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Abstract 

Background Chronic kidney disease presents global health challenges, with hemodialysis as a common treatment. 
However, non-dialyzable uremic toxins demand further investigation for new therapeutic approaches. Renal tubular 
cells require scrutiny due to their vulnerability to uremic toxins.

Methods In this study, a systems biology approach utilized transcriptomics data from healthy renal tubular cells 
exposed to healthy and post-dialysis uremic plasma.

Results Differential gene expression analysis identified 983 up-regulated genes, including 70 essential proteins 
in the protein–protein interaction network. Modularity-based clustering revealed six clusters of essential proteins 
associated with 11 pathological pathways activated in response to non-dialyzable uremic toxins.

Conclusions Notably, WNT1/11, AGT, FGF4/17/22, LMX1B, GATA4, and CXCL12 emerged as promising targets 
for further exploration in renal tubular pathology related to non-dialyzable uremic toxins. Understanding the molecu-
lar players and pathways linked to renal tubular dysfunction opens avenues for novel therapeutic interventions 
and improved clinical management of chronic kidney disease and its complications.
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Background
Chronic kidney disease (CKD) represents a significant 
global public health concern, contributing to increased 
risks of cardiovascular disease, hospitalization, and mor-
tality. Hemodialysis is a common treatment for CKD, 

particularly in the advanced stages of the condition. 
However, its limitations in eliminating all uremic toxins 
necessitate a deeper understanding of the pathological 
mechanisms activated by non-dialyzable uremic toxins 
and the identification of potential therapeutic interven-
tions [29, 45, 47, 55, 69, 92].

Among the key cellular players involved in toxin filtra-
tion are renal tubular cells, alongside glomerular cells. 
Notably, renal tubular cells are at the forefront of expo-
sure to uremic toxins, making them crucial targets for 
investigation due to their vital role in kidney function and 
susceptibility to toxin-induced injury [29, 45, 47, 69, 92].

Uremic toxins fall into three categories: small water-
soluble solutes, medium molecules, and protein-bound 
solutes [31]. While numerous uremic toxins contribute 
to chronic kidney disease (CKD) progression, prior 

*Correspondence:
Pejman Shadpour
pshadpour@gmail.com
Akram Nakhaei
a.nakhaee.66@gmail.com
1 Industrial Engineering Department, Faculty of Technical 
and Engineering, University of Science and Culture (USC), Tehran, Iran
2 Hospital Management Research Center (HMRC), Hasheminejad Kidney 
Center (HKC), Iran University of Medical Sciences (IUMS), Tehran, Iran
3 Computer Engineering Department, Mazandaran University of Science 
and Technology (MUST), Babol, Iran

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40001-024-01951-z&domain=pdf


Page 2 of 12Asadi et al. European Journal of Medical Research          (2024) 29:412 

research has primarily focused on indoxyl sulfate (IS) 
and p-cresyl sulfate (PCS), two protein-bound com-
pounds. These studies unveiled that IS activates the 
aryl hydrocarbon receptor (Ahr), a ligand-activated 
transcription factor receptor. Research indicates that 
Ahr activation correlates with vascular inflammation, 
leukocyte activation, thrombosis, reactive oxygen spe-
cies, and cardiotoxicity [70]. Additionally, IS triggers 
the activation of the epidermal growth factor recep-
tor (EGFR), thereby promoting renal tissue remodeling 
and arteriosclerosis [80]. IS expedites kidney fibrosis 
by upregulating expressions of transforming growth 
factor beta (TGF-β), tissue inhibitors of metallopro-
teinases-1 (TIMP-1), and pro-collagen [57]. Within 
kidney tubular cells, IS accumulation wreaks havoc on 
the anti-oxidative system, fostering cellular dysfunc-
tion and heightened oxidative stress [26]. Moreover, 
IS amplifies the expression of plasminogen activator 
inhibitor-1 (PAI-1), leading to renal tubular cell dys-
function [58].

PCS exhibits renal toxicity akin to IS [31]. Investiga-
tions have unveiled that PCS triggers cellular immune 
and inflammatory reactions, notably activating the 
TGF-β signaling pathway [79]. Furthermore, PCS acti-
vates rat sarcoma (RAS) and augments oxidative stress 
generation by stimulating leukocytes, thereby instigat-
ing renal tubular epithelial-to-mesenchymal transition. 
These alterations significantly fuel the advancement of 
kidney fibrosis [78].

