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Abstract 

The supervised machine learning method is often used for biomedical relationship extraction. The disadvantage 
is that it requires much time and money to manually establish an annotated dataset. Based on distant supervision, 
the knowledge base is combined with the corpus, thus, the training corpus can be automatically annotated. As many 
biomedical databases provide knowledge bases for study with a limited number of annotated corpora, this method 
is practical in biomedicine. The clinical significance of each patient’s genetic makeup can be understood based 
on the healthcare provider’s genetic database. Unfortunately, the lack of previous biomedical relationship extraction 
studies focuses on gene–gene interaction. The main purpose of this study is to develop extraction methods for gene–
gene interactions that can help explain the heritability of human complex diseases. This study referred to the informa-
tion on gene–gene interactions in the KEGG PATHWAY database, the abstracts in PubMed were adopted to generate 
the training sample set, and the graph kernel method was adopted to extract gene–gene interactions. The best 
assessment result was an F1-score of 0.79. Our developed distant supervision method automatically finds sentences 
through the corpus without manual labeling for extracting gene–gene interactions, which can effectively reduce 
the time cost for manual annotation data; moreover, the relationship extraction method based on a graph kernel can 
be successfully applied to extract gene–gene interactions. In this way, the results of this study are expected to help 
achieve precision medicine.
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Introduction
Text mining of scholarly literature for the purpose of 
information extraction is an effective method to keep up 
with the latest research findings. The first step of infor-
mation extraction is called entity recognition (NER) [20]. 
Biomedical NER aims to identify related entities in text, 
such as proteins, genes, or diseases.

With the development of the internet, the amount of 
biomedical literature citations is increasing exponen-
tially; for example, more than 30 million biomedical lit-
erature citations are in PubMed, which contains a large 
amount of biomedical knowledge. However, biomedi-
cal researchers have difficulties in obtaining the desired 
information from this huge data in a timely manner. One 
of the solutions to obtain the desired information from 
the huge biomedical literature citations is biomedical 
relationship extraction. For biomedical research, gene–
gene interactions can help explain the heritability of 
human complex diseases.

Accounting for the effect of genetic interactions can 
help with detecting gene functions and pathways. These 
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interactions include suppressive, synthetic, and epistatic 
types. One of the most famous strategies for detecting 
gene–gene interaction is the multifactor dimensional-
ity reduction (MDR) method [6, 34] which has been 
used profusely. The machine learning (ML) method is a 
powerful alternative to traditional methods for analyz-
ing gene–gene interactions [7, 8, 11, 12, 24, 38, 40, 51]. In 
the development of new gene–gene interaction extrac-
tion methods, previous literature is required for valida-
tion. The biomedical relationship extraction system can 
achieve this target. GeneDive [33, 49] and DeepDive [28] 
are biomedical relationship extraction systems. GeneDive 
is a text-mining method that can search, sort, group, filter, 
highlight, and visualize interactions between drugs, genes, 
and diseases. DeepDive is a probabilistic inference sys-
tem that uses factor graphs to calculate the probabilities 
of random variables. There is also a gene–gene interac-
tion literature mining on Host-Brucella [22]. Protein–pro-
tein interactions (PPIs) represent a fundamental form of 
molecular interaction that governs critical biological func-
tions such as cell proliferation, differentiation, and apop-
tosis. STRING [13] is a text mining-based PPI method 
that conducts statistical co-citation analysis across many 
scientific texts, including all PubMed abstracts. Many 
human PPI research studies were retrieved from STRING 
(https:// string- db. org/, version 9.1) [41, 48, 50, 52].

Supervised machine learning has been widely employed 
in relationship extraction [1]. As relationship extraction 
is regarded as a classification problem, effective features 
are designed according to the annotated corpus to learn 
different classification models, and then, a trained clas-
sifier is adopted to predict relationships (such as the 
positive or negative relationship of gene–gene interac-
tions in KEGG PATHWAY). In this method, an anno-
tated corpus is required to learn and predict labels of 
new instances,therefore, if the supervised machine learn-
ing method is employed to train the relationship extrac-
tion system, a corpus is necessary. However, the corpus 
requires a lot of manual tagging, which is a problem, as 
it is time-consuming and labor-intensive. Unfortunately, 
there is a limited number of corpora for gene–gene inter-
actions in genetics. PubTator allows curators to specify 
the kind of relations they desire to capture from the lit-
erature, which can be either between the same kind of 
entities, such as protein–protein interactions, or between 
different kinds, such as gene–disease relations [45]. Pub-
Tator entity recognition tools include GeneTUKit [18] 
for gene mention, GenNorm [43] for gene normalization, 
SR4GN [44] for species, tmVar [42] for mutations and a 
dictionary-based lookup approach [47] for chemicals.

