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Abstract 

Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders 
by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This 
comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary 
neurological conditions, including Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis 
(ALS), multiple sclerosis (MS), stroke, spinal cord injury (SCI), and other related disorders. The review begins 
with a detailed introduction to stem cell biology, discussing the types, sources, and mechanisms of action of stem 
cells in neurological therapies. It then critically examines the preclinical evidence from animal models and early 
human trials investigating the safety, feasibility, and efficacy of different stem cell types, such as embryonic stem 
cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). 
While ESCs have been studied extensively in preclinical models, clinical trials have primarily focused on adult stem 
cells such as MSCs and NSCs, as well as iPSCs and their derivatives. We critically assess the current state of research 
for each cell type, highlighting their potential applications and limitations in different neurological conditions. 
The review synthesizes key findings from recent, high-quality studies for each neurological condition, discussing 
cell manufacturing, delivery methods, and therapeutic outcomes. While the potential of stem cells to replace lost 
neurons and directly reconstruct neural circuits is highlighted, the review emphasizes the critical role of paracrine 
and immunomodulatory mechanisms in mediating the therapeutic effects of stem cells in most neurological 
disorders. The article also explores the challenges and limitations associated with translating stem cell therapies 
into clinical practice, including issues related to cell sourcing, scalability, safety, and regulatory considerations. 
Furthermore, it discusses future directions and opportunities for advancing stem cell-based treatments, such as gene 
editing, biomaterials, personalized iPSC-derived therapies, and novel delivery strategies. The review concludes 
by emphasizing the transformative potential of stem cell therapies in revolutionizing the treatment of neurological 
disorders while acknowledging the need for rigorous clinical trials, standardized protocols, and multidisciplinary 
collaboration to realize their full therapeutic promise.
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Introduction
Neurological disorders encompass a wide range of 
debilitating conditions that affect the central and 
peripheral nervous systems, leading to progressive 
damage and loss of neural tissue. These conditions 
include neurodegenerative illnesses, which are typified 
by the build-up of abnormal protein aggregates and the 
progressive loss of particular neuronal populations. 
Examples of these illnesses are Alzheimer’s disease (AD), 
Parkinson’s disease (PD), and Huntington’s disease (HD) 
[1, 2]. Other neurological conditions, such as multiple 
sclerosis (MS) and spinal cord injury (SCI), involve 
damage to the myelin sheath and axons, disrupting 
neural transmission and causing functional impairments 
[3, 4]. Cerebrovascular disorders, including stroke and 
traumatic brain injury (TBI), result in acute neural tissue 
damage and subsequent neuroinflammation, leading to 
long-term disability [5, 6]. Neurological disorders pose 
a significant burden on global health, affecting millions 
of individuals worldwide and leading to substantial 
healthcare costs and societal impact [7, 8].

Current therapeutic approaches for neurological 
disorders primarily focus on managing symptoms and 
slowing disease progression rather than addressing 
the underlying pathology. This is in part because the 
precise etiology of many neurological conditions remains 
unknown, limiting our ability to develop targeted disease-
modifying therapies. Pharmacological treatments, such 
as dopaminergic medications for PD, cholinesterase 
inhibitors for AD, and immunomodulatory drugs for 
MS, provide symptomatic relief but often have limited 
efficacy and side effects [9–11]. Rehabilitation strategies 
aim to promote functional recovery and adaptations but 
do not directly restore lost neural tissue [12]. Surgical 
interventions, such as deep brain stimulation for PD, can 
alleviate specific symptoms but do not halt or reverse 
the neurodegenerative process [13]. While progress 
has been made in developing neuroprotective agents 
and gene therapies, their clinical translation has been 
challenging, and their long-term efficacy remains to 
be established [14, 15]. Given the limitations of current 
therapies, there is a pressing need for novel approaches 
that can effectively regenerate damaged neural tissue, 
replace lost neurons, and promote functional recovery in 
neurological disorders.

By utilizing stem cells’ capacity for regeneration, stem 
cell-based therapies have become a viable option for 
treating the underlying pathophysiology of neurological 
illnesses. Because of their capacity to self-renew and 
differentiate into distinct cell types, stem cells are 
desirable in regenerative medicine [16]. Numerous stem 
cell types have been investigated for their potential 
as therapeutics for neurological illnesses, including 

induced pluripotent stem cells (iPSCs), neural stem 
cells (NSCs), mesenchymal stem cells (MSCs), and 
embryonic stem cells (ESCs) [17, 18]. These cells offer 
a variety of alternatives for cell-based therapeutics 
since they can be produced from various sources, 
including adult bone marrow, adipose tissue, embryonic 
tissue, and reprogrammed somatic cells [19, 20]. Stem 
cells have a variety of therapeutic applications in 
neurological illnesses, including immunomodulation, 
cell replacement, paracrine signaling, and stimulation 
of endogenous repair mechanisms [21–23]. Preclinical 
studies in animal models have demonstrated the 
ability of stem cells to differentiate into neuronal and 
glial lineages, integrate into host neural circuits, and 
promote functional recovery in various neurological 
conditions [24, 25]. However, the clinical translation of 
stem cell therapies faces numerous challenges, including 
optimizing cell manufacturing, delivery methods, and 
safety assessments [26].

This comprehensive review aims to provide an in-depth 
analysis of the current state of stem cell-based therapies 
for neurological disorders, focusing on the most recent 
advances and clinical applications. The review will discuss 
the biological properties and therapeutic mechanisms of 
different stem cell types, critically examine the preclinical 
and clinical evidence for their efficacy and safety, and 
highlight the challenges and future directions in the 
field. By synthesizing the latest research findings and 
expert opinions, this review seeks to inform researchers, 
clinicians, and stakeholders about the potential and 
limitations of stem cell therapies in revolutionizing the 
treatment of neurological disorders.

Stem cell basics
Stem cells are unspecialized cells with the unique ability 
to self-renew and differentiate into various cell types, 
making them a valuable tool for regenerative medicine 
[27]. Understanding stem cells’ fundamental properties 
and mechanisms is crucial for their therapeutic 
application in neurological disorders. This section 
provides an overview of the different types of stem 
cells, their sources, and their mechanisms of action in 
neurological therapies.

Based on their potential for differentiation and 
developmental stage, stem cells can be categorized. 
All of the body’s cell types can be produced by ESCs, 
pluripotent cells formed from the inner cell mass of 
blastocysts [28]. Nevertheless, there are hazards of 
tumor growth and ethical issues with using ESCs [29]. 
Adult stem cells are multipotent cells in bone marrow, 
adipose tissue, and the central nervous system. Examples 
of these tissues are MSCs and NSCs [30, 31]. Though 
less contentious and safer than ESCs, these cells have a 
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more constrained capacity for differentiation [32]. Adult 
somatic cells are reprogrammed into a pluripotent state 
using particular transcription factors to create iPSCs 
[33]. iPSCs possess similar properties to ESCs but avoid 
the ethical issues associated with embryonic tissue use 
[34]. Other stem cell sources include perinatal tissues, 
such as umbilical cord blood and amniotic fluid, which 
contain a mix of multipotent stem cells [35].

Stem cells exert their therapeutic effects in neurological 
disorders through multiple mechanisms, broadly 
categorized into cell replacement, paracrine signaling, 
immunomodulation, and stimulation of endogenous 
repair processes.