Prior studies have investigated the impact of individ-
ual uremic toxins, such as IS and PCS, protein-bound 
compounds, on renal tubular cells, revealing their 
tubule-toxic effects and contributions to CKD pro-
gression. However, a comprehensive understanding of 
the effects of non-dialyzable uremic toxins, which can 
be of any type, on renal tubular cells remains lacking, 
emphasizing the need for further research to unravel 
their intricate responses.

This study aims to adopt a systems biology approach 
to gain a holistic understanding of the comprehensive 
pathological mechanisms activated by non-dialyzable 
toxins and identify essential proteins as potential tar-
gets for therapeutic intervention.

The primary objectives of this study are twofold: 
(1) to gain insights into the comprehensive pathologi-
cal mechanisms of retained uremic toxins on healthy 
tubular cells, and (2) to identify essential proteins as 
potential targets for antagonist drugs to control CKD 
progression. Focusing on antagonist drugs emerges as 
a justifiable approach for treating CKD due to their 
proven efficacy in slowing disease progression [59, 89].

Methodology
A flowchart illustrating the overall methodology and data 
analysis pipeline is provided in Fig. 1. The figure summa-
rizes the step-by-step approach, from data acquisition 
to pathway enrichment analysis, employed in this study. 
These steps are explained in the following subsections.

Data acquisition
Transcriptomics data for this study were obtained 
from the GEO database under the accession number 
GSE45709 (n.d.). The dataset includes gene expression 
measurements from healthy renal tubular cells exposed 
to both healthy plasma (control group) and post-dialysis 
uremic plasma (case group). All samples from each group 
were utilized to ensure consistency and statistical power 
in the analysis.

By utilizing this dataset, we were able to investigate 
the differential gene expression profiles between the two 
groups and identify potential cellular mechanisms under-
lying the pathological effects of non-dialyzable uremic 
toxins in CKD.

Data normalization
This study seeks to investigate the effects of non-dialyza-
ble uremic toxins on the gene expression of healthy renal 
tubular cells. In other words, we seek to measure the 
variance of gene expression between case (post-dialysis 
plasma) and control (healthy plasma) groups. However, 
in addition to this variance, there are also technical and 
biological variances between samples. To measure the 
intended variance, we must neutralize the others [13]. 
Biological variance can be neutralized by repeating sam-
ples and technical variance by normalization. We have 
several samples in each group, which neutralizes the bio-
logical variance. For technical variance, we used quan-
tile normalization. This method assumes that technical 
variance appears as differences in the general character-
istics of samples. So, quantile normalization equalizes the 
statistical distribution of gene expression values across 
samples, effectively removing technical variance [36]. Fig-
ure 2 shows the distribution of gene expression values of 
samples before and after utilizing quantile normalization.

Identification of differentially expressed genes (DEGs)
To identify DEGs between the control and case groups, 
we employed the limma package in R programming lan-
guage, a widely accepted method for microarray data 
analysis that provides reliable results [67], to perform the 
statistical t-test. We used the FDR technique for adjust-
ing the p-value and genes with a p-value less than 0.05 
were considered differentially expressed. We used the 
fold change (FC) metric to determine the upregulation 
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(log FC > 0) or downregulation (log FC < 0) of DEGs. As 
the focus of this study is on potential antagonist drug tar-
gets, we specifically examined up-regulated genes.

Construction of protein–protein interaction (PPI) network
To explore potential interactions between the up-reg-
ulated DEGs, we constructed a PPI network using the 
STRING server. The network was built using active inter-
action sources, including text mining, experiments, and 
databases, with a minimum required interaction score of 
0.7 (high confidence).

Identification of essential proteins
Previous studies have shown that centrality measures are 
capable of identifying essential proteins in PPI networks 
[19, 28, 98]. So, to identify essential proteins in the PPI 
network, we assessed several centrality measures, includ-
ing closeness, betweenness, degree, and eigenvector 
centrality. Specific thresholds were applied for each cen-
trality measure to identify essential proteins. The thresh-
olds were 8E-4 for closeness, 1E-9 for betweenness, 3 
for degree, and 1.24E-6 for eigenvector, based on prior 
knowledge.

