endpoints of the current analysis included TLF, a composite of cardiac death, target vessel myocardial infarction (TVMI), and target lesion revascularization (TLR). Secondary outcomes included patient-oriented composite endpoint (POCE) of all-cause death, MI, repeat revascularization, and each component of TLF and ST. All outcomes are up to 5 years of follow-up.

Risk‑of‑bias assessment

We utilized the revised Cochrane risk-of-bias tool for RCTs (RoB 2) to evaluate the risk of bias in the included clinical trials [\[16](#page-20-11)]. This evaluation encompassed an assessment of the randomization process, concealment of the allocation sequence, deviations from the intended interventions, utilization of appropriate analysis to estimate the efect of assignment to intervention, measurement of the outcome, selection of the reported results, and overall risk of bias. The assessment of the methodological quality of the studies was classifed as either

Fig. 1 PRISMA flow diagram of the study

low risk, with some concerns, or high risk of bias. For prospective registries, we used The Cochrane ROBINS-I tool [[17\]](#page-20-12), which includes the following domains: (1) bias due to confounding, (2) bias in the selection of participants into the study, (3) bias in the classifcation of interventions, (4) bias due to deviations from intended interventions, (5) bias due to missing data, bias in the measurement of outcomes, and (6) bias in the selection of the reported result. Any conficts between the reviewers were resolved by consensus or consultation.

Statistical analysis

We used RevMan v5.3 to conduct the statistical analysis [[18\]](#page-20-13). We used the risk ratio (RR) to pool the results of dichotomous outcomes, and we used the mean diference (MD) with a 95% confdence interval (CI) to pool the continuous outcomes. We used the fxed-efects

model. However, the random-efects model was used in case of signifcant heterogeneity. Chi-square and I-square tests were used to evaluate heterogeneity, where the Chi-square test detects the presence of heterogeneity, and the I-square test evaluates its degree. I-square was interpreted in accordance with the Cochrane Handbook (chapter nine) [\[19](#page-20-14)] as follows: heterogeneity is not signifcant for 0–40%, moderate for 30–60%, substantial for 50–90%, and considerable for 75–100%. We considered an alpha level below 0.1 for the Chi-square test to detect signifcant heterogeneity. We performed a leaveone-out sensitivity analysis to address the heterogeneity in our pooled studies. By systematically excluding each study one at a time, we identifed which studies contributed to the heterogeneity and reported our fndings accordingly. We used Stata MP version 17 (Stata Corp) to assess the publication bias by inspection and Egger's

test in outcomes reported by ten or more studies. We conducted a subgroup analysis for the follow-up duration as follows: ≥ 1 year (any study's follow-up duration from 1 year to less than 2 years), \geq 2 years (any study's followup duration from 2 years to less than 3 years), \geq 3 years (any study's follow-up duration from 3 years to less than 4 years), and \geq 5 years (any study's follow-up duration 5 years or more).

We conducted a subgroup analysis comparing acute coronary syndrome (ACS) and chronic coronary syndrome (CCS) patients for all available outcomes across all follow-up durations. We detected a subgroup diference using the test of subgroup diference.

Results

After a detailed search, 19 RCTs and two registries were included in our meta-analysis [[20](#page-20-15)[–69](#page-22-0)], according to the Cochrane RoB2 and ROBINS-1 assessments. Nine studies had an overall low risk of bias, 11 had some concerns, and one had an overall high risk of bias (Fig. [2](#page-3-0)). Analysis of publication bias is summarized in Supplementary Table 3.

Characteristics of the included studies

These studies included 103,101 patients who underwent PCI for coronary artery disease (for both CCS and ACS) using ultrathin-struts DES, *n*=19,001; standard thickness second-generation DES, *n*=84,100). Nine studies have reached five 5-year follow-ups, five studies have reached three 5-year follow-ups, three studies have reached 2-year follow-ups, and 4 years have reached 1-year follow-ups. The details of studies characteristics are presented in Table S2. Summary of stent characteristics, baseline patient characteristics, lesion characteristics, and intervention procedures of the are outlined in Tables [1,](#page-4-0) [2](#page-5-0), and [3](#page-8-0).

Primary outcome

Target lesion failure (TLF)

Ultrathin-struts DES were associated with a signifcant decreased in the incidence of TLF at \geq 1 year (RR: 0.85 with 95% CI [0.75, 0.96], *P*=0.01), at ≥2 years (RR: 0.86 with 95% CI [0.77, 0.95], *P* = 0.003), and at ≥3 years (RR: 0.85 with 95% CI [0.76, 0.96], *P*=0.007) compared to standard thickness second-generation DES. However, there was no signifcant diference between ultrathinstruts DES and standard thickness second-generation DES at 5 years (RR: 0.94 with 95% CI [0.85, 1.04], $P=0.21$) (Fig. [3](#page-10-0)).

Cardiac death

There was no significant difference between ultrathinstruts DES and standard thickness second-generation

Fig. 2 Risk of bias and quality assessment

DES at ≥ 1 year (RR: 1.00 with 95% CI [0.82, 1.22], *P*=1.00), at ≥2 years (RR: 1.12 with 95% CI [0.92, 1.37], *P*=0.27), at ≥3 years (RR: 1.03 with 95% CI [0.83, 1.27], *P*=0.81), and at 5 years (RR: 0.98 with 95% CI [0.82, 1.17], $P = 0.84$) (Fig. [4\)](#page-11-0).