A graph kernel is a kind of kernel function in which 
graphs are input, and then the similarities of graph 
pairs are output. There are two methods to apply graph 

kernel to relationship extraction. One method is that a 
kernel function is constructed according to the text fea-
tures [dependent graph, and part of speech (POS)], and 
the kernel function (APGK and ASMK) is adopted to 
calculate the distance between two relationships [1, 31]. 
The other method is that graph features are constructed 
according to text features (i.e., dependent graph, and 
POS), and the kernel function (i.e., Random Walk Ker-
nel, and Labeled Graph Kernel) is employed to calculate 
the distance between two relationships according to the 
structure of the graph features [53].

There are two main research objectives in this study. 
First, due to the multiple gene–gene interactions, it con-
tains [21], the KEGG PATHWAY database was taken as 
the knowledge base, and distant supervision was carried 
out to automatically generate a large number of labeled 
data, to solve the problem of insufficient training data for 
gene–gene interactions in genetics. Second, a machine 
learning method based on the graph kernel was proposed 
to extract gene–gene interaction relationships in the text. 
The distant supervision method, as developed in this 
study, can automatically create a corpus for extracting 
gene–gene interactions, which can effectively reduce the 
time cost for manual annotation data, moreover, the rela-
tionship extraction method based on a graph kernel can 
be successfully applied to extract gene–gene interactions.

Distant supervision is an extension of the paradigm 
used by WordNet to extract hypernym relationships 
between entities, similar to using weakly labeled data in 
bioinformatics [9, 29]. Some of the commonly extracted 
biomedical relations are microRNA–gene relations [25], 
protein–protein interactions [32], and disease–gene 
relationships [23]. However, the practice of precision 
medicine will ultimately require healthcare providers to 
refer to gene and mutation databases to understand the 
clinical significance of each patient’s genetic makeup 
[37]. Unfortunately, there is a lack of previous biomedi-
cal relationship extraction research in gene–gene interac-
tion. Our study developed a distant supervision method 
to automatically create a corpus for extracting gene–gene 
interactions. Then, we used a graph kernel ML approach 
to extract gene–gene interaction relationships in the text. 
In this way, our proposed method is expected to help 
achieve precision medicine.

Materials and methods
Corpus
Our study obtained abstracts from PubMed, based on 
references of KEGG and MeSH keywords. For KEGG, we 
selected 93 KEGG PATHWAY (http:// www. kegg. jp/ or 
http:// www. genome. jp/ kegg/) belonging to human dis-
eases and then mapped them to a PubMed ID. For MeSH, 
we employed the NCBI database (https:// www. ncbi. nlm. 
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nih. gov/) using Medical Subject Heading (MeSH) terms 
and query the keyword of [genetic interaction]. Based on 
the query, our study obtained “interaction” medical terms 
(i.e., “epistatic, genetic”, “genetic susceptibility disease”), 
and “disease” and “genetic” medical terms (i.e., “disease” 
“Genetic”). Then, we filtered abstracts from PubMed for 
the years (1946–2021) based on the above keywords.

The final corpus consists of 132,946 abstracts. Among 
them, 2,071 abstracts are from KEGG PATHWAY and 
130,871 abstracts are from MeSH.

Text preprocessing
There are main three steps in text preprocessing: In Step 1, 
PubTator Central (PTC) [45] was adopted for Name Entity 
Recognition (NER) to recognize genes in text abstracts 
[45]. In Step 2, the natural language model of ScispaCy (i.e., 
en_core_sci_scibert) was employed to break the abstract 
and take the sentences of gene–gene co-occurrence. In 
Step 3, the KEGG PATHWAY was taken as the knowledge 
database to identify the relationship category of sentences, 
and a training corpus was constructed for distant super-
vision based on this relationship category. Each data in 
the corpus contains a sentence with two genes, the article 
source of the sentence, the NCBI ID of the two genes, and 
whether there is an interaction in KEGG.