Raw data
From GSE45709

Data Normalization

Identification of differentially 
expressed genes

Protein-protein 
interaction network 

Identification of 
essential proteins

Network clustering 
of essential proteins

Biological 
interpretation of

clusters

Protein-protein 
interaction network 
of essential proteins

Fig. 1 Flowchart of the study’s methodology and data analysis pipeline
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Clustering of essential proteins
We extracted the PPI network of essential proteins from 
the STRING server using active interaction sources and 
a minimum required interaction score of 0.4. To identify 
potential functional modules, we employed a heuristic 
method based on modularity optimization proposed by 
Blondel et al. [6]. This approach maximizes the modular-
ity of the resulting clusters, revealing densely connected 
groups of proteins.

Pathway enrichment analysis
To gain insights into the functions of each protein clus-
ter, we performed pathway enrichment analysis using the 
Enrichr server. The WikiPathway 2021 Human Library 
was utilized to identify enriched biological pathways 
associated with each cluster. Pathways were ranked by 
adjusted p-value [12].

Results
In this section, we present the results of our data analysis 
pipeline, aiming to gain insights into the effects of non-
dialyzable uremic toxins on healthy renal tubular cells 
and identify potential therapeutic targets.

Identifying essential proteins
After performing the t-test, we identified 1503 DEGs, 
with 983 up-regulated and 520 down-regulated genes. 
Among the up-regulated DEGs, a PPI network analy-
sis using centrality measures (degree, betweenness, 
closeness, and eigenvector centrality) and predefined 
thresholds allowed us to identify 70 essential proteins. 
The resulting PPI network of the 70 essential proteins 
is depicted in Fig. 3, comprising 195 edges representing 
protein–protein interactions. In this figure, the size of 

the node represents the degree. The larger the size, the 
higher the degree of the node. The color of the node rep-
resents the betweenness. The color of the node changes 
in a spectrum from red to blue. Red indicates a higher 
betweenness, and blue indicates a lower betweenness.

Modularity‑based clustering
The PPI network of essential proteins was subjected to 
modularity-based clustering, leading to the identifica-
tion of six distinct clusters of essential proteins which are 
depicted in Fig. 4. The first cluster, cluster 0, comprises 19 
interactions and 13 proteins, including MYOD1, CDH15, 
CSF3R, H2AFJ, DHH, GATA4, WNT1, FBXO32, MYH4, 
WNT11, ZFPM1, PBX1, and LMX1B.

Fig. 2 a and b Show the distribution of log of gene expression values of samples before and after quantile normalization

Fig. 3 PPI network of essential proteins
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The second cluster, cluster 1, encompasses 38 inter-
actions and 17 proteins, including ABCB8, ATP12A, 
ABCC8, FXYD1, GCK, INS, PRKACG, AGT, OXT, 
RHO, GHRL, AVPR2, AGTR1, GNG8, GPRASP1, 
CACNA2D4, and KISS1.

The third cluster, cluster 2, encompasses 15 inter-
actions and nine proteins, including GFAP, CXCL12, 
VWF, RGS16, DCX, SYP, S100B, SYN1, and SLC18A2.

The fourth cluster, cluster 3, encompasses 37 inter-
actions and 12 proteins, including KCNB1, KCND3, 
CAV3, CACNA2D1, HCN4, SCN2B, SCN4A, KCNE1L, 
KCNA3, KCNA1, KCNV1, and KCNH4.

The fifth cluster, cluster 4, comprises ten interac-
tions and five proteins, including COX4I2, COX6B1, 
UQCRFS1, NDUFA4L2, and COX7C.

The sixth cluster, cluster 5, comprises 31 interactions 
and 13 proteins: CHMP2B, RPS2&A, FGF22, FAU, 
RPS21, ISG15, RPS29, RPS10, FGF17, FGF4, INSRR, 
FLRT3, and PSMB8. Notably, these clusters repre-
sent functionally related groups of essential proteins, 

potentially serving distinct roles in response to retained 
uremic toxins.