1.	 Cell replacement: Stem cells can differentiate into 
specific neuronal and glial cell types, potentially 
replacing damaged or lost neural cells in neurological 
disorders [36]. For instance, dopaminergic neurons 
derived from stem cells can be transplanted into 
the striatum to replace degenerated neurons in 
Parkinson’s disease [37]. However, the extent of 
cell replacement and functional integration of 
transplanted cells varies across different neurological 
conditions and requires further optimization [38].

2.	 Paracrine signaling: Stem cells secrete a wide range 
of bioactive molecules, including growth factors, 
cytokines, and extracellular vesicles, which can exert 
neuroprotective, anti-inflammatory, and regenerative 
effects on the host neural tissue [39, 40]. These 
paracrine factors can promote the survival and 
regeneration of endogenous neural cells, modulate 
the immune response, and enhance angiogenesis and 
neuroplasticity [41, 42]. The paracrine mechanisms 
of stem cells are believed to play a crucial role in their 
therapeutic efficacy, particularly in conditions where 
cell replacement alone may not be sufficient [43].

3.	 Immunomodulation: Neuroinflammation is a 
common feature of many neurological disorders, 
contributing to neural damage and hindering repair 
processes [44]. Stem cells, particularly MSCs, possess 
immunomodulatory properties that can regulate 
the immune response and create a more favorable 
environment for neural repair [45]. These cells can 
interact with various immune cells, such as T, B, 
and microglia, and modulate their activity through 
direct cell–cell contact and secretion of soluble 
factors [46, 47]. By attenuating neuroinflammation 
and promoting a pro-regenerative immune response, 
stem cells can indirectly support neural repair and 
functional recovery [48].

4.	 Stimulation of endogenous repair: To encourage 
the proliferation, differentiation, and integration 
of endogenous stem and progenitor cells into the 

injured neural tissue, stem cells can activate and 
mobilize these cells in the brain [49, 50]. Growth 
factors and chemokines that draw endogenous stem 
cells to the injury site and promote their survival 
and differentiation can be secreted to do this [51]. 
Furthermore, stem cells can expand the brain’s 
neurogenic and angiogenic niches, improving the 
conditions for endogenous repair mechanisms [52].

The therapeutic mechanisms of stem cells in 
neurological disorders are complex and multifaceted, 
often involving a combination of cell replacement, 
paracrine signaling, immunomodulation, and stimulation 
of endogenous repair. The relative contribution of 
each mechanism may vary depending on the specific 
neurological condition, the type of stem cells used, 
and the route and timing of administration [53]. 
Understanding these mechanisms is crucial for 
optimizing stem cell-based therapies and developing 
targeted approaches for neurological disorders.

However cell-based therapy for neurological illnesses 
encounters various obstacles  despite its considerable 
potential:

•	 The potential of developing tumours, especially with 
pluripotent stem cells, is a concern [54]

•	 Allogeneic cell transplants can be rejected by the 
immune system [55]

•	 Cell survival and incorporation in the host tissue are 
restricted

•	 The possibility of unregulated differentiation or 
movement [56]

•	 There are ethical considerations related to the 
utilisation of embryonic stem cells [57]

•	 Issues related to scalability and manufacture of cell 
products that meet clinical-grade standards [58].

There are questions about the safety of anything over a 
long period of time, and it is necessary to do additional 
studies to continue monitoring it [59].

These constraints highlight the significance of thorough 
preclinical testing and meticulous clinical trial design. 
Furthermore, it is imperative for regulatory frameworks 
to adapt in order to effectively tackle the distinctive 
obstacles presented by cell-based therapies [20].

Each type of stem cell has unique benefits and 
drawbacks when it comes to its use in neurological 
applications. ESCs possess a significant degree of 
adaptability, but they can give rise to ethical dilemmas 
and pose the possibility of developing tumours [60]. Adult 
stem cells, such as MSCs and NSCs, have a narrower 
range of cell types they can develop into, but they may 
present fewer safety risks [61]. iPSCs offer a means of 
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obtaining cells that are particular to each patient, but 
they must undergo thorough analysis to guarantee their 
safety and effectiveness [31]. When selecting a cell type, 
it is important to thoroughly evaluate the individual 
neurological disease and therapeutic objectives [35].

Stem cell therapy in specific neurological diseases
Alzheimer’s disease
Amyloid-beta (Aβ) plaques and neurofibrillary tangles 
build up in Alzheimer’s disease (AD), a progressive 
neurodegenerative condition that impairs memory, 
causes neuronal death and declines cognitive 
function [62]. Current pharmacological treatments, 
such as cholinesterase inhibitors and memantine, 
provide symptomatic relief but do not address the 
underlying pathology or halt disease progression 
[63]. Stem cell-based therapies have been proposed 
as a potential strategy to address multiple aspects of 
Alzheimer’s disease pathology, including replacing lost 
neurons, providing neuroprotection, and modulating 
neuroinflammation [64].

Preclinical studies
Preclinical studies using animal models of AD have 
demonstrated the potential of various stem cell types, 
including MSCs, NSCs, and iPSCs, to ameliorate AD 
pathology and improve cognitive function. MSCs 
have been shown to reduce Aβ deposition, attenuate 
neuroinflammation, and promote neurogenesis and 
synaptic plasticity in AD mouse models [65–67]. NSCs 
derived from human fetal tissue or differentiated from 
pluripotent stem cells have been reported to differentiate 
into cholinergic neurons and integrate into the host 
brain, improving cognitive function in AD animal 
models [68, 69]. However, transplanted cells’ long-term 
survival and functional integration remain challenging 
[70]. iPSC-derived neural cells have also shown promise 
in preclinical studies, with the advantage of allowing 
patient-specific and genetically corrected cell therapies 
[71, 72].

Clinical trials
To date, only a limited number of small-scale clinical 
trials have investigated the safety and feasibility of stem 
cell therapies in AD patients. A phase I trial using human 
umbilical cord blood-derived MSCs (hUCB-MSCs) 
demonstrated the safety and tolerability of repeated 
intravenous infusions in AD patients, with some evidence 
of stabilization of cognitive function [73]. Another 
phase I trial using autologous adipose-derived MSCs 
(ADSCs) showed safety and potential efficacy in slowing 
cognitive decline in mild to moderate AD patients [74]. 
However, these early-stage trials have limitations, such 

as small sample sizes, lack of placebo controls, and short 
follow-up periods, making it difficult to draw definitive 
conclusions about the efficacy of stem cell therapies in 
AD [75].

Challenges and future directions
Obstacles and prospects for the future although the 
preclinical results show promise, various hurdles must 
be overcome to successfully apply stem cell therapy in 
the clinical treatment of AD. These include enhancing 
the efficiency and quality of stem cells, enhancing the 
viability and effective integration of transplanted cells, 
and devising precise delivery techniques to specific brain 
regions impacted by AD [76]. Additionally, the optimal 
timing of intervention, the long-term safety and efficacy, 
and the potential need for repeated treatments need to 
be established through well-designed clinical trials [67].