Graph feature construction
The ScispaCy model was adopted to conduct depend-
ency analysis and part-of-speech tagging, and then, these 
features were employed to construct training biomedical 
relations for the input classifier.

Tokenization and dependency parsing
For all the features extracted from the corpus under dis-
tant supervision, including syntactic dependency parsing 
and part-of-speech tagging, the natural language model 
of ScispaCy (i.e., en_core_sci_scibert) was adopted, 
which contains approximately 785,000 biomedical vocab-
ularies. Step 1 was tokenization, and the Tokenizer of 
spaCy was employed for tokenization. Step 2 was part-
of-speech tagging, and the Tagger of spaCy was adopted 
to extract the part-of-speech labels of all tokens except 
gene words. Step 3 was dependency parsing, where the 
parser of spaCy was employed to identify the relationship 
between words in sentences and obtain the dependency 
relation between words.

Sentence category determination
To train the classifier, after extracting the sentence con-
taining two genes, it is also necessary to obtain the 
category of the sentence. The sentence category deter-
mination in this study can be divided into three steps: In 
Step 1, direct and indirect gene–gene interactions were 

obtained from the KEGG PATHWAY database. In Step 
2, all possible gene pairs in the sentence were obtained. 
Since a sentence may contain multiple gene entities, all 
sentences were arranged and combined to list all possi-
ble gene pairs. In Step 3, whether the gene pairs belong to 
the gene–gene interactions from KEGG PATHWAY was 
determined, if yes, a positive category was given, oth-
erwise a negative category was given. The steps in 2.3.2 
were performed in Python 3.6.5.

Graph‑based features
After the features were obtained through tokenization 
and dependency parsing, NeworkX [15] was adopted to 
construct the graphs, and the sentences were structured 
as the input of the classifier. During graph construction, 
according to the method introduced by Bunescu and 
Mooney [4], a weighted graph was constructed for each 
sample of the corpus. The vertex in the weighted graph 
was composed of tokens in a sentence, with POS labels 
added,the edge was composed of the dependency rela-
tion between tokens, with attributes added. During graph 
feature construction, basic syntactic features (including 
dependency graph, and POS) were employed to enrich the 
graphs in combination with heuristic methods [including 
direction and shortest dependency path (SDP)]. There-
fore, the graph kernel can contain more information dur-
ing the calculation of the similarities between graphs.

According to the shortest path hypothesis, as proposed 
by Bunescu and Mooney [4], the shortest dependency path 
(SDP) of two entities contains the most information in a 
sentence. Therefore, when the edge weight is added, con-
cerning the weight configuration put forward by Airola 
et al. [1], the edge belonging to the SDP was given a weight 
of 0.9, while the remaining were given a weight of 0.3. 
The semantic relationships between nouns were classified 
according to SemEval 2010 relationship identification [16].

Our study adopted the directional relationship and the 
dependency relation as the attributes to construct the edges 
of the NetworkX graphs. Finally, for each sentence sample, 
a total of four features were selected in this study to con-
struct the NetworkX graphic data, including POS, depend-
ency relation, directional relationship, and SDP. An example 
of initialization token vector representations is shown in 
the Supplementary Fig. s4. The dependency relation is all 
binary: a grammatical relation holds between a governor (a 
regent or a head) and a dependent. The grammatical rela-
tions are defined in Marneffe [27]. Detailed descriptions 
of the various dependency types are available in the Stan-
ford Typed Dependencies manual provided by the Stanford 
NLP [27]. The directional relationships could be divided 
by forward and backward parsing. In forward parsing, the 
input tokens are in their original order, while in backward 
parsing, the input tokens are from right to left [5]. We used 
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“These agents negatively regulate the Gene_3667 (IRS1) 
functions by phosphorylation but also via others molecular 
mechanisms (Gene_1154 (SOCS) expression, Gene_3376 
(IRS) degradation, O-linked glycosylation) as summarized 
in this review.” as an example sentence (Fig. s2).