Target vessel‑related myocardial infarction (TVMI)

Ultrathin-struts DES were associated with a decreased incidence of TVMI at \geq 2 years (RR: 0.81 with 95% CI [0.68, 0.97], $P=0.02$] compared to standard thickness

Hassan *et al. European Journal of Medical Research (2024) 29:388* extending the set of 23 Page 7 of 23

Data presented as mean and SD, or number (%) Data presented as mean and SD, or number (%)

Intervention (I), control (C) Intervention (I), control (C)

*BM*l Body mass index, *CABG* coronary artery bypass graft, *DM* diabetes mellitus, *HTN* hypertension, *MI* myocardial infarction, *PCI* percutaneous coronary intervention, STEMI ST-segment elevation myocardial infarction BMI Body mass index, CABG coronary artery bypass graft, DM diabetes mellitus, HTM hypertension, MI myocardial infarction, PCI percutaneous coronary intervention, STEMI ST-segment elevation myocardial infarction

Fig. 3 Forest plot of target lesion failure from 1 to 5 years follow-up

Fig. 4 Forest plot of cardiac death from 1 to 5 years follow-up

Fig. 5 Forest plot of target vessel-related myocardial infarction (TVMI) from 1 to 5 years follow-up

second-generation DES, while there was no signifcant diference between ultrathin-struts DES and standard thickness second-generation DES at \geq 1 year (RR: 0.91

with 95% CI [0.77, 1.07], *P*=0.24), at ≥3 years (RR: 0.85 with 95% CI [0.70, 1.03], *P*=0.10), and at 5 years (RR: 0.94 with 95% CI [0.79, 1.11], *P*=0.46) (Fig. [5\)](#page-12-0).

Target lesion revascularization (TLR)

Regarding the TLR, ultrathin-struts DES showed a lower incidence of TLR at \geq 1 year (RR: 0.79 with 95% CI [0.65, 0.96], *P*=0.02) and at \geq 2 years (RR: 0.79 with 95% CI [0.67, 0.94], *P*=0.009), compared to standard thickness second-generation DES. However, there was no signifcant diference between ultrathin-struts DES and standard thickness second-generation DES at $>$ 3 vears (RR: 0.90 with 95% CI [0.70, 1.15], *P*=0.40) and at 5 years (RR: 0.98 with 95% CI [0.81, 1.17], *P*=0.81) (Fig. [6\)](#page-14-0).

Secondary outcome

Target vessel revascularization (TVR)

The incidence of TVR was lower in ultrathin-struts DES TVR at ≥1 year (RR: 0.87 with 95% CI [0.77, 0.98], *P*=0.02), at ≥2 years (RR: 0.85 with 95% CI [0.76, 0.95], *P*=0.005), and at \geq 3 years (RR: 0.86 with 95% CI [0.76, 0.97], $P=0.01$) compared to standard thickness secondgeneration DES. There was no significant difference between ultrathin-struts DES and standard thickness second-generation DES at 5 years (RR: 0.96 with 95% CI $[0.85, 1.08], P=0.51$) (Fig. [7\)](#page-15-0).

There were no significant differences between ultrathin-strut DES and standard thickness second-generation DES regarding all-cause mortality (Fig. [8](#page-16-0)), patient-oriented composite endpoint (POCE) (Figure S16), myocardial infarction (MI) (Figure S18), repeat revascularization (Figure S22), defnite or probable stent thrombosis (ST) (Figure S24), defnite stent thrombosis (ST) (Figure S27), probable stent thrombosis (ST) (Figure S29), and bleeding (Figure S30) at 1 year, ≥2 years, ≥3 years, and 5 years.

The details of primary and secondary outcome results are presented in Table [4.](#page-17-0)

TLF subgroup analysis regarding ACS versus CCS patients, there was no signifcant diference between ultrathin-struts DES and standard thickness second-generation DES at 1 year, 2 years, 3 years, and 5 years followup (*P* values for the subgroup analysis were 0.48, 0.97, 0.32, 0.63 consecutively) (Figures S31A–S31D).

More details about heterogeneity and sensitivity analysis are provided in the supplementary material.

Discussion

In this systematic review and meta-analysis, which included 103,101 patients from 21 studies with 1- to 5-year follow-ups, we compared the safety and efficacy of ultrathin-struts DES to standard thickness second-generation DES, and we elucidated that

1. ultrathin struts have a lower incidence of TLF after 1, 2, and 3 years. Nevertheless, this beneft fades 5 years, with no noticeable diference.

- 2. At 1 and 2 years, ultrathin-struts DES showed a considerably decreased incidence of TLR compared to standard thickness second-generation DES. However, there is no signifcant diference in TLR between the two types of stents after 3 and 5 years.
- 3. No signifcant diference was noted between the two groups in terms of all secondary outcomes, except for TVR. The occurrence of TVR was lower in the ultrathin group during the initial 3-year period when compared with the group using thicker DES; nevertheless, this discrepancy disappeared at 5 years.

Efect on outcomes components

One of the important components of the primary clinical outcomes is the TLF, which includes restenosis, thrombosis, and revascularization in the treated artery.