Future directions in stem cell therapy for AD may 
involve using genetically modified stem cells to enhance 
their therapeutic properties, such as increased secretion 
of neurotrophic factors or Aβ-degrading enzymes [77]. 
Combining stem cell therapy with other therapeutic 
approaches, such as Aβ immunization or small molecule 
inhibitors of Aβ and tau pathology, may provide 
synergistic benefits [78]. 3D organoid models derived 
from patient-specific iPSCs may also facilitate drug 
screening and personalized treatment strategies [79].

Although stem cell therapy shows potential as a 
disease-modifying treatment for AD, additional research 
is required to tackle the obstacles and enhance the 
therapeutic strategy. Thorough preclinical investigations 
and well-planned clinical trials are necessary to 
determine stem cell treatments’ safety, effectiveness, 
and long-term advantages in Alzheimer’s disease. 
However, the complex and multifaceted nature of AD 
presents significant challenges for developing effective 
cell replacement therapies. AD involves widespread 
neuronal loss, synaptic dysfunction, protein aggregation, 
and vascular abnormalities across multiple brain regions. 
Simple cell replacement is unlikely to address all of these 
pathological features. Additional research is required 
to determine if stem cell approaches can tackle the 
numerous obstacles presented by AD’s complexity and 
enhance therapeutic strategies [80].

Parkinson’s disease
Parkinson’s disease (PD) is a degenerative 
neurological condition that gradually causes the 
death of dopaminergic neurons in the substantia 
nigra pars compacta (SNpc). This leads to motor 
symptoms, including tremors, stiffness, and slowness 
of movement [81]. Current treatments, including 
dopaminergic medications and deep brain stimulation, 
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provide symptomatic relief but do not address the 
underlying neuronal loss or halt disease progression 
[82]. Stem cell-based therapies aim to replace lost 
dopaminergic neurons and restore motor function in 
PD [83]. It is important to note that Parkinson’s disease 
is not simply characterized by the loss of dopaminergic 
neurons. The pathophysiology is complex, involving 
multiple neurotransmitter systems, protein 
aggregation, neuroinflammation, and dysfunction of 
various neural circuits. For stem cell therapies to be 
truly disease-modifying or curative, they would need 
to address these multiple aspects of PD pathology. 
Recent research has highlighted additional challenges, 
including the potential spread of alpha-synuclein 
pathology to transplanted cells and the need to restore 
broader neural circuit function beyond dopamine 
replacement [84].

Preclinical studies
Preclinical studies using animal models of PD have 
demonstrated the potential of various stem cell types, 
particularly ESCs and iPSCs, to differentiate into 
dopaminergic neurons and improve motor function. 
Transplantation of human ESC-derived dopaminergic 
neurons into the striatum of PD animal models has 
shown survival, integration, and functional recovery 
[85, 86]. Similarly, iPSC-derived dopaminergic neurons 
have demonstrated the ability to engraft, innervate 
the host striatum, and ameliorate motor deficits in 
PD models [87, 88]. However, challenges such as 
variability in differentiation efficiency, graft survival, 
and potential tumorigenicity need to be addressed 
[89]. PD models have also investigated MSCs for their 
neuroprotective and immunomodulatory properties 
[90, 91].

Clinical trials
Several clinical trials have investigated the safety and 
efficacy of stem cell therapies in PD patients. Early 
trials using fetal ventral mesencephalic (FVM) tissue 
grafts demonstrated variable outcomes, with some 
patients showing long-term clinical benefits and others 
developing graft-induced dyskinesias [92, 93]. More 
recently, clinical trials using human ESC-derived 
dopaminergic progenitors have shown promise. A 
phase 1/2 trial reported the safety and survival of 
transplanted cells in PD patients, with some evidence 
of motor improvement [94]. An ongoing phase 1 trial 
(NCT03119636) investigates the safety and efficacy 
of human ESC-derived dopaminergic progenitors 
in PD patients [95]. Clinical trials using autologous 

iPSC-derived dopaminergic neurons are also in the 
planning stages [96].

Challenges and future directions
While stem cell therapy for PD has made significant 
progress, several challenges remain. These include 
optimizing the differentiation and purification of 
dopaminergic neurons, ensuring graft survival and 
functional integration, and minimizing the risk of graft-
induced dyskinesias [97]. Strategies to enhance graft 
survival, such as co-transplantation with supportive 
cell types or neuroprotective agents, are being explored 
[95]. The development of standardized protocols for 
cell manufacturing and quality control is also essential 
for the reproducibility and scalability of stem cell 
therapies [98]. Future directions in stem cell therapy 
for PD may involve gene editing technologies to correct 
disease-causing mutations in patient-specific iPSCs 
[99]. Cell encapsulation or bioengineered scaffolds 
may improve graft survival and integration [100]. 
Combinatorial approaches, such as the co-administration 
of neurotrophic factors or the use of neuroprotective 
agents, may enhance the therapeutic efficacy of stem cell 
therapies [101].

Stem cell therapy shows potential as a disease-
modifying treatment for PD, aiming to replace lost 
dopaminergic neurons and restore motor function. 
Although there have been promising findings in 
preclinical studies and early clinical trials, additional 
research is required to tackle the obstacles and enhance 
the therapeutic approach. Continuing and upcoming 
clinical trials will offer valuable knowledge regarding the 
safety, effectiveness, and long-term advantages of stem 
cell therapies in PD.

Multiple sclerosis
Multiple sclerosis (MS) is a long-lasting inflammatory 
condition of the CNS that involves the immune system 
attacking and damaging the protective covering of 
nerve fibers called myelin. This damage results in 
neurological problems and impairment [102]. Current 
therapies for MS primarily focus on immunomodulation 
and symptom management but do not effectively 
promote remyelination or prevent progressive 
neurodegeneration [103]. Stem cell-based therapies aim 
to promote remyelination, provide neuroprotection, 
and modulate the immune response in MS. Among 
neurological conditions, multiple sclerosis (MS) stands 
out as having the most advanced clinical applications 
of stem cell therapy. Autologous hematopoietic stem 
cell transplantation (aHSCT) is now routinely used in 
medical centers worldwide to treat aggressive forms of 



Page 6 of 20Rahimi Darehbagh et al. European Journal of Medical Research          (2024) 29:386 

MS. This approach aims to ’reset’ the immune system and 
halt disease progression [104].

Preclinical studies
Preclinical studies using animal models of MS, such as 
experimental autoimmune encephalomyelitis (EAE), 
have demonstrated the potential of various stem 
cell types to promote remyelination and ameliorate 
disease progression. Transplantation of NSCs or 
oligodendrocyte progenitor cells (OPCs) derived from 
ESCs or iPSCs has shown the ability to differentiate into 
mature oligodendrocytes, promote remyelination, and 
improve functional outcomes in EAE models [105, 106]. 
MSCs have also been extensively studied in MS models 
for their immunomodulatory and neuroprotective 
properties [107]. MSCs have been shown to reduce 
neuroinflammation, suppress autoreactive T cells, and 
promote the generation of regulatory T cells, leading to 
improved clinical outcomes in EAE [108, 109].