Enrichment analysis
After clustering, we performed enrichment analysis to 
identify biological pathways activated by proteins of each 
cluster and map proteins to their functions. We consid-
ered pathways with adjusted p-value < 0.01 as statistically 
significant pathways. The important enriched pathways 
associated with each cluster are summarized in the fol-
lowing tables:

• Cluster 0: Significantly enriched pathways are 
listed in Table  1. These pathways had adjusted 
p-value < 0.01.

• Cluster 1: Significantly enriched pathways are 
listed in Table  2. These pathways had adjusted 
p-value < 0.01.

• Cluster 2: Significantly enriched pathways are pre-
sented in Table  3. These pathways had adjusted 
p-value < 0.01.

Cluster 0

MYOD1, 
CDH15, 
CSF3R, 

H2AFJ, DHH, 
GATA4, 
WNT1, 

FBXO32, 
MYH4, 

WNT11, 
ZFPM1, 

PBX1, and 
LMX1B

Cluster 1

ABCB8, 
ATP12A, 
ABCC8, 

FXYD1, GCK, 
INS, 

PRKACG, 
AGT, OXT, 

RHO, GHRL, 
AVPR2, 
AGTR1, 
GNG8, 

GPRASP1, 
CACNA2D4, 
and KISS1

Cluster 2

GFAP, 
CXCL12, 

VWF, 
RGS16, DCX, 
SYP, S100B, 
SYN1, and 
SLC18A2

Cluster 3

KCNB1, 
KCND3, 
CAV3, 

CACNA2D1, 
HCN4, 
SCN2B, 
SCN4A, 
KCNE1L, 
KCNA3, 
KCNA1, 

KCNV1, and 
KCNH4

Cluster 4

COX4I2, 
COX6B1, 

UQCRFS1, 
NDUFA4L2, 
and COX7C

Cluster 5

CHMP2B, 
RPS2&A, 

FGF22, FAU, 
RPS21, 
ISG15, 
RPS29, 
RPS10, 
FGF17, 
FGF4, 
INSRR, 

FLRT3, and 
PSMB8

Fig. 4 Modularity classes of essential proteins

Table 1 Enriched pathways of cluster 0

Pathway ID p‑value Adjusted p‑value

Mammalian disorder of sexual development WP4842 4.89E-07 0.00002642

Somatic sex determination WP4814 0.00003533 0.000954

Osteoblast differentiation WP4787 0.00005484 0.0009871

Dopaminergic neurogenesis WP2855 0.0001679 0.002267

Wnt signaling in kidney disease WP4150 0.0002427 0.002621
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• Cluster 3: We found no statistically significant path-
ways for proteins of cluster 3.

• Cluster 4: Significantly enriched pathways are 
listed in Table  4. These pathways had adjusted 
p-value < 0.01.

• Cluster 5: Significantly enriched pathways are pre-
sented in Table  5. These pathways had adjusted 
p-value < 0.01.

Discussion
In this study, we aimed to gain a holistic view of the 
pathological effects of non-dialyzable uremic toxins on 
healthy renal tubular cells by adopting a systems biology 
approach. Our analysis revealed 983 up-regulated DEGs 
and 70 essential proteins. Subsequently, we identified six 
dense communities of essential proteins, each represent-
ing potential functional modules within the network.

Through pathway enrichment analysis, we identified 24 
statistically significant pathways associated with the iden-
tified clusters. While these pathways were not directly 
associated with renal tubular dysfunction, we found indi-
rect evidence linking them to cellular processes involved 
in inflammation, fibrosis, apoptosis, metabolic dysfunc-
tion, and oxidative stress. This association is presented in 
Table 6. This table shows the participation of each path-
way in the mentioned pathological processes.

Among the 24 pathways, 11 were found to be involved 
in these cellular processes, suggesting their potential rel-
evance to renal tubular dysfunction. To further explore 
the role of essential proteins in the identified pathways, 
we investigated their participation rates. To this end, we 
investigated each pathway. Notably, 22 essential pro-
teins, including WNT1/11, AGT, FGF4/17/22, LMX1B, 
GATA4, CXCL12, KISS1, COX6B1/7C, UQCRFS1, 
AGTR1, NDUFA4L2, INS, RGS16, RPS10/21/27A, FAU, 
and SLC18A2 were found to play a role in the pathways 
associated with inflammation, fibrosis, apoptosis, meta-
bolic dysfunction, and oxidative stress. Figure  5 shows 
the participation of these proteins in the 11 identified 