In our study, an ultrathin stent was associated with a lower incidence of TLF at 1, 2, 3 years, which could represent an early advantage and may be related to the short and intermediate-term efect of the ultrathin strut's stents. On the other hand, at 5 years, the diference in TLF between the two types of stents was not noticeable, raising concerns about the long-term durability.

The positive effect of ultrathin stent in reducing the short and intermediate-term TLF may be attributable to the stent design. Ultrathin-struts DES have a unique design that diferentiates them from the standardthickness second-generation DES. The ultrathin strut design, measuring 60 μ m, outperforms existing stents like XIENCE (81 μm) (Abbott Vascular, Santa Clara, CA) and RESOLUTE $(91 \mu m)$ (Medtronic, Santa Rosa, CA, USA) in terms of flexibility and deliverability. This design reduces endothelial trauma, promoting excellent endothelial coverage and decreasing perivascular infammation, resulting in a healthier vascular environment [[70\]](#page-22-10). The ultrathin-strut DES evaluated in this meta-analysis has a similar metallic stent platform strut thickness and uses biodegradable polymers. They differ, however, in some elements of DES design, such as stent platform geometry, polymer composition, distribution or degradation time, and the kinetics of the antiproliferative medication delivered [\[12](#page-20-7), [70\]](#page-22-10). Furthermore, characteristics inherent in the design, such as stent conformability and deliverability, can infuence clinical outcomes in individuals with acute coronary syndromes (ACS), which ofer a higher long-term sensitivity to stent-related adverse events. This is principally due to an enhanced prothrombotic and infammatory response following the insertion of DES, leading to a delay in the healing process in the artery region where the stent is present [[71\]](#page-22-11). Furthermore, the ultrathin design reduces side branch coverage even further, especially in vessels less than 3 mm in

Fig. 6 Forest plot of target lesion revascularization (TLR) from 1 to 5 years follow-up

Fig. 7 Forest plot of target vessel revascularization (TVR) from 1 to 5 years follow-up

Fig. 8 Forest plot of all-cause mortality from 1 to 5 years follow-up

diameter, minimizing the risk of periprocedural myocardial infarction and, as a result, the incidence of TVMI [[71\]](#page-22-11).

The lack of a significant difference in all-cause mortality or even cardiac death between ultrathin DES and standard-thickness DES could be attributed to other contributing factors than the stent design, such as clinical, anatomical, and local pathophysiological lesion characteristics.

The findings of this study are consistent with previous research [[13,](#page-20-8) [71](#page-22-11), [72\]](#page-22-12), showing that even minor changes in strut thickness, ranging from 20 to 30 mm, may be sufficient to produce unique stent-related outcomes in newergeneration DES in routine clinical settings. Our study's efect on TLF aligns with the results of previously published meta-analyses [[14,](#page-20-9) [72](#page-22-12)[–74](#page-22-13)] except for Li et al., 2023 which showed no diference, and a smaller sample size can explain this. Our study is the frst meta-analysis to compare the two groups regarding POCE and reported revascularization, and it showed no statistically signifcant diference between the two groups. Our results align with the previous meta-analyses [\[14](#page-20-9), [72–](#page-22-12)[74\]](#page-22-13), which showed no statistically signifcant diference in all-cause mortality, cardiac mortality, and defnite or probable ST outcomes.

The lower TLR in our study is contrary to the study by Madhavan [\[72](#page-22-12)], Monjur [[73](#page-22-14)], Iglesias [[74\]](#page-22-13), and Li [[75](#page-22-15)] results and in line with Hussain [\[14\]](#page-20-9) which showed a signifcant reduction in TLR (RR, 0.85; 95% CI 0.72–1.00; *P*=0.04) at 2 years.

Notably, while ultrathin-strut stents showed promising efects in the short term, their benefts may not be consistent over a more extended time. In our meta-analysis, there was no signifcant diferent in terms of TLF when we compared the two groups at \geq 5 years. These findings might have a substantial implication on stent selection in clinical practice, particularly in patients at high risk of late and very late stent failure and requires more clinical trials to evaluate the long-term efect of ultrathin stent struts.

Study limitations

This study has some limitations that affect the applicability of the study's conclusions. The absence of specifc patient data from the chosen trials limits the use of advanced statistical techniques, including multivariable and subgroup analyses, which hinders the investigation of variations in the initial characteristics between groups of patients receiving DES. Despite these drawbacks, the research offers insightful information about the state of research on ACS. The open-label design of the included studies presents possible confounders. This absence of

blinding could introduce a potential source of bias by infuencing intravascular imaging guiding and vessel preparation techniques between DES treatment groups. Also, the meta-analysis design has some intrinsic limitations, such as the reliance on aggregate study-level data, which limits the comparison depth compared to patientlevel data. Patient-level analysis could enhance subgroup detection, providing a more nuanced understanding of the study outcomes. The SCAAR registry contributed to the large sample size of our study. This registry collected clinical data and procedural characteristics of all consecutive patients undergoing cardiac catheterization in Sweden, which may have infuenced our overall results.

Conclusion

This meta-analysis showed the non-inferiority of ultrathin stent DES compared to standardized thickness DES regarding clinical outcomes such as all-cause mortality, cardiac mortality, MI, and probable or defnite stent thrombosis. Additionally, ultrathin stent DES appears superior to the control group regarding TLF in short-term outcomes extending up to 3 years from PCI.