Clinical trials
Several clinical trials have investigated the safety and 
efficacy of stem cell therapies in MS patients. aHSCT 
has been explored as a potential treatment for aggressive 
forms of MS to reset the immune system and halt 
disease progression. Comparing aHSCT to disease-
modifying therapies found that aHSCT was superior 
in preventing disease progression and achieving 
sustained improvement in neurological function. Long-
term follow-up studies have shown that a significant 
proportion of patients remain free from disease activity 
for 5 years or more after treatment [110]. While some 
studies have shown promising results, with long-term 
stabilization or improvement of disability in a subset of 
patients, the procedure is associated with significant 
risks. It is currently reserved for select patients with 
highly active disease [111, 112]. Clinical trials using 
MSCs have also been conducted in MS patients, 
primarily focusing on safety and feasibility [113]. 
Intravenous administration of autologous MSCs is well-
tolerated, with evidence of potential efficacy in reducing 
inflammatory activity and promoting neuroprotection 
[102, 114]. However, more extensive randomized 
controlled trials are needed to establish the long-term 
safety and efficacy of MSC-based therapies in MS.

Challenges and future directions
While stem cell therapies hold promise for the 
treatment of MS, several challenges need to be 
addressed. One of the main challenges is ensuring the 
survival, differentiation, and functional integration of 
transplanted cells in the host CNS [115]. Strategies to 
enhance graft survival and promote targeted migration 

to sites of demyelination are being explored [110]. 
Another challenge is the potential for graft rejection 
or the development of secondary autoimmunity [116]. 
The use of autologous or genetically modified stem cells 
and the development of improved immunosuppressive 
regimens may help mitigate these risks [117]. Future 
directions in stem cell therapy for MS may involve 
using gene editing technologies to create "off-the-shelf " 
cell products with enhanced remyelination capacity 
or immunomodulatory properties [118]. Developing 
biomaterials and tissue engineering approaches to 
create scaffolds that support cell survival and guide 
axonal regeneration is also an active area of research 
[119]. Combination therapies that target multiple 
aspects of MS pathology, such as neuroinflammation, 
oxidative stress, and mitochondrial dysfunction, 
may enhance the therapeutic potential of stem cell 
transplantation [120].

Stem cell-based therapies for MS have shown 
promising results in preclinical studies and early 
clinical trials. While challenges remain, advances 
in cell manufacturing, genetic engineering, and 
biomaterial science are expected to improve the safety, 
efficacy, and accessibility of stem cell therapies for 
MS in the future. Further research and well-designed 
clinical trials are needed to establish the optimal 
therapeutic approach and long-term benefits of stem 
cell transplantation in MS. The success of aHSCT in 
MS has led to its inclusion in treatment guidelines 
for highly active relapsing–remitting MS that is 
refractory to conventional therapies. However, patient 
selection is crucial, as the procedure carries risks and 
is most beneficial for younger patients with active 
inflammatory disease. Ongoing research is focused 
on optimizing aHSCT protocols, reducing treatment-
related risks, and exploring its potential in progressive 
forms of MS. Additionally, other stem cell approaches, 
such as mesenchymal stem cell therapies, are being 
investigated for their potential neuroprotective and 
regenerative properties in MS [121].

Stroke
Stroke is a leading cause of death and disability 
worldwide, characterized by the sudden loss of blood 
supply to the brain, resulting in neuronal damage and 
functional impairments [122]. Current treatments for 
stroke primarily focus on restoring blood flow and 
providing supportive care but do not effectively address 
the long-term neurological deficits [123]. Stem cell-
based therapies promote neuronal repair, modulate 
inflammation, and enhance functional recovery in stroke 
[124].
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Preclinical studies
Animal research investigating stroke has shown that 
different types of stem cells, such as MSCs, NSCs, and 
iPSCs, can enhance neuronal repair and functional 
outcomes. Studies have demonstrated that the 
transplantation of MSCs can decrease the extent of tissue 
damage caused by a lack of blood supply, regulate the 
inflammation of nerves, and improve the growth of new 
nerve cells and blood vessels in animal stroke models 
[125, 126]. NSCs, either from fetal tissue or generated 
from induced iPSCs, have shown the capacity to move 
towards the location of injury, transform into nerve cells 
and support cells, and enhance the restoration of function 
in stroke models [127, 128]. Nevertheless, the precise 
timing, method, and amount of stem cell administration 
and the sustained viability and incorporation of 
transplanted cells continue to be significant obstacles 
[129].

Clinical trials
Several clinical trials have investigated the safety and 
feasibility of stem cell therapies in stroke patients. A 
meta-analysis of early-phase clinical trials using MSCs in 
ischemic stroke patients reported a favorable safety profile 
and potential improvements in functional outcomes 
[130]. However, the efficacy of MSC transplantation in 
stroke remains to be established in larger, randomized 
controlled trials. The MASTERS trial, a phase 2 study 
of intravenous administration of bone marrow-derived 
MSCs in acute ischemic stroke patients, showed no 
significant improvement in functional outcomes at 90 
days compared to placebo [128]. More recently, the 
TREASURE trial, a phase 2/3 study of intravenous 
administration of umbilical cord blood-derived MSCs in 
acute ischemic stroke patients, also failed to demonstrate 
a significant improvement in functional outcomes at 90 
days [131]. These results highlight the need for further 
optimization of stem cell therapies for stroke, including 
the selection of patients most likely to benefit, the 
timing and route of administration, and the potential for 
combination therapies [127].

Challenges and future directions
While stem cell therapies hold promise for the treatment 
of stroke, several challenges need to be addressed. 
One of the main challenges is the limited survival 
and engraftment of transplanted cells in the ischemic 
brain [132]. Strategies to enhance cell survival, such 
as preconditioning or genetic modification of stem 
cells, are being explored [133]. Another challenge is 
the potential for off-target effects or the development 
of adverse events, such as tumorigenesis or stroke-
associated infection [134]. The use of highly purified 

and well-characterized cell populations and rigorous 
safety monitoring will be essential for the clinical 
translation of stem cell therapies for stroke [135]. Future 
directions in stem cell therapy for stroke may involve 
using biomaterials and tissue engineering approaches to 
create a supportive microenvironment for transplanted 
cells and enhance their survival and differentiation 
[136]. Developing cell-free approaches, such as using 
extracellular vesicles or exosomes derived from stem 
cells, may also provide a more scalable and safe alternative 
to cell transplantation [137]. Combinatorial approaches, 
such as the co-administration of neuroprotective agents 
or the use of rehabilitation therapies, may enhance the 
therapeutic efficacy of stem cell transplantation [138].

While stem cell-based therapies for stroke have shown 
promising results in preclinical studies, the clinical 
translation of these approaches has been challenging. 
Further research is needed to optimize the therapeutic 
approach, including selecting the most appropriate 
stem cell type, the timing and route of delivery, and the 
potential for combination therapies. Well-designed 
clinical trials with larger sample sizes and more extended 
follow-up periods will be essential to establish the safety 
and efficacy of stem cell therapies for stroke.

Amyotrophic lateral sclerosis
Muscle weakening, paralysis, and eventually death 
are the results of selective motor neuron loss in the 
brain and spinal cord that characterizes amyotrophic 
lateral sclerosis (ALS), a progressive neurodegenerative 
illness [139]. There are currently just a few ALS 
treatments available, and they mainly concentrate on 
supportive care and symptom control [140]. The goals 
of stem cell-based treatments for ALS are to reduce 
neuroinflammation, restore damaged motor neurons, 
and offer neuroprotection [141].