Table 2 Enriched pathways of cluster 1

Pathway ID p‑value Adjusted p‑value

SARS-CoV-2 and angiotensin-converting enzyme 2 receptor: 
molecular mechanisms

WP4883 0.00001424 0.0004202

Prader–Willi and Angelman syndrome WP3998 1.81E-07 0.00001067

ACE inhibitor pathway WP554 0.00009179 0.001805

RAS and bradykinin pathways in COVID-19 WP4969 0.0002724 0.004018

Sleep regulation WP3591 0.0004695 0.00554

Renin–angiotensin–aldosterone system (RAAS) WP4756 0.0006299 0.006194

Table 3 Enriched pathways of cluster 2

Pathway ID p‑value Adjusted p‑value

EV release from cardiac cells 
and their functional effects

WP3297 0.000003775 0.00004342

Synaptic vesicle pathway WP2267 0.000001298 0.00002985

Table 4 Enriched pathways of cluster 4

Pathway ID p‑value Adjusted p‑value

Nonalcoholic fatty liver disease WP4396 2.62E-11 1.31E-10

Electron transport chain (OXPHOS system in mitochondria) WP111 0.000001317 0.000003291

Mitochondrial CIV assembly WP4922 0.00002965 0.00004942

Mitochondrial complex III assembly WP4921 0.003994 0.004992

Table 5 Enriched pathways of cluster 5

Pathway ID p‑value Adjusted p‑value

Cytoplasmic ribosomal 
proteins

WP477 3.02E-09 6.95E-08

ESC pluripotency pathways WP3931 0.000001028 0.00001182

Regulation of actin 
cytoskeleton

WP51 0.00000287 0.00001832

Breast cancer pathway WP4262 0.000003187 0.00001832

MAPK signaling pathway WP382 0.00002029 0.00009335

Focal adhesion PI3K–Akt–
mTOR signaling pathway

WP3932 0.00004586 0.0001758

PI3K–Akt signaling pathway WP4172 0.00007178 0.0002359

Osteoblast differentiation WP4787 0.002999 0.008621
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pathological pathways. WNT1 participates in 4 patho-
logical pathways. WNT 11 participates in 3 pathologi-
cal pathways. Each of AGT and FGF4/7/22 participates 
in 2 pathological pathways. Each of LMX1B, GATA4, 
CXCL12, KISS1, COX6B1, UQCRFS1, AGTR1, NDU-
FA4LC, COX7C, INS, RGS16, RPS27A, FAU, RPS21, 
RPS10 and SLC18A2 participates in 1 pathological 
pathway.

WNT1/11
Figure 5 shows that WNT1 and WNT11 have the high-
est participation rate in pathological pathways of renal 
tubular cells. WNT1 participates in breast cancer path-
way WP4262, dopaminergic neurogenesis WP2855, ESC 
pluripotency pathways WP3931, and Wnt signaling in 
kidney disease WP4150. WNT11 participates in breast 

cancer pathway WP4262, ESC pluripotency pathways 
WP3931, and Wnt signaling in kidney disease WP4150.

WNT1/11 plays a pivotal role in kidney development 
and function, modulating proliferation, differentiation, 
and apoptosis [66]. However, its upregulation leads to 
renal cell dysfunction. Previous studies have reported 
elevated levels of WNT1 and WNT11 in various kidney 
diseases, including cystic kidney diseases, nephropathy, 
and tubulointerstitial fibrosis [66, 81, 90]. In vivo experi-
ments demonstrated that WNT1/11 overexpression in 
renal tubules caused dysfunction in tubular cells, sup-
porting their potential role in renal tubular dysfunction 
[43].