Abbreviations

- ACS Acute coronary syndrome
CCS Chronic coronary syndrom
- Chronic coronary syndrome
- DES Drug-eluting stents
- MI Myocardial infarction
- PCI Percutaneous coronary intervention
- POCE Patient-oriented composite endpoint
- RCTs Randomized controlled trials
- ST Stent thrombosis
TLF Target lesion failu
- Target lesion failure
- TLR Target lesion revascularization TVR Target vessel revascularization
-
- TVMI Target vessel myocardial infarction

Supplementary Information

The online version contains supplementary material available at [https://doi.](https://doi.org/10.1186/s40001-024-01949-7) [org/10.1186/s40001-024-01949-7](https://doi.org/10.1186/s40001-024-01949-7).

Supplementary Material 1. Table S1: Search strategy. Table S2: Summary characteristics. Table S3: More details of stent characteristics. Table S4: Sensitivity analysis. Figure S1: Funnel plot of TLF at ≥ 1 year. Figure S2: Funnel plot of TLF at ≥ 2 years. Figure S3: Funnel plot of Cardiac death at ≥ 1 year. Figure S4: Funnel plot of Cardiac death at ≥ 2 years. Figure S5: Funnel plot of Cardiac death at ≥ 3 years. Figure S6: Funnel plot of Target Vessel-Related Myocardial Infarction at ≥ 1 year. Figure S7: Funnel plot of TLR at ≥ 1 year. Figure S8: Funnel plot of TLR at ≥ 2 years. Figure S9: Funnel plot of TLR at ≥ 3 years. Figure S10: Funnel plot of TVR at ≥ 1 year. Figure S11: Funnel plot of TVR at ≥ 2 years. Figure S12: Funnel plot of TVR at ≥ 3 years. Figure S13: Funnel plot of all-cause mortality at ≥ 1 year. Figure S14: Funnel plot of all-cause mortality at ≥ 2 years. Figure S15: Funnel plot of all-cause mortality at ≥ 3 years. Figure S16: Forest plot of patientoriented composite endpoint. Figure S17: Funnel plot of patient-oriented composite endpoint at ≥ 1 year. Figure S18: Forest plot of any myocardial infarction. Figure S19: Funnel plot of any myocardial infarction at ≥ 1 year. Figure S20: Funnel plot of any myocardial infarction at ≥ 2 years. Figure S21: Funnel plot of any myocardial infarction at ≥ 3 years. Figure S22: Forest plot of any repeat revascularization. Figure S23: Funnel plot of any repeat revascularization at ≥ 1 year. Figure S24: Forest plot of any defnite or probable stent thrombosis. Figure S25: Funnel plot of any defnite or

Acknowledgements

Hend Mansour helped in data extraction

Author contributions

Ahmed Hassan developed the research question, search strategies, and registration of study protocols and helped with screening, writing the introduction, and preparing the manuscript. Ahmed Mazen Amin made a meta-analysis and wrote the results. Ahmed Farid Gadelmawla and Ahmed Mansour are the co-third authors who contributed equally to the screening, data extraction, writing the methods and discussion. Hamed Abdelma'aboud Mostafa and Mariam Tarek Desouki are the co-fourth authors who contributed equally to the data extraction, tables, quality assessment and writing the abstract. Mostafa Mahmoud Naguib helped in screening, quality assessment, and arranging the reference. Bilal Ali, Aisha Sirag, and Mustafa Suppah reviewed the manuscript. Diaa Hakim is the project's leader, guided all project steps and reviewed the manuscript.

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Availability of data and materials

No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹ Faculty of Medicine, October 6 University, Giza, Egypt. ² Department of Cardiology, Suez Medical Complex, Ministry of Health and Population, Suez, Egypt.³Faculty of Medicine, Mansoura University, Mansoura, Egypt. ⁴Faculty of Medicine, Menoufia University, Menoufia, Egypt. ⁵Faculty of Medicine, Al-Azhar University, Cairo, Egypt. ⁶Faculty of Medicine, Al-Azhar University, Damietta, Egypt.⁷ Faculty of Medicine, Alexandria University, Alexandria, Egypt. ⁸University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA. ⁹MetroHealth Medical Center, Case Western Reserve University, Cleveland Heights, OH, USA. ¹⁰ Department of Cardiovascular Medicine, Mayo Clinic, Arizona, USA. ¹¹ Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Received: 26 March 2024 Accepted: 24 June 2024