Preclinical studies
Preclinical studies using animal models of ALS, such as 
the SOD1 transgenic mouse model, have demonstrated 
the potential of various stem cell types to delay disease 
progression and extend survival. Transplantation of 
NSCs or motor neuron progenitors derived from ESCs 
or iPSCs has been shown to integrate into the spinal 
cord, form synaptic connections with host neurons, and 
improve motor function in ALS models [141, 142]. MSCs 
have also been extensively studied in ALS models for 
their immunomodulatory and neuroprotective properties 
[143]. Intrathecal or intravenous administration of 
MSCs has been shown to reduce neuroinflammation, 
protect against motor neuron loss, and prolong survival 
in ALS mice [144, 145]. However, the long-term survival 
and efficacy of transplanted cells in the diseased 
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microenvironment of ALS remain significant challenges 
[146].

Clinical trials
Several early-phase clinical trials have investigated 
the safety and feasibility of stem cell therapies in ALS 
patients. Intraspinal transplantation of fetal spinal 
cord-derived NSCs in ALS patients is safe and well-
tolerated, with some evidence of potential efficacy in 
slowing disease progression [147, 148]. However, a 
follow-up phase 2 trial did not significantly improve 
functional outcomes or survival compared to placebo 
[149]. Intrathecal administration of autologous MSCs has 
also been explored in ALS patients, focusing on safety 
and tolerability [137, 150]. While these early trials have 
provided proof-of-concept for the feasibility of stem 
cell transplantation in ALS, more extensive randomized 
controlled trials are needed to establish the efficacy of 
these approaches.

Challenges and future directions
Despite the promising preclinical results, the clinical 
translation of stem cell therapies for ALS faces several 
challenges. One of the main challenges is the complex and 
multifactorial nature of ALS pathogenesis, which may 
limit the therapeutic efficacy of cell replacement alone 
[151]. Strategies to enhance the survival, integration, 
and function of transplanted cells in the hostile 
microenvironment of ALS are being explored, such as 
the co-transplantation of supportive glial cells or the use 
of neuroprotective factors [152]. Another challenge is 
the potential for immune rejection or the development 
of adverse events, such as graft-induced dyskinesias or 
tumorigenesis [153]. The use of autologous or genetically 
modified stem cells and improved immunosuppressive 
regimens may help mitigate these risks [154].

Future directions in stem cell therapy for ALS may 
involve gene editing technologies to correct ALS-
causing mutations in patient-specific iPSCs, which 
could then be differentiated into healthy motor neurons 
for transplantation [155]. Using biomaterials and tissue 
engineering approaches to create scaffolds that support 
cell survival and guide axonal regeneration is also an 
active area of research [156]. Combinatorial approaches, 
such as the co-administration of neuroprotective agents 
or the use of anti-inflammatory drugs, may enhance 
the therapeutic potential of stem cell transplantation 
[157]. Developing novel delivery methods, such as 
intramuscular or intravascular administration of stem 
cells, may provide a less invasive and more scalable 
approach for cell therapy in ALS [158].

Although preclinical research on stem cell-based 
therapy for ALS has yielded encouraging findings, the 

practical application of these strategies has been complex. 
More studies are required on the most suitable stem cell 
type, administration timing and route, and the possibility 
of combination therapies to optimize the therapeutic 
strategy. More significant sample numbers and extended 
follow-up periods in carefully planned clinical trials 
will be necessary to confirm the safety and effectiveness 
of stem cell treatments for ALS. Additionally, the 
development of successful stem cell-based treatments 
for this debilitating illness will depend on a deeper 
comprehension of the underlying mechanisms of ALS 
pathogenesis and the interactions between transplanted 
cells and the host milieu.

Huntington’s disease
Huntington’s disease (HD) is an inherited 
neurodegenerative disorder caused by a trinucleotide 
repeat expansion in the huntingtin gene, leading to the 
production of a mutant huntingtin protein that causes 
progressive neuronal loss and dysfunction, particularly in 
the striatum and cortex [159]. Current treatments for HD 
are limited and primarily focus on managing symptoms, 
such as chorea and psychiatric disturbances [160]. Stem 
cell-based therapies aim to replace lost neurons, provide 
neuroprotection, and modulate neuroinflammation in 
HD [161].

Preclinical studies
Preclinical studies using animal models of HD, such 
as the R6/2 and YAC128 transgenic mouse models, 
have demonstrated the potential of various stem cell 
types to improve motor function, reduce neuronal loss, 
and extend survival. Transplantation of fetal striatal 
tissue or NSCs derived from ESCs or iPSCs has been 
shown to integrate into the striatum, form synaptic 
connections with host neurons, and ameliorate motor 
deficits in HD mice [162, 163]. MSCs have also been 
explored in HD models for their immunomodulatory 
and neuroprotective properties [164]. Intrastriatal or 
intravenous administration of MSCs has been shown to 
reduce neuroinflammation, increase neurotrophic factor 
levels, and improve motor function in HD mice [165, 
166]. However, the long-term survival and efficacy of 
transplanted cells in the diseased microenvironment of 
HD remain significant challenges [167].

Clinical trials
To date, few clinical trials have investigated the safety 
and feasibility of stem cell therapies in HD patients. A 
phase 1 trial of fetal striatal tissue transplantation in 
HD patients demonstrated the safety and feasibility of 
the approach, with some evidence of graft survival and 
clinical benefit [168]. However, a follow-up study found 
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that the transplanted cells developed HD-like pathology 
over time, suggesting that cell replacement alone may not 
halt disease progression [169]. Recently, a phase 1/2 trial 
of intrastriatal transplantation of human ESC-derived 
neural progenitors in HD patients has been initiated 
(NCT03252080) [170]. This trial aims to assess the 
approach’s safety, tolerability, and preliminary efficacy, 
with results expected in the coming years.

Challenges and future directions
While stem cell-based therapies for HD hold promise, 
several challenges must be addressed for successful 
clinical translation. One of the main challenges is the 
potential for transplanted cells to acquire HD-related 
pathology over time due to the presence of the mutant 
huntingtin protein in the host environment [171]. 
Strategies to mitigate this risk, such as genetically 
corrected autologous iPSCs or the co-transplantation 
of neuroprotective factors, are being explored [172]. 
Another challenge is the need for targeted cell delivery 
to the affected brain regions, as widespread neuronal loss 
and circuit dysfunction occur in HD [173]. Developing 
advanced imaging techniques and stereotactic surgery 
methods may help guide precise cell transplantation 
[154]. Future directions in stem cell therapy for HD may 
involve gene editing technologies, such as CRISPR–
Cas9, to correct the HTT mutation in patient-specific 
iPSCs, which could then be differentiated into healthy 
striatal neurons for transplantation [155]. Using 
biomaterials and tissue engineering approaches to create 
scaffolds that support cell survival and guide axonal 
regeneration is also an active area of research [156]. 
Combinatorial approaches, such as the co-administration 
of neuroprotective agents or the use of anti-inflammatory 
drugs, may enhance the therapeutic potential of stem 
cell transplantation [174]. Developing novel delivery 
methods, such as intracerebroventricular or intrathecal 
administration of stem cells, may provide a less invasive 
and more widespread approach for cell therapy in HD 
[175].