SVM graph kernel
The constructed feature graphs were classified by the 
SVM graph kernel method to extract the relationships. 
According to Borgwardt et  al. [2], from GreKel [36], 
three commonly adopted kernel methods were selected, 
including Shortest Path [30], Weisfeiler–Lehman sub-
tree [35], and Neighborhood Hash [17]. For the following 
three graph kernel functions, the graph feature (G) of a 
sample was defined to consist of a set of the vertex (V ) 
and the edge (E) : G = (V ,E) , where each edge is in the 
form of e = (u, v) , and u, v ∈ V .

Shortest path kernel (SPK)
The shortest path kernel (SPK), as proposed by [3], can 
compare the similarities of two graphs according to the 
SDP features (length and vertex label).

Let G1,G2 be two feature graphs. First, accord-
ing to Dijkstra’s Algorithm [10], the SDPs between 
all vertex pairs were calculated, and Gi,Gj were 
transformed into shortest path graphs S1, S2 , where 
S1 = (V1,E′1), S2 = (V2,E′2),E′ ⊆ E . Then, the similarity 
of two shortest dependency paths (SDPs) was calculated 
to obtain the definition of the SPK, as Eq. (1.1):

where k(1)walk(e1, e2) is the positive definite kernel on 
the edge walk with length 1 in the shortest path graph, 
which is employed to assess the similarity of paths. Given 
two edges e1 = {u1, v1} and e2 = {u2, v2} , k(1)walk(e1, e2) 
is defined as the inner product of three Dirac kernels, 
including two vertex kernels ( kvertex ) for comparing the 
beginning and end of the path and an edge kernel ( kedge ) 
for comparing the length of the SDP, as Eq. (1.2):

Weisfeiler–Lehman Kernel (WLK)
The Weisfeiler–Lehman kernel framework [35] is a kernel 
framework based on the Weisfeiler–Lehman algorithm 
[46]. This study adopted the vertex histogram kernel [39].

The Weisfeiler–Lehman algorithm is a method for label 
refinement, and the main steps are as follows:

1. Give an initial input graph G = (V ,E) , and vertexes 
with labels.

(1.1)kSP (S1, S2) =
∑

e1∈E1

∑

e2∈E2
k
(1)

walk(e1, e2)

(1.2)
k
(1)

walk (e1, e2) = kvertex (u1,u2) × kedge (e1, e2) × kvertex (v1, v2)

2. A multi-label set was constructed for the label of 
each vertex in the graph, as composed of the vertex 
and its neighbors.

3. The obtained multi-label set was compressed into a 
new label to re-label the vertex as a new label.

4. The processes of 2 and 3 were repeated for h times, 
where h was the set iteration number.

When there is more than one input graph, these steps 
would be simultaneously performed for all the input 
graphs. If the vertexes from different graphs have the 
same multi-label set, they would have the same new label.

The Weisfeiler–Lehman kernel requires a graph kernel 
as the iteration benchmark. Let k be the vertex histo-
gram kernel, which is called the base kernel. The vertex 
histogram kernel would judge the similarity of graphs 
according to the number of vertexes and labels of ver-
texes. Assuming that every vertex of a graph set comes 
from an abstract vertex space V, it is given a set of ver-
tex labels L, l : V− > L as the label assignment function 
for the vertexes. If the total number of labels is d , that 
is, d = |L| , then graph G can be expressed as vector s , 
s = (s1, s2, ..., sd), si =

∣

∣

{

v ∈ V : l(v) = i
}∣

∣, i ∈ L.
Let G1,G2 be two feature graphs, then the vertex histo-

gram kernel is defined as Eq. (2.1):

Let G1,G2 be two feature graphs, and the Weisfeiler–
Lehman Kernel taking k as the benchmark kernel is 
defined as Eq. (2.2):

where h is the iteration number of Weisfeiler–Lehman. 
In this study, h was set as 5, and {G10,G11, ...,G15} and 
{G20,G21, ...,G25} were the Weisfeiler–Lehman sequences 
generated by G1 and G2 by iteration, respectively.