References

- Members TF, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;2013(34):2949–3003.
- 2. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task
- 3. Galløe AM, Kelbæk H, Thuesen L, Hansen HS, Ravkilde J, Hansen PR, et al. 10-year clinical outcome after randomization to treatment by sirolimusor paclitaxel-eluting coronary stents. J Am Coll Cardiol. 2017;69:616–24.
- 4. Daemen J, Wenaweser P, Tsuchida K, Abrecht L, Vaina S, Morger C, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large twoinstitutional cohort study. Lancet. 2007;369:667–78.
- 5. Kimura T, Morimoto T, Nakagawa Y, Kawai K, Miyazaki S, Muramatsu T, et al. Very late stent thrombosis and late target lesion revascularization after sirolimus-eluting stent implantation: fve-year outcome of the j-Cypher Registry. Circulation. 2012;125:584–91.
- 6. Byrne RA, Kastrati A, Tiroch K, Schulz S, Pache J, Pinieck S, et al. 2-year clinical and angiographic outcomes from a randomized trial of polymer-free dual drug-eluting stents versus polymer-based Cypher and Endeavor [corrected] drug-eluting stents. J Am Coll Cardiol. 2010;55:2536–43.
- 7. Claessen BE, Beijk MA, Legrand V, Ruzyllo W, Manari A, Varenne O, et al. Two-year clinical, angiographic, and intravascular ultrasound follow-up of the XIENCE V everolimus-eluting stent in the treatment of patients with de novo native coronary artery lesions: the SPIRIT II trial. Circ Cardiovasc Interv. 2009;2:339–47.
- 8. Kuriyama N, Kobayashi Y, Nakama T, Mine D, Nishihira K, Shimomura M, et al. Late restenosis following sirolimus-eluting stent implantation. JACC Cardiovasc Interv. 2011;4:123–8.
- Räber L, Wohlwend L, Wigger M, Togni M, Wandel S, Wenaweser P, et al. Five-year clinical and angiographic outcomes of a randomized comparison of sirolimus-eluting and paclitaxel-eluting stents: results of the Sirolimus-Eluting Versus Paclitaxel-Eluting Stents for Coronary Revascularization LATE trial. Circulation. 2011;123:2819–28 (**6 p following 2828**).
- 10. Bangalore S, Kumar S, Fusaro M, Amoroso N, Kirtane AJ, Byrne RA, et al. Outcomes with various drug eluting or bare metal stents in patients with diabetes mellitus: mixed treatment comparison analysis of 22,844 patient years of follow-up from randomised trials. BMJ. 2012;345: e5170.
- 11. Bangalore S, Toklu B, Amoroso N, Fusaro M, Kumar S, Hannan EL, et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. BMJ. 2013;347: f6625.
- 12. Kolandaivelu K, Swaminathan R, Gibson WJ, Kolachalama VB, Nguyen-Ehrenreich K-L, Giddings VL, et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation. 2011;123:1400–9.
- 13. Bangalore S, Toklu B, Patel N, Feit F, Stone GW. Newer-generation ultrathin strut drug-eluting stents versus older second-generation thicker strut drug-eluting stents for coronary artery disease. Circulation. 2018;138:2216–26.
- 14. Hussain Y, Gaston S, Kluger J, Shah T, Yang Y, Tirziu D, et al. Long term outcomes of ultrathin versus standard thickness second-generation drug eluting stents: Meta-analysis of randomized trials. Catheter Cardiovasc Interv. 2022;99:563–74.
- 15. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.
- 16. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366: l4898.
- 17. Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355: i4919.
- 18. Collaboration TCC. RevMan. Computer software. Oxford: The Cochrane Collaboration; 2014.
- 19. Chapter 9: summarizing study characteristics and preparing for synthesis|Cochrane Training. [https://training.cochrane.org/handbook/](https://training.cochrane.org/handbook/current/chapter-09) [current/chapter-09.](https://training.cochrane.org/handbook/current/chapter-09) Accessed 25 Dec 2023.
- 20. Wang B, Ma S, Wang Z, Zhang L, Pei H, Zheng Y, et al. A randomized controlled trial of a biodegradable polymer, microcrystalline sirolimus-eluting stent (MiStent) versus another biodegradable polymer sirolimus-eluting stent (TIVOLI): the DESSOLVE-C trial. Cardiol Discov. 2023;3:1–8.
- 21. Nakamura M, Kadota K, Nakagawa Y, Tanabe K, Ito Y, Amano T, et al. Ultrathin, biodegradable-polymer sirolimus-eluting stent vs thin,

durable-polymer everolimus-eluting stent. JACC Cardiovasc Interv. 2022;15:1324–34.