In summary, whereas preclinical research on stem cell-
based treatments for Huntington’s disease has yielded 
encouraging outcomes, the clinical application of these 
strategies is still in its infancy. More studies are required 
on the most suitable stem cell type, administration 
timing and route, and the possibility of combination 
therapies to optimize the therapeutic strategy. To prove 
that stem cell therapies for HD are safe and effective, 
well-designed clinical trials with bigger sample sizes and 
longer follow-up times will be necessary. Additionally, 
the development of successful stem cell-based treatments 
for this debilitating illness will depend on a deeper 
comprehension of the molecular mechanisms driving HD 

pathogenesis and the interactions between transplanted 
cells and the host milieu.

Spinal cord injury
A severe disorder known as spinal cord injury (SCI) 
causes the loss of motor and sensory function below the 
site of the damage, which frequently leads to permanent 
paralysis and impairment [176]. The main goals of 
current SCI treatments are to stabilize the spine, stop 
more injury, and encourage recovery [177]. The goals of 
stem cell-based treatments for spinal cord injury (SCI) 
include glia and missing neuron replacement, axonal 
regeneration, and inflammation response modulation 
[178].

Preclinical studies
The potential of different types of stem cells to support 
functional recovery and regeneration has been proven 
in preclinical research utilizing animal models of spinal 
cord injury. It has been demonstrated that transplanting 
NSCs or neural progenitor cells (NPCs) derived from 
ESCs or iPSCs into the injured spinal cord can improve 
motor function in rodent and primate models of SCI by 
promoting the differentiation of neurons and glia and 
forming synaptic connections with host neurons. Since 
MSCs exhibit immunomodulatory, neuroprotective, and 
pro-angiogenic qualities, they have also been the subject 
of substantial research in SCI models [179]. It has been 
demonstrated that administering MSCs intravenously 
or intraspinally to SCI mice can decrease inflammation, 
encourage tissue sparing, and improve functional 
recovery [180, 181]. Nonetheless, there are still significant 
obstacles to overcome, including the best time, method, 
and dosage for delivering stem cells and the integration 
and long-term survival of transplanted cells [182].

Clinical trials
Several clinical trials have investigated the safety 
and feasibility of stem cell therapies in SCI patients. 
A systematic review and meta-analysis of clinical 
trials using MSCs in SCI patients found no serious 
adverse events related to cell transplantation and some 
evidence of functional improvement [183]. However, 
the included studies were small, heterogeneous, and 
lacked appropriate controls, highlighting the need for 
more extensive, well-designed trials to establish the 
efficacy of MSC therapy in SCI [184]. A phase 2 trial of 
intramedullary transplantation of human ESC-derived 
oligodendrocyte progenitor cells in subacute SCI 
patients (NCT02302157) has recently been completed, 
with results pending publication [185]. Other ongoing 
or planned trials investigate the safety and efficacy of 
various stem cell types in SCI patients, including NSCs, 
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NPCs, and autologous bone marrow-derived MSCs 
[186].

Challenges and future directions
While stem cell-based therapies for SCI hold promise, 
several challenges must be addressed for successful 
clinical translation. One of the main challenges 
is the complex and dynamic nature of the injury 
microenvironment, which may limit the survival, 
differentiation, and integration of transplanted cells [187]. 
Strategies to enhance cell survival and promote targeted 
differentiation, such as co-delivering neuroprotective 
factors or biomaterials and tissue engineering 
approaches, are being explored [188, 189]. Another 
challenge is the potential for adverse events, such as 
neuropathic pain, autonomic dysreflexia, or tumor 
formation, following stem cell transplantation [190]. 
Careful patient selection, rigorous safety monitoring, and 
long-term follow-up will be essential to mitigate these 
risks [184].

Future directions in stem cell therapy for SCI may 
involve gene editing technologies to engineer stem 
cells with enhanced regenerative properties, such as 
increased neurotrophic factor secretion or improved 
myelination capacity [191]. The development of advanced 
biomaterials and tissue engineering approaches to create 
scaffolds that mimic the natural extracellular matrix 
and guide axonal regeneration is also an active area of 
research [154]. Combinatorial approaches, such as the 
co-administration of rehabilitation therapy or the use 
of electrical stimulation, may enhance the therapeutic 
potential of stem cell transplantation [192]. Additionally, 
identifying reliable biomarkers and imaging techniques 
to monitor the survival, differentiation, and integration 
of transplanted cells in vivo will be critical for optimizing 
and individualizing stem cell therapies for SCI [193].

Stem cell-based therapies for SCI have shown 
promising results in preclinical studies, with growing 
evidence of safety and feasibility in early clinical trials. 
However, further research is needed to optimize the 
therapeutic approach, including selecting the most 
appropriate stem cell type, the timing and route of 
delivery, and the potential for combination therapies. 
Well-designed, randomized controlled trials with 
larger sample sizes, longer follow-up periods, and 
standardized outcome measures will be essential to 
establish the efficacy of stem cell therapies for SCI. 
Additionally, a deeper understanding of the molecular 
mechanisms underlying SCI pathophysiology and the 
interactions between transplanted cells and the host 
microenvironment will be critical for developing safe and 
effective stem cell-based therapies for this devastating 
condition.

Traumatic brain injury
Traumatic brain injury (TBI) is a leading cause of death 
and disability worldwide, resulting from sudden physical 
damage to the brain due to external forces, such as falls, 
vehicle accidents, or violence [194]. The primary injury 
initiates a cascade of secondary injury mechanisms, 
including neuroinflammation, oxidative stress, 
excitotoxicity, and apoptosis, leading to progressive 
neuronal loss and dysfunction [195]. Current treatments 
for TBI primarily focus on minimizing secondary 
injury, managing intracranial pressure, and providing 
rehabilitation to promote functional recovery [196]. 
However, there are no effective therapies to reverse the 
damage and restore function in chronic TBI patients 
[197]. Stem cell-based therapies aim to replace lost 
neurons and glia, modulate the inflammatory response, 
and promote neurogenesis and angiogenesis in TBI [198].

Preclinical studies
Preclinical studies using animal models of TBI have 
demonstrated the potential of various stem cell types, 
including neural stem/progenitor cells (NSPCs), MSCs, 
and HSCs, to promote functional recovery after TBI. 
Transplantation of NSPCs derived from ESCs or iPSCs 
into the injured brain has been shown to differentiate 
into neurons and glia, form synaptic connections 
with host neurons, and improve cognitive and motor 
function in rodent models of TBI [199, 200]. MSCs 
have also been extensively studied in TBI models for 
their immunomodulatory, neuroprotective, and pro-
angiogenic properties [201]. Intravenous or intracerebral 
administration of MSCs has been shown to reduce 
inflammation, promote neurogenesis and angiogenesis, 
and enhance functional recovery in TBI animals [202, 
203]. HSCs mobilized from the bone marrow have been 
shown to migrate to the injured brain, differentiate into 
microglia and neurons, and improve cognitive function 
in rodent models of TBI [204]. While preclinical studies 
of stem cell therapies for TBI have shown promise, 
significant challenges remain in translating these 
approaches to clinical practice. Further research is 
needed to optimize cell types, delivery methods, and 
timing of intervention. Importantly, the complex and 
heterogeneous nature of TBI may require combinatorial 
approaches rather than relying solely on cell replacement 
strategies.