In exploring the potential clinical applications of tar-
geting WNT1/11 to mitigate the pathological pathways 
activated by non-dialyzable uremic toxins, several prom-
ising avenues have emerged. Small molecule inhibitors, 

Table 6 Mapping pathological pathways to their roles in renal tubular dysfunction

Pathway Role in CKD progression

Inflammation Fibrosis Apoptosis Metabolic 
dysfunction

Oxidative 
stress

Mammalian disorder of sexual development WP4842 [25] ✓ ✓
Dopaminergic Neurogenesis WP2855 [2] ✓
Wnt signaling in kidney disease WP4150 [32, 33, 72] ✓ ✓ ✓ ✓ ✓
SARS-CoV-2 and angiotensin-converting enzyme 2 receptor: molecular 
mechanisms WP4883 [1, 10, 24, 52]

✓ ✓ ✓ ✓ ✓

Prader–Willi and Angelman syndrome WP3998 [9] ✓ ✓
ACE inhibitor pathway WP554 [21, 30] ✓ ✓
EV release from cardiac cells and their functional effects WP3297 [16, 53] ✓ ✓ ✓ ✓
Nonalcoholic fatty liver disease WP4396 [23, 46, 63, 82, 102] ✓ ✓ ✓ ✓ ✓
Cytoplasmic ribosomal proteins WP477 [40, 62, 68, 99] ✓ ✓ ✓ ✓ ✓
ESC pluripotency pathways WP3931 [34] ✓
Breast cancer pathway WP4262 [4, 20, 22, 51, 61] ✓ ✓ ✓ ✓ ✓
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Fig. 5 The participation rate of essential proteins in pathological pathways which lead to renal tubular dysfunction. WNT1 participates in 4 
pathological pathways. WNT 11 participates in 3 pathological pathways. Each of AGT and FGF4/7/22 participates in 2 pathological pathways. Each 
of LMX1B, GATA4, CXCL12, KISS1, COX6B1, UQCRFS1, AGTR1, NDUFA4LC, COX7C, INS, RGS16, RPS27A, FAU, RPS21, RPS10 and SLC18A2 participates 
in 1 pathological pathway
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exemplified by LGK974 and XAV939, offer a targeted 
approach to disrupt WNT secretion and downstream 
signaling components, potentially attenuating renal dam-
age in CKD patients [48, 93]. Monoclonal antibodies 
like OMP-18R5 and vantictumab could serve as adjunct 
therapies by specifically blocking WNT proteins, thereby 
inhibiting aberrant signaling cascades associated with 
CKD progression [60, 74].

Moreover, RNA interference (RNAi) strategies hold 
promise in silencing WNT1/11 gene expression, offering 
a potential avenue for personalized treatment approaches 
tailored to CKD patients’ specific molecular profiles [49, 
54]. Additionally, the therapeutic potential of natural 
compounds such as curcumin, Tripterygium wilfordii, 
and astragaloside IV cannot be overlooked. Derived from 
plants or other sources, these compounds exhibit prom-
ising capabilities in downregulating WNT1/11 expres-
sion or activity through various mechanisms, providing 
alternative or complementary therapeutic options for 
CKD management [11, 15, 38, 91].

AGT/AGTR1
Figure  5 shows that AGT/R1 has a high participation 
rate in pathological pathways of renal tubular cells. AGT 
participates in ACE inhibitor pathway WP554 and ESC 
pluripotency pathways WP3931. AGT is produced in the 
kidney and cleaved by renin to form angiotensin I and II, 
regulating blood pressure, sodium reabsorption, and fluid 
balance in renal tubules [96]. However, elevated AGT lev-
els in the kidney have been associated with renal tubu-
lar dysfunction in humans and animal models [86, 87]. 
Studies with AGT overexpression in animal models have 
observed tubular cell apoptosis, inflammation, fibrosis, 
and other signs of tubular injury, supporting the associa-
tion between elevated renal AGT levels and tubular dys-
function [50, 97].

In considering the translation of identified targets into 
clinical applications, AGT emerges as a promising can-
didate for therapeutic intervention in CKD. AGT over-
expression contributes to renal tubular dysfunction, 
highlighting its significance as a target for antagonist 
drugs aimed at mitigating disease progression.

Several pharmacological agents have been proposed 
to target AGT, primarily for managing conditions like 
hypertension and heart failure, which commonly coexist 
with CKD. For example, angiotensin-converting enzyme 
(ACE) inhibitors such as captopril and enalapril have 
demonstrated efficacy in reducing AGT-mediated effects 
on blood pressure and fluid balance, thereby potentially 
attenuating renal damage [27, 37]. Similarly, angiotensin 
receptor blockers (ARBs) like losartan and valsartan offer 
alternative therapeutic avenues by blocking downstream 
effects of AGT activation, contributing to the regulation 

of blood pressure and renal function. Additionally, renin 
inhibitors like aliskiren provide another approach to 
modulating the renin–angiotensin–aldosterone system, 
targeting AGT-mediated pathways implicated in CKD 
progression [17, 73].