- 22. Buccheri S, Sarno G, Erlinge D, Renlund H, Lagerqvist B, Grimfärd P, et al. Clinical outcomes with unselected use of an ultrathin-strut sirolimuseluting stent: a report from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR). EuroIntervention. 2021;16:1413–21.
- 23. Yoon C-H, Choi YJ, Park JJ, Kang S-H, Kim S-H, Suh J-W, et al. BioMatrix versus Orsiro biodegradable polymer stents in all-comer patients with coronary artery disease: the multicentre, randomised BIODEGRADE trial. EuroIntervention. 2021;16:1404–12.
- 24. Yoon C-H, Kwun J-S, Choi YJ, Park JJ, Kang S-H, Kim S-H, et al. BioMatrix versus orsiro stents for coronary artery disease: a multicenter, randomized, open-label study. Circ Cardiovasc Interv. 2023;16: e012307.
- 25. Jensen LO, Maeng M, Raungaard B, Kahlert J, Ellert J, Jakobsen L, et al. Randomized comparison of the polymer-free biolimus-coated biofreedom stent with the ultrathin strut biodegradable polymer sirolimus-eluting orsiro stent in an all-comers population treated with percutaneous coronary intervention: the SORT OUT IX trial. Circulation. 2020;141:2052–63.
- 26. Ellert-Gregersen J, Jensen LO, Jakobsen L, Freeman PM, Eftekhari A, Maeng M, et al. Polymer-free biolimus-coated stents versus ultrathin-strut biodegradable polymer sirolimus-eluting stents: two-year outcomes of the randomised SORT OUT IX trial. EuroIntervention. 2022;18:e124–31.
- 27. Li C, Yang Y, Han Y, Song D, Xu J, Guan C, et al. Comparison of the ultrathin strut, biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent in a chinese population: the randomized BIOFLOW VI Trial. Clin Ther. 2020;42:649-660.e9.
- 28. Iglesias JF, Muller O, Heg D, Roffi M, Kurz DJ, Moarof I, et al. Biodegradable polymer sirolimus-eluting stents versus durable polymer everolimuseluting stents in patients with ST-segment elevation myocardial infarction (BIOSTEMI): a single-blind, prospective, randomised superiority trial. Lancet. 2019;394:1243–53.
- 29. Pilgrim T, Muller O, Heg D, Roffi M, Kurz DJ, Moarof I, et al. Biodegradableversus durable-polymer drug-eluting stents for STEMI: fnal 2-year outcomes of the BIOSTEMI trial. JACC Cardiovasc Interv. 2021;14:639–48.
- 30. Iglesias JF, Roffi M, Losdat S, Muller O, Degrauwe S, Kurz DJ, et al. Longterm outcomes with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents in ST-segment elevation myocardial infarction: 5-year follow-up of the BIOSTEMI randomised superiority trial. Lancet. 2023;402:1979–90.
- 31. Saito S, Toelg R, Witzenbichler B, Haude M, Masotti M, Salmeron R, et al. BIOFLOW-IV, a randomised, intercontinental, multicentre study to assess the safety and efectiveness of the Orsiro sirolimus-eluting stent in the treatment of subjects with de novo coronary artery lesions: primary outcome target vessel failure at 12 months. EuroIntervention. 2019;15:e1006–13.
- 32. Slagboom T, Toelg R, Witzenbichler B, Haude M, Masotti M, Ruiz Salmeron R, et al. Sirolimus-eluting or everolimus-eluting stents for coronary artery disease: 5-year outcomes of the randomised BIOFLOW-IV trial. EuroIntervention. 2023;18:1197–200.
- 33. Zaman A, de Winter RJ, Kogame N, Chang CC, Modolo R, Spitzer E, et al. Safety and efficacy of a sirolimus-eluting coronary stent with ultra-thin strut for treatment of atherosclerotic lesions (TALENT): a prospective multicentre randomised controlled trial. Lancet. 2019;393:987–97.
- 34. Gao C, Kogame N, Sharif F, Smits PC, Tonino P, Hofma S, et al. Prospective multicenter randomized all-comers trial to assess the safety and efectiveness of the ultra-thin strut sirolimus-eluting coronary stent suprafex: two-year outcomes of the TALENT trial. Circ Cardiovasc Interv. 2021;14: e010312.
- 35. de Winter RJ, Zaman A, Hara H, Gao C, Ono M, Garg S, et al. Sirolimuseluting stents with ultrathin struts versus everolimus-eluting stents for patients undergoing percutaneous coronary intervention: fnal three-year results of the TALENT trial. EuroIntervention. 2022;18:492–502.
- 36. Abizaid A, Kedev S, Kedhi E, Talwar S, Erglis A, Hlinomaz O, et al. Randomised comparison of a biodegradable polymer ultra-thin sirolimuseluting stent versus a durable polymer everolimus-eluting stent in patients with de novo native coronary artery lesions: the meriT-V trial. EuroIntervention. 2018;14:e1207–14.
- 37. Abizaid A, Costa R, Kedev S, Kedhi E, Talwar S, Erglis A, et al. A randomized controlled trial comparing biomime sirolimus-eluting stent with

everolimus-eluting stent: two-year outcomes of the meriT-V trial. Cardiol Res. 2023;14:291–301.