Clinical trials
Several early-phase clinical trials have investigated the 
safety and feasibility of stem cell therapies in TBI patients. 
A phase 1/2a study of intravenous administration of 
autologous bone marrow-derived mononuclear cells 
(BMMNCs) in acute severe TBI patients demonstrated 
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safety and a trend towards improved neurological 
outcomes [205]. Another phase 1 study of intracerebral 
transplantation of human NSCs in chronic TBI patients 
showed safety and feasibility, with some evidence of 
improved neurological function [206]. However, more 
extensive randomized controlled trials are needed to 
establish the efficacy of these approaches in improving 
functional outcomes and quality of life in TBI patients 
[207].

Challenges and future directions
While stem cell-based therapies for TBI hold promise, 
several challenges must be addressed for successful 
clinical translation. One of the main challenges is the 
heterogeneity of TBI, which can vary in terms of the 
mechanism, location, and severity of injury, as well as the 
age and comorbidities of the patient [208]. Developing 
personalized stem cell therapies tailored to each patient’s 
specific needs may be necessary to maximize therapeutic 
efficacy [209]. Another challenge is the potential 
for adverse events, such as seizures, infection, or 
tumorigenesis, following stem cell transplantation [190]. 
Careful patient selection, rigorous safety monitoring, and 
long-term follow-up will be essential to mitigate these 
risks [210].

Future directions in stem cell therapy for TBI 
may involve gene editing technologies to enhance 
the regenerative properties of transplanted cells, 
such as overexpressing neurotrophic factors or anti-
inflammatory cytokines [211]. Research is also being 
done using biomaterials and tissue engineering 
techniques to make scaffolds that resemble the 
extracellular matrix seen in nature and offer a favorable 
environment for cell survival and development [212]. 
The therapeutic potential of stem cell transplantation 
may be increased by combinatorial techniques, 
including co-administration of neuroprotective drugs, 
neurorestorative treatments, or rehabilitation [213]. 
Furthermore, developing noninvasive imaging modalities 
like PET and MRI to track the migration, survival, and 
differentiation of transplanted cells in  vivo would be 
essential for customizing and streamlining stem cell 
treatments for traumatic brain injury [214].

Stem cell-based therapies for TBI have shown 
promising results in preclinical studies, with early 
evidence of safety and feasibility in clinical trials. 
However, further research is needed to optimize the 
therapeutic approach, including selecting the most 
appropriate stem cell type, the timing and route of 
delivery, and the potential for combination therapies. 
Well-designed, randomized controlled trials with larger 
sample sizes, longer follow-up periods, and standardized 
outcome measures will be essential to establish the 

efficacy of stem cell therapies for TBI. Additionally, a 
deeper understanding of the complex pathophysiology 
of TBI and the mechanisms underlying the therapeutic 
effects of stem cells will be critical for developing safe 
and effective regenerative medicine approaches for this 
devastating condition.

Epilepsy
Repeated, unprovoked seizures are a hallmark of epilepsy, 
a chronic neurological illness caused by abnormally 
high levels of aberrant brain neuronal activity [215]. 
Even though antiepileptic medications (AEDs) are 
the cornerstone of epilepsy treatment, over one-third 
of patients still do not respond to medication [216]. 
Intending to reestablish the proper balance between 
excitement and inhibition in the epileptic brain, stem 
cell-based therapies have become a viable adjunctive or 
alternative therapeutic option for drug-resistant epilepsy 
[217].

Preclinical studies
Preclinical studies using animal models of epilepsy have 
demonstrated the potential of various stem cell types, 
particularly GABAergic interneuron progenitors and 
MSCs, to suppress seizures and modify the underlying 
disease pathology. Transplantation of GABAergic 
interneuron progenitors derived from ESCs or iPSCs 
into the hippocampus or other seizure-prone regions 
has been shown to engraft, differentiate into functional 
GABAergic interneurons, and reduce seizure frequency 
and severity in rodent models of epilepsy [218, 219]. 
These effects are mediated by the synaptic integration 
of the transplanted cells into the host circuitry and the 
enhancement of inhibitory neurotransmission [220]. 
MSCs have also shown promise in preclinical epilepsy 
models, exerting anticonvulsant and neuroprotective 
effects through the secretion of neurotrophic factors and 
the modulation of inflammatory responses [221, 222]. 
However, the long-term efficacy and safety of stem cell 
therapies in epilepsy remain to be established [223].

Clinical trials
To date, few clinical trials have investigated the 
safety and efficacy of stem cell therapies in epilepsy 
patients. A phase 1 trial of autologous bone marrow-
derived mononuclear cells (BMMNCs) administered 
intravenously in children with refractory epilepsy 
demonstrated safety and feasibility, with some evidence 
of reduced seizure frequency [224]. Another pilot study 
of intracerebral transplantation of autologous BMMNCs 
in adult patients with drug-resistant mesial temporal 
lobe epilepsy also showed safety and potential efficacy 
in reducing seizure frequency [225]. However, these 
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early-stage trials are limited by small sample sizes, lack of 
control groups, and short follow-up periods, highlighting 
the need for larger, well-designed, randomized controlled 
trials to establish the efficacy of stem cell therapies in 
epilepsy [226].

Challenges and future directions
While stem cell-based therapies for epilepsy hold 
promise, several challenges must be addressed for 
successful clinical translation. One of the main challenges 
is the complex and multifactorial nature of epilepsy, 
which may require tailored stem cell therapies targeting 
specific epileptogenic mechanisms in each patient [227]. 
Another challenge is the potential for adverse events, 
such as graft rejection, tumor formation, or worsening 
of seizures, following stem cell transplantation [228]. 
Careful patient selection, rigorous safety monitoring, and 
long-term follow-up will be essential to mitigate these 
risks [210].

Future directions in stem cell therapy for epilepsy 
may involve gene editing technologies to create stem 
cell-derived GABAergic interneurons with enhanced 
anticonvulsant properties or reduced immunogenicity 
[229]. The development of advanced delivery 
methods, such as stereotactic surgery or convection-
enhanced delivery, to achieve targeted and controlled 
transplantation of stem cells into the epileptic focus 
is also an active area of research [230]. Combinatorial 
approaches, such as the co-administration of 
neuroprotective agents or the use of gene therapy to 
overexpress seizure-suppressing molecules, may enhance 
the therapeutic potential of stem cell transplantation 
[231]. Additionally, identifying reliable biomarkers and 
advanced neuroimaging techniques to guide patient 
selection, monitor the fate of transplanted cells, and 
assess the efficacy of stem cell therapies in  vivo will be 
critical for optimizing and individualizing stem cell-
based treatments for epilepsy [232].

Stem cell-based therapies for epilepsy have shown 
promise in preclinical studies, with some evidence of 
safety and feasibility in early clinical trials. However, 
further research is needed to optimize the therapeutic 
approach, including selecting the most appropriate 
stem cell type, the timing and route of delivery, and the 
potential for combination therapies. Well-designed, 
randomized controlled trials with larger sample sizes, 
longer follow-up periods, and standardized outcome 
measures will be essential to establish the efficacy of 
stem cell therapies for epilepsy. Additionally, a deeper 
understanding of the complex pathophysiology of 
epilepsy and the mechanisms underlying the therapeutic 
effects of stem cells will be critical for developing safe 

and effective regenerative medicine approaches for this 
challenging neurological disorder.