Neighborhood hash kernel (NHK)
In terms of the neighborhood hash kernel (NHK), the simi-
larity of graphs was calculated by updating the labels of the 
vertexes and calculating the number of common labels. 
Zhang et  al. applied the neighborhood hash kernel (NHK) 
in biomedical literature exploration to extract protein–pro-
tein interactions, which had a good effect on the dependency 
graph [53]. This study applied the neighborhood hash kernel 
(NHK) to extract gene–gene interactions. Let G1,G2 be two 
feature graphs, the hash labels of the two graphs were calcu-
lated according to the neighborhood hash function, and the 
NHK was defined to compare the similarities, as Eq. (2.3):

(2.1)k(G1,G2) = �s1 , s2�

(2.2)
kWL (G1,G2) = k (G10,G20) + k (G11,G21) + ...+ k (G1h,G2h)

(2.3)kNH (G1,G2) =
b

a1 + a2 − b
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where b represents the number of labels shared by two 
graphs, and a1,a2 represent the number of vertexes of 
G1,G2 , respectively.

CV and performance evaluation
This study employed KEGG PATHWAY as the knowledge 
base for distant supervision, and the final corpus con-
tained 392,369 data, including 10,500 positive cases (i.e., 
gene–gene interactions in KEGG PATHWAY) and 381,869 
negative cases (i.e., non-gene–gene interactions in KEGG 
PATHWAY). To avoid over-training data, which would 
result in overfitting, tenfold cross-validation was adopted 
to train the classifier. However, due to an excessive differ-
ence between the positive and negative ratio (1:40) of the 
data, the data could not be directly cut into tenfold for ten-
fold cross-validation. Therefore, random sampling was con-
ducted for the positive and negative samples, respectively, 

and then, the removed samples were not put back, to 
ensure the independence of the samples. The positive and 
negative sampling ratio was 1:3, and the final dataset was 
divided into tenfold, each with 4,200 samples (Fig. s3).

Then, tenfold cross-validation was carried out according 
to the above dataset division (Fig s3). With 9/10 as the train-
ing set and the rest 1/10 set as the testing set, three differ-
ent graph kernels (SPK, WLK, and NHK) were employed to 
train the SVM classifier. The iteration number of the WLK 
updating labels was set to five times, and the maximum 
neighbor number of NHK single labels was three. All the 
above experimental processes were performed on Python.

To assess the results for the relationship extraction classi-
fication task completed by the three graph kernels, a confu-
sion matrix was established, and several common indicators 
were adopted for the assessment, including Accuracy, Preci-
sion, Recall, F1-score, and area under curve (AUC).

Algorithm
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Results
A flow chart of the analysis process for this study is 
shown in Fig.  1. An assessment was conducted on the 
results of the method constructed in this study for 

extracting gene–gene interactions. Then, the data were 
described, and the assessment results of the distant 
supervision relationship corpus employed for the three 
graph kernels were discussed.

10‑fold CV
Figure  2 shows the results of tenfold CV using three 
graph kernels on SVM. Regarding the results of tenfold 
CV in the training set, the accuracy of SPK was 0.7518–
0.7528, the accuracy of WLK was 0.8122–0.8148, and 
the accuracy of NHK was 0.8331–0.8385. Compared 
with those in the training set, regarding the results 
of tenfold CV in the testing set, the accuracy of SPK 
decreased by approximately 0.001 as 0.7505–0.7526; 
the accuracy of WLK decreased by approximately 0.03 
as 0.7674–0.7819; the accuracy of NHK decreased by 
approximately 0.05 as 0.7764–0.7917. According to the 
results, regarding the difference between the accuracy 
of the model in the training set and that in the testing 
set, SPK was the smallest, followed by WLK and NHK, 
respectively.

Classification results
An assessment was made on the interaction corpus, 
as obtained by distant supervision through the SVM 
graph kernel classification, and the results show that 