- 38. von Birgelen C, Zocca P, Buiten RA, Jessurun GAJ, Schotborgh CE, Roguin A, et al. Thin composite wire strut, durable polymer-coated (Resolute Onyx) versus ultrathin cobalt–chromium strut, bioresorbable polymercoated (Orsiro) drug-eluting stents in allcomers with coronary artery disease (BIONYX): an international, single-blind, randomised non-inferiority trial. Lancet. 2018;392:1235–45.
- 39. Buiten RA, Ploumen EH, Zocca P, Doggen CJM, Jessurun GAJ, Schotborgh CE, et al. Thin composite-wire-strut zotarolimus-eluting stents versus ultrathin-strut sirolimus-eluting stents in BIONYX at 2 years. JACC Cardiovasc Interv. 2020;13:1100–9.
- 40. Ploumen EH, Buiten RA, Zocca P, Doggen CJ, Aminian A, Schotborgh CE, et al. First report of 3-year clinical outcome after treatment with novel resolute onyx stents in the randomized BIONYX trial. Circ J. 2021;85:1983–90.
- 41. de Winter RJ, Katagiri Y, Asano T, Milewski KP, Lurz P, Buszman P, et al. A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial. Lancet. 2018;391:431–40.
- 42. Katagiri Y, Onuma Y, Lurz P, Buszman P, Piek JJ, Wykrzykowska JJ, et al. Clinical outcomes of bioabsorbable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents: two-year follow-up of the DESSOLVE III trial. EuroIntervention. 2020;15:e1366–74.
- 43. Takahashi K, Serruys PW, Kogame N, Buszman P, Lurz P, Jessurun GAJ, et al. Final 3-year outcomes of mistent biodegradable polymer crystalline sirolimus-eluting stent versus xience permanent polymer everolimuseluting stent: insights from the DESSOLVE III all-comers randomized trial. Circ Cardiovasc Interv. 2020;13: e008737.
- 44. Yamaji K, Zanchin T, Zanchin C, Stortecky S, Koskinas KC, Hunziker L, et al. Unselected use of ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for coronary revascularization. Circ Cardiovasc Interv. 2018;11: e006741.
- 45. Kang S-H, Chung W-Y, Lee JM, Park J-J, Yoon C-H, Suh J-W, et al. Angiographic outcomes of Orsiro biodegradable polymer sirolimus-eluting stents and Resolute Integrity durable polymer zotarolimus-eluting stents: results of the ORIENT trial. EuroIntervention. 2017;12:1623–31.
- 46. Kim S-H, Kang S-H, Lee JM, Chung W-Y, Park JJ, Yoon C-H, et al. Three-year clinical outcome of biodegradable hybrid polymer Orsiro sirolimuseluting stent and the durable biocompatible polymer Resolute Integrity zotarolimus-eluting stent: a randomized controlled trial. Catheter Cardiovasc Interv. 2020;96:1399–406.
- 47. Teeuwen K, van der Schaaf RJ, Adriaenssens T, Koolen JJ, Smits PC, Henriques JPS, et al. Randomized multicenter trial investigating angiographic outcomes of hybrid sirolimus-eluting stents with biodegradable polymer compared with everolimus-eluting stents with durable polymer in chronic total occlusions: the PRISON IV trial. JACC Cardiovasc Interv. 2017;10:133–43.
- 48. Zivelonghi C, Agostoni P, Teeuwen K, van der Schaaf RJ, Henriques JPS, Vermeersch PHMJ, et al. 3-year clinical outcomes of the PRISON-IV trial: ultrathin struts versus conventional drug-eluting stents in total coronary occlusions. JACC Cardiovasc Interv. 2019;12:1747–9.
- 49. Wilgenhof A, Zivelonghi C, Teeuwen K, van der Schaaf RJ, Henriques JPS, Vermeersch PHMJ, et al. Very long-term outcome of the PRISON-IV trial: 5-year clinical follow-up of ultra-thin struts in CTO-PCI. Cardiovasc Revasc Med. 2023;46:117–8.
- 50. von Birgelen C, Kok MM, van der Heijden LC, Danse PW, Schotborgh CE, Scholte M, et al. Very thin strut biodegradable polymer everolimuseluting and sirolimus-eluting stents versus durable polymer zotarolimuseluting stents in allcomers with coronary artery disease (BIO-RESORT): a three-arm, randomised, non-inferiority trial. Lancet. 2016;388:2607–17.
- 51. Kok MM, Zocca P, Buiten RA, Danse PW, Schotborgh CE, Scholte M, et al. Two-year clinical outcome of all-comers treated with three highly dissimilar contemporary coronary drug-eluting stents in the randomised BIO-RESORT trial. EuroIntervention. 2018;14:915–23.
- 52. Buiten RA, Ploumen EH, Zocca P, Doggen CJM, Danse PW, Schotborgh CE, et al. Thin, very thin, or ultrathin strut biodegradable or durable polymer-coated drug-eluting stents: 3-year outcomes of BIO-RESORT. JACC Cardiovasc Interv. 2019;12:1650–60.
- 53. Ploumen EH, Pinxterhuis TH, Buiten RA, Zocca P, Danse PW, Schotborgh CE, et al. Final 5-year report of the randomized BIO-RESORT trial

comparing 3 contemporary drug-eluting stents in all-comers. J Am Heart Assoc. 2022;11: e026041.