FGF4/17/22
As Fig.  5 shows, FGF4/17/22 has a high participation 
rate in pathological pathways of renal tubular cells. FGF 
4/17/22 participate in breast cancer pathway WP4262 
and ESC Pluripotency pathways WP3931. FGF signaling 
plays an important role in kidney development and func-
tion by modulating cell proliferation, differentiation, sur-
vival, and repair [3, 85]. FGFs are expressed in the adult 
kidney, particularly in the renal tubules [3, 8]. Some stud-
ies have found elevated levels of these FGFs in animal 
models and patients with kidney diseases like polycystic 
kidney disease, nephropathy, and tubulointerstitial fibro-
sis [44, 77, 83].

Expanding on the potential translation of the identified 
targets into clinical applications, the overexpression of 
FGF4, FGF17, and FGF22 in renal tubules has emerged as 
a significant factor contributing to dysfunction. Under-
standing their context-dependent functions is crucial 
for developing targeted FGF-based therapies aimed at 
addressing tubule disorders in CKD patients.

Several therapeutic approaches have been proposed to 
target FGF4/17/22, offering potential avenues for person-
alized treatment in CKD. For example, small molecule 
inhibitors like erdafitinib indirectly inhibit FGF activity 
by targeting FGFRs, thereby modulating FGF-mediated 
signaling pathways [56]. Similarly, antibodies such as 
R3Mab have shown promise in blocking FGF activity by 
preventing their interaction with receptors or promoting 
their degradation, offering targeted interventions to miti-
gate renal dysfunction [35].

RNAi-based approaches, exemplified by molecules like 
AZD4547, offer a mechanism to silence FGF expression 
by targeting their mRNA, potentially reducing aberrant 
FGF signaling and mitigating tubule disorders in CKD 
[64]. Additionally, peptides like FGF Trap competitively 
inhibit FGF binding to receptors, disrupting FGF signal-
ing pathways and offering therapeutic potential in CKD 
management [84].

Furthermore, proteins or molecules like FP-1039/
GSK3052230 can bind and sequester FGF ligands, effec-
tively inhibiting FGF signaling pathways and providing a 
targeted approach to modulating FGF-mediated effects 
on renal function [5].

LMX1B
LMX1B participates in dopaminergic neurogenesis 
WP2855. This protein plays an important role in kidney 
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function and development. Previous studies have shown 
that LMX1B is expressed in renal tubular epithelial cells 
and is required for proper podocyte differentiation [7]. 
Our results initially hypothesized that overexpression 
of LMX1B leads to tubule injury and dysfunction. How-
ever, there is also evidence that LMX1B overexpression 
may have a healing function. Some studies have found 
that elevated LMX1B expression is seen in regenerating 
tubules after injury, suggesting that LMX1B may pro-
mote renal tubular repair and regeneration [100].

As LMX1B is primarily a transcription factor involved 
in developmental processes, there are currently no spe-
cific molecules designed to target LMX1B directly for 
therapeutic purposes.

GATA4
GATA4 participates in mammalian disorder of sexual 
development WP4842. This protein plays an important 
role in kidney function, particularly in renal tubular cells 
[14]. Our results hypothesize that GATA4 overexpression 
leads to renal tubular cell dysfunction and injury. This is 
supported by evidence from the literature.

Studies have shown that high GATA4 levels in renal 
tubular epithelial cells correlate with tubular cell dys-
function and injury, contributing to diabetic nephropathy 
[14]. Both articles find that inhibiting GATA4 activity, 
such as by promoting its degradation, attenuates tubular 
cell damage and fibrosis.

Expanding on the potential translation of the identified 
targets into clinical applications, various strategies have 
been proposed to target GATA4, offering promising ave-
nues for personalized treatment in CKD.

Compounds like histone deacetylase (HDAC) inhibi-
tors provide indirect modulation of GATA4 activity by 
affecting proteins interacting with GATA4 or down-
stream targets. These compounds have shown efficacy 
in contexts like cardiac regeneration, suggesting their 
potential utility in mitigating GATA4-related abnormali-
ties associated with CKD [101].