Fig. 1 Flow diagram showing the process of analysis for this study

Fig. 2 The results of tenfold CV using three graph kernels methods in shortest path kernel (SPK), Weisfeiler–Lehman kernel, (WLK) 
and neighborhood hash kernel (NHK). The accuracy of training data with (blue) and testing data (orange) is shown
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all the three graph kernels had good classification effi-
ciency (F-score > 70%, Table  1). According to Table  1, 
regarding the performance of accuracy, NHK was the 
best (Acc = 0.79), followed by WLK (Acc = 0.78) and 
SPK (Acc = 0.75), respectively. The same trends were 
shown in the performances of Recall and F-score (NHK 
(Recall = 0.79, F-score = 0.79), WLK (Recall = 0.78, 
F-score = 0.78), and SPK (Recall = 0.75, F-score = 0.75). 
According to Table  1, regarding the performance of 
F-score, SPK was poor (F-score = 0.75) because ver-
tex labels and vertex attributes were adopted for SPK to 
calculate the similarity without considering edge labels; 
compared with SPK, NHK (F-score = 0.79) and WLK 
(F-score = 0.78) had better performance because more 
information on the edge labels was employed. In addi-
tion, due to a small number of TP in SPK, SPK had the 
highest value in precision (P = 0.81); however, many sam-
ples with actual interactions were ignored for that reason. 
Finally, the McNemar test P value of WLK and NHK was 
3× e−8 , and the two classifiers, WLK and NHK, had a 
significant statistical difference in classification accuracy. 
In terms of accuracy, NHK had a better performance 
than WLK. Figure 3 shows the AUC values of the three 
graph kernel methods, which were all between 0.7 and 
0.8, and WLK (AUC = 0.77) and NHK (AUC = 0.76) had 
better classification results than SPK (AUC = 0.71).

NHK and WLK had the best classification results in 
F1-score and AUC. In terms of calculation time, although 
a simple benchmark kernel was adopted for WLK, the 
calculation time of WLK was much lower than that of 
NHK. However, since the positive and negative ratio of 
the data was 1:3, the data was unbalanced. Therefore, the 
F-score had a better assessment effect than AUC. We 
suggest that, in the case of unbalanced data and plenty 
of time, NHK can achieve better classification results; in 
the case of a limited time, WLK can obtain classification 
results not inferior to NHK.

The data obtained by distant supervision were mostly 
unbalanced, thus, the positive and negative ratios of 
the dataset were further divided into two other settings 
(1:10, 1:100) for comparison. According to the results, 
the greater is the difference between positive and nega-
tive ratios, the worse the prediction effect (P, R, F) of 
positive cases (Fig. 4). We remind hereby that if the data 
obtained by the distant supervision method is employed 
for machine learning, the sampling is required to solve 
the problem of unbalanced samples.

Discussion
This study put forward a distant supervision method, in 
which the KEGG PATHWAY database was employed as 
the knowledge base, and 132,946 abstracts from PubMed 
were tagged, to obtain annotated training data. Accord-
ing to the results, the annotated datasets created by the 
three graph kernel methods could be effectively adopted 
as a training sample for machine learning to extract 
gene–gene interactions from the KEGG PATHWAY 
database.

The dataset employed in this study was the abstracts 
taken from PubMed. Since an abstract usually only 

Table 1 Classification results from SPK, WLK, and NHK

Graph kernel Accuracy Precision Recall F‑score

Shortest path 0.75 0.81 0.75 0.75

Weisfeiler–Lehman 0.78 0.78 0.78 0.78

Neighborhood hash 0.79 0.79 0.79 0.79

Fig. 3 Receiver-operating characteristic curves for the three graph kernel methods in A shortest path kernel (SPK), B Weisfeiler–Lehman kernel, 
WLK, and C neighborhood hash kernel (NHK)
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describes newly discovered gene–gene interactions, the 
gene–gene interactions published in the past may not 
appear in the abstract of a text, thus, the classification 
results of the three graph kernel methods may be under-
estimated. Therefore, in this study, the abstracts over 
a long period of years (1946–2021) were captured from 
PubMed to solve this problem.

Three graph kernels were applied to the constructed 
feature graph. As adopted by these graph kernels, the 
label information of graphs included POS, dependency 
relation, and directional relationship. In terms of the 
shortest dependency path (SDP) feature that was not 
employed, analysis was also conducted on the random 
walk kernel where the attribute information could be 
adopted. However, due to the consideration of attribute 
information, the calculation of this graph kernel required 
a lot of computer resources, thus, due to the limitation 
of hardware equipment, only 400 data were included in 
the analysis in this study. According to the results, the 

F1-score of the graph feature in the random walk kernel 
reached 0.86 (Table s2), the accuracy was 0.75 (Table s2), 
and the AUC was 0.57 (Fig. s1).