- 54. Jensen LO, Thayssen P, Maeng M, Ravkilde J, Krusell LR, Raungaard B, et al. Randomized comparison of a biodegradable polymer ultrathin strut sirolimus-eluting stent with a biodegradable polymer biolimus-eluting stent in patients treated with percutaneous coronary intervention: the SORT OUT VII trial. Circ Cardiovasc Interv. 2016;9: e003610.
- 55. Jensen LO, Maeng M, Raungaard B, Hansen KN, Kahlert J, Jensen SE, et al. Two-year outcome after biodegradable polymer sirolimus- and biolimuseluting coronary stents (from the randomised SORT OUT VII trial). EuroIntervention. 2018;13:1587–90.
- 56. Ellert J, Maeng M, Raungaard B, Hansen KN, Kahlert J, Jensen SE, et al. Clinical outcomes three-year after revascularization with biodegradable polymer stents: ultrathin-strut sirolimus-eluting stent versus biolimuseluting stent: from the Scandinavian organization for randomized trials with clinical outcome VII trial. Coron Artery Dis. 2020;31:485–92.
- 57. Hansen KN, Jensen LO, Maeng M, Christensen MK, Noori M, Kahlert J, et al. Five-year clinical outcome of the biodegradable polymer ultrathin strut sirolimus-eluting stent compared to the biodegradable polymer biolimus-eluting stent in patients treated with percutaneous coronary intervention: from the SORT OUT VII trial. Circ Cardiovasc Interv. 2023;16: e012332.
- 58. Kandzari DE, Mauri L, Koolen JJ, Massaro JM, Doros G, Garcia-Garcia HM, et al. Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial. Lancet. 2017;390:1843–52.
- 59. Kandzari DE, Koolen JJ, Doros G, Massaro JJ, Garcia-Garcia HM, Bennett J, et al. Ultrathin bioresorbable polymer sirolimus-eluting stents versus thin durable polymer everolimus-eluting stents. J Am Coll Cardiol. 2018;72:3287–97.
- 60. Kandzari DE, Koolen JJ, Doros G, Garcia-Garcia HM, Bennett J, Roguin A, et al. Ultrathin bioresorbable-polymer sirolimus-eluting stents versus thin durable-polymer everolimus-eluting stents for coronary revascularization: 3-year outcomes from the randomized BIOFLOW V Trial. JACC Cardiovasc Interv. 2020;13:1343–53.
- 61. Kandzari DE, Koolen JJ, Doros G, Garcia-Garcia HM, Bennett J, Roguin A, et al. Ultrathin bioresorbable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents: BIOFLOW V fnal 5-year outcomes. JACC Cardiovasc Interv. 2022;15:1852–60.
- 62. Wijns W, Vrolix M, Verheye S, Schoors D, Slagboom T, Gosselink M, et al. Randomised study of a bioabsorbable polymer-coated sirolimus-eluting stent: results of the DESSOLVE II trial. EuroIntervention. 2015;10:1383–90.
- 63. Wijns W, Suttorp MJ, Zagozdzon L, Morice M-C, McClean D, Stella P, et al. Evaluation of a crystalline sirolimus-eluting coronary stent with a bioabsorbable polymer designed for rapid dissolution: two-year outcomes from the DESSOLVE I and II trials. EuroIntervention. 2016;12:352–5.
- 64. Wijns W, Vrolix M, Verheye S, Schoors D, Slagboom T, Gosselink M, et al. Long-term clinical outcomes of a crystalline sirolimus-eluting coronary stent with a fully bioabsorbable polymer coating: five-year outcomes from the DESSOLVE I and II trials. EuroIntervention. 2018;13:e2147–51.
- 65. Windecker S, Haude M, Neumann F-J, Stangl K, Witzenbichler B, Slagboom T, et al. Comparison of a novel biodegradable polymer sirolimuseluting stent with a durable polymer everolimus-eluting stent: results of the randomized BIOFLOW-II trial. Circ Cardiovasc Interv. 2015;8: e001441.
- 66. Lefèvre T, Haude M, Neumann F-J, Stangl K, Skurk C, Slagboom T, et al. Comparison of a novel biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent: 5-year outcomes of the randomized BIOFLOW-II trial. JACC Cardiovasc Interv. 2018;11:995–1002.
- 67. Pilgrim T, Heg D, Roffi M, Tüller D, Muller O, Vuilliomenet A, et al. Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for percutaneous coronary revascularisation (BIOSCIENCE): a randomised, single-blind, non-inferiority trial. Lancet. 2014;384:2111–22.
- 68. Zbinden R, Piccolo R, Heg D, Roffi M, Kurz DJ, Muller O, et al. Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durablepolymer everolimus-eluting stent for percutaneous coronary revascularization: 2-year results of the BIOSCIENCE trial. J Am Heart Assoc. 2016;5: e003255.
- 69. Pilgrim T, Piccolo R, Heg D, Roffi M, Tüller D, Muller O, et al. Ultrathinstrut, biodegradable-polymer, sirolimus-eluting stents versus thin-strut,

durable-polymer, everolimus-eluting stents for percutaneous coronary revascularisation: 5-year outcomes of the BIOSCIENCE randomised trial. Lancet. 2018;392:737–46.

- 70. Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol. 2012;59:1337–49.
- 71. Nakazawa G, Finn AV, Joner M, Ladich E, Kutys R, Mont EK, et al. Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. Circulation. 2008;118:1138–45.
- 72. Madhavan MV, Howard JP, Naqvi A, Ben-Yehuda O, Redfors B, Prasad M, et al. Long-term follow-up after ultrathin vs. conventional 2nd-generation drug-eluting stents: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J. 2021;42:2643–54.
- 73. Monjur MR, Said CF, Bamford P, Parkinson M, Szirt R, Ford T. Ultrathin-strut biodegradable polymer versus durable polymer drug-eluting stents: a meta-analysis. Open Heart. 2020;7: e001394.
- 74. Iglesias JF, Degrauwe S, Cimci M, Chatelain Q, Roffi M, Windecker S, et al. Diferential efects of newer-generation ultrathin-strut versus thickerstrut drug-eluting stents in chronic and acute coronary syndromes. JACC Cardiovasc Interv. 2021;14:2461–73.
- 75. Li F, Wang S, Wang Y, Wei C, Wang Y, Liu X, et al. Long-term safety of ultrathin bioabsorbable-polymer sirolimus-eluting stents versus thin durable-polymer drug-eluting stents in acute coronary syndrome: a systematic review and meta-analysis. Clin Cardiol. 2023;46:1465–73.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.