Experimental techniques involving adeno-associated 
virus (AAV) vectors offer another approach to target 
GATA4, with the aim of delivering GATA4 gene con-
structs to cells with mutations, potentially restoring nor-
mal expression and function. While initially explored 
in the context of cardiac disease, similar gene therapy 
approaches could hold promise for addressing GATA4-
related abnormalities in CKD [65].

RNAi approaches, utilizing small interfering RNAs 
(siRNAs) or antisense oligonucleotides, present a mech-
anism to silence GATA4 expression at the mRNA level, 
potentially reducing aberrant protein levels associated 
with CKD progression [75].

Furthermore, targeting pathways regulated by GATA4, 
such as Wnt/β-catenin signaling, offers alternative thera-
peutic approaches. Compounds modulating these path-
ways, such as Wnt antagonists or β-catenin inhibitors, 
may offer potential interventions to mitigate GATA4-
related abnormalities and improve outcomes for CKD 
patients [41].

CXCL12
CXCL12 participates in EV release from cardiac cells 
and their functional effects WP3297. While CXCL12 
is known to promote the regeneration of renal tubules 
after acute kidney injury [71, 95], sustained CXCL12 
overexpression may have detrimental effects [76]. Stud-
ies involving tubule-specific CXCL12 overexpression in 
mouse models found that sustained CXCL12 overexpres-
sion in adult renal tubular cells led to tubular damage, 
inflammatory cell infiltration, interstitial fibrosis, and 
impairment of genes related to electrolyte transport [94].

In exploring the translation of the identified targets 
into clinical applications, several promising approaches 
have emerged for targeting CXCL12, offering potential 
avenues for personalized treatment in CKD.

Small molecule inhibitors like AMD3100 represent one 
such approach, disrupting the CXCL12-CXCR4 inter-
action and inhibiting downstream signaling pathways. 
AMD3100’s application in stem cell transplantation and 
its exploration in cancer therapy highlight its potential 
utility in mitigating CXCL12-mediated effects in CKD 
patients [18].

Compounds like NOX-A12 offer another avenue 
for targeting CXCL12, interfering with its binding to 
CXCR4. As a PEGylated Spiegelmer, NOX-A12 has been 
studied in clinical trials for hematological malignancies 
and solid tumors, suggesting its potential as a therapeutic 
intervention in CKD-associated conditions [39].

RNAi approaches utilizing siRNAs or antisense oli-
gonucleotides provide yet another mechanism to target 
CXCL12, aiming to silence its expression at the mRNA 
level and potentially inhibiting its function in diseases 
such as cancer and inflammatory disorders [88].

Conclusion and limitations
In conclusion, our systems biology analysis has yielded 
valuable insights into potential molecular mechanisms 
contributing to renal tubular dysfunction in CKD. The 
identification of up-regulated proteins such as WNT1/11, 
AGT, FGF4/7/17/22, LMX1B, GATA4, CXCL12, KISS1, 
COX6B1/7C, UQCRFS1, AGTR1, NDUFA4L2, INS, 
RGS16, RPS10/21/27A, FAU, and SLC18A2 highlights 
promising targets for further investigation. However, sev-
eral limitations need to be acknowledged.
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Firstly, the sample size of the gene expression data 
used in this study was very small, comprising only five 
controls and five cases, which may limit the generaliz-
ability of our findings. Additionally, the reliance on a 
single dataset (GSE45709) may also restrict the gener-
alizability of our findings. Future studies should aim to 
validate our results using larger and more diverse data-
sets to enhance the robustness and applicability of our 
findings.

Moving forward, experimental validation of the 
identified targets is imperative. Plans or strategies for 
validation through in  vitro cell culture experiments 
or in vivo animal models based on key target proteins 
and potential pathways need to be outlined compre-
hensively. This would provide crucial evidence to sup-
port the significance of our findings and facilitate their 
translation into clinical applications.

Despite these limitations, our study sheds light on 
the molecular players and pathways associated with 
renal tubular dysfunction, offering potential avenues 
for novel therapeutic interventions and enhanced clini-
cal management of CKD and its complications. Empha-
sizing the need for continued research in this direction 
will drive progress toward better understanding and 
tackling CKD, ultimately benefiting patients’ outcomes 
and overall healthcare.
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