GeneDive [33, 49] is a single-page web application fol-
lowing the widely used model-view-controller (MVC) 
architecture. STRING [13] is a text mining-based PPI 
method. We analyzed VHL and CREBBP genes by Gen-
eDive and STRING. The supplementary shows the VHL 
and CREBBP interaction results (Fig. s5, Fig. s6, Table s3, 
and Table  s4). In addition to GeneDive and STRING, 
our method can provide an alternative method to gene–
gene interaction text extraction. Using GeneDive and 
STRING, we can ensure the reliability and accuracy of 
our result findings.

In practice, the resulting dimensionality of the space 
is usually very large, since the number of dimensions is 
determined by the number of distinct index terms in the 
corpus. Therefore, techniques to control the dimension-
ality of the vector space are often required. Due to the 

Fig. 4 Receiver-operating characteristic curves for the three graph kernel methods in shortest path kernel (SPK), Weisfeiler–Lehman kernel (WLK), 
and neighborhood hash kernel (NHK) on the three positive and negative ratios (1:3, 1:10, and 1:100)
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superior potential of SVM techniques in efficiently man-
aging high-dimensional input spaces compared to other 
classification techniques, the need for time-consuming 
language preprocessing (i.e., reducing the dimensionality 
of feature spaces) can be largely eliminated. Therefore, we 
choose SVM methods for classification in this study.

The KEGG PATHWAYS or modules are represented 
as lists of genes, which can be obtained from the litera-
ture or online repositories such as Gene Ontology and 
KEGG. The KEGG PATHWAY modules use z-tests to 
determine the relative importance of the corresponding 
modules or pathways in different patient groups [14, 26]. 
A module is “positively enriched” in a sample if it has a 
positive z-score with a corrected P < 0.05 and is “nega-
tively enriched” if the z-score is negative with a corrected 
P < 0.05[14, 19, 26].

The method constructed in this study is limited to using 
KEGG PATHWAY as the knowledge base. Although the 
KEGG PATHWAY database contains most gene–gene 
interactions, there are still gene–gene interactions that 
are not included in KEGG PATHWAY, which may not be 
identified by this relationship corpus. In the future, more 
databases with gene–gene interactions other than KEGG 
PATHWAY are expected to be adopted as the knowledge 
base for distant supervision to create a richer corpus.

The distinction between KEGG and PubMed as data 
sources is significant, and we consider that varying confi-
dence scores should represent the disparity in their qual-
ity. This study primarily utilizes references from KEGG 
and MeSH keywords to analyze abstract data procured 
from PubMed. The keywords within these abstracts are 
derived from KEGG and MeSH. We will further incor-
porate the assessment of confidence scores in our subse-
quent research.

Zhang et al. [53] proposed a neighborhood hash graph 
kernel method, and Zhang et  al. [54] proposed a hash 
subgraph pairwise kernel-based method for extraction of 
protein–protein interactions from biomedical literature. 
These two previously proposed methods are similar to 
ours. Unfortunately, their methods are only for the pro-
tein–protein interaction corpus and cannot be used for 
our gene–gene interaction corpus. Therefore, it is hard to 
make a comparison with our findings. The limitation of 
our study is that the corpus of gene–gene interaction is 
very scarce. In this study, we used tenfold CV to increase 
the stability of our proposed methodology. In future 
studies, we will try to find different gene–gene interac-
tion corpora to improve the performance of our method.

The SVM graph kernel method and random sam-
pling were employed to assess the distant supervision 
corpus. Although the feasibility of the distant supervi-
sion method has been proven, as there is an enormous 
amount of data in the distant supervision corpus, when 

there is enough data and time, the effect of deep learn-
ing will usually be better than that of SVM. In the future, 
we anticipate that this distant supervision corpus can 
be trained through deep learning to identify gene–gene 
interactions from the literature directly.

Conclusion
In this research, we have developed and implemented 
a novel distant supervision approach for the auto-
matic creation of a corpus specifically designed for the 
extraction of gene–gene interactions. Our methodol-
ogy leverages a graph kernel machine learning (ML) 
technique to effectively identify and extract these com-
plex relationships within textual data. The implications 
of our work are significant, offering a robust tool for 
researchers and professionals in the field of genomics. 
By automating the extraction process and enhancing 
the accuracy of gene–gene interaction identification, 
our proposed method stands to substantially contribute 
to the advancement of helping to understand human 
diseases.
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