Other emerging applications
In addition to the neurological disorders discussed above, 
stem cell-based therapies have shown potential for the 
treatment of various other neurological conditions, such 
as cerebral palsy, autism spectrum disorder (ASD), and 
peripheral nerve injuries.

Cerebral palsy
A set of lifelong mobility abnormalities known as cerebral 
palsy are brought on by harm to the developing brain and 
first manifest in early childhood [233]. Current treatments 
for cerebral palsy primarily focus on managing symptoms 
and improving function through physical therapy, 
occupational therapy, and medications [234]. Stem cell-
based therapies, particularly umbilical cord blood (UCB) 
cells and MSCs, have shown promise in preclinical and 
early clinical studies for cerebral palsy [235]. These 
cells have been shown to exert neuroprotective, anti-
inflammatory, and pro-angiogenic effects, promoting 
brain repair and functional recovery [236, 237]. However, 
more extensive randomized controlled trials are needed 
to establish stem cell therapies’ efficacy and long-term 
safety for cerebral palsy [238].

Autism spectrum disorder
Autism spectrum disorder (ASD) is a 
neurodevelopmental disorder characterized by deficits 
in social communication and interaction, along with 
restricted and repetitive patterns of behavior [239]. 
While behavioral and educational interventions are the 
mainstay of treatment for ASD, there are no effective 
pharmacological therapies to address the core symptoms 
[240]. Stem cell-based therapies, particularly MSCs 
and NSCs, have shown potential in preclinical studies 
to modulate the immune system, promote synaptic 
plasticity, and improve behavioral outcomes in animal 
models of ASD [241, 242]. A few small clinical studies 
have investigated the safety and feasibility of stem 
cell therapies in ASD patients, with some evidence of 
improved behavioral and cognitive function [243, 244]. 
However, these studies are limited by small sample sizes, 
lack of control groups, and short follow-up periods, 
highlighting the need for larger, well-designed clinical 
trials to establish the efficacy and safety of stem cell 
therapies for ASD [245].

Peripheral nerve injuries
Peripheral nerve injuries caused by trauma, surgery, 
or disease can lead to sensory and motor deficits, 
neuropathic pain, and reduced quality of life [246]. 
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Current treatments for peripheral nerve injuries 
primarily focus on surgical repair, physical therapy, and 
pain management [246]. Stem cell-based therapies, 
particularly Schwann cells, MSCs, and adipose-derived 
stem cells (ADSCs), have shown promise in preclinical 
studies to promote nerve regeneration, remyelination, 
and functional recovery [247–249]. These cells can 
be transplanted directly into the injured nerve or 
delivered through nerve guidance conduits or other 
biomaterial scaffolds [250]. A few early-stage clinical 
trials have investigated the safety and feasibility of stem 
cell therapies for peripheral nerve injuries, with some 
evidence of improved sensory and motor function [176, 
251]. However, further research is needed to optimize the 
therapeutic approach and establish stem cell therapies’ 
long-term efficacy and safety for peripheral nerve injuries 
[247].

Challenges and future directions
While stem cell-based therapies for these neurological 
disorders hold promise, several challenges must be 
addressed for successful clinical translation. These 
include the heterogeneity of the patient population, the 
complex and multifactorial nature of the underlying 
pathology, and the potential for adverse events following 
stem cell transplantation [252]. Future directions 
may involve the development of personalized stem 
cell therapies tailored to each patient’s specific needs, 
the use of gene editing technologies to enhance the 
therapeutic properties of stem cells, and the exploration 
of combinatorial approaches to enhance the efficacy of 
stem cell transplantation [253–255].

Stem cell-based therapies have shown potential 
for treating neurological disorders beyond the well-
studied conditions discussed earlier. However, further 
preclinical and clinical research is needed to establish 
these approaches’ safety, efficacy, and long-term benefits. 
As regenerative medicine advances, it is hoped that 
stem cell-based therapies will become a viable treatment 
option for a wide range of neurological disorders, 
improving the quality of life for patients and their 
families.

Conclusion and future perspectives
Stem cell-based therapies for neurological disorders have 
made significant progress in recent years, with promising 
results from preclinical studies and early clinical trials. 
As highlighted in this comprehensive review, various 
stem cell types, including NSCs, MSCs, and iPSCs, 
have shown potential for the treatment of a wide range 
of neurological conditions, such as Parkinson’s disease, 
Alzheimer’s disease, multiple sclerosis, stroke, spinal 
cord injury, and traumatic brain injury.

The therapeutic potential of stem cells in neurological 
disorders is primarily attributed to their ability to replace 
lost or damaged neural cells, modulate the immune 
system, promote endogenous repair mechanisms, and 
provide trophic support to the injured or diseased 
nervous system. However, the exact mechanisms 
underlying the therapeutic effects of stem cells are not 
fully understood. They may vary depending on the 
specific neurological condition and the type of stem cells 
used.

Despite the encouraging progress, several challenges 
need to be addressed to realize the full potential of stem 
cell-based therapies for neurological disorders. These 
include optimizing stem cell sources, differentiation 
protocols, and delivery methods to ensure the therapeutic 
approach’s safety, efficacy, and reproducibility. The 
potential for tumorigenicity, immune rejection, and 
other adverse events following stem cell transplantation 
also requires careful consideration and long-term 
monitoring. Furthermore, the complex and multifactorial 
nature of many neurological disorders may require 
combinatorial approaches that target multiple pathogenic 
mechanisms, such as gene therapy, neuroprotective 
agents, or rehabilitation in conjunction with stem cell 
transplantation.

Several critical research areas must be prioritized 
to address these challenges and accelerate the clinical 
translation of stem cell-based therapies for neurological 
disorders. These include the development of standardized 
protocols for the generation, characterization, and 
banking of clinical-grade stem cells, the establishment 
of robust preclinical models that more accurately 
recapitulate human neurological disorders, and the 
design of well-controlled clinical trials with appropriate 
patient populations, outcome measures, and follow-up 
periods.

In addition to technological advancements, the 
successful clinical translation of stem cell-based therapies 
for neurological disorders will require a collaborative and 
multidisciplinary approach involving basic scientists, 
clinicians, industry partners, regulatory agencies, and 
patient advocates. Ethical, legal, and social implications 
of stem cell research and therapy must also be carefully 
addressed through ongoing dialogue and public 
engagement.

Looking to the future, the field of stem cell-based 
therapies for neurological disorders is poised for exciting 
developments and breakthroughs. The convergence of 
stem cell biology with other cutting-edge technologies, 
such as gene editing, single-cell genomics, organoid 
models, and advanced neuroimaging, holds great promise 
for developing personalized and targeted therapies for 
neurological disorders. The increasing understanding 
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of the complex interplay between the nervous system, 
immune system, and microbiome may also open up new 
avenues for stem cell-based therapies that harness the 
body’s intrinsic regenerative capacity.

In conclusion, while stem cell-based therapies for 
neurological disorders are still in their early stages of 
development, the progress made so far is encouraging 
and holds great promise for the future. With continued 
research, collaboration, and innovation, it is hoped that 
stem cell-based therapies will become a safe, effective, 
and accessible treatment option for millions worldwide 
affected by neurological disorders, improving their 
quality of life and reducing the burden on healthcare 
systems. As the field continues to evolve, it will be 
essential to maintain a balanced and evidence-based 
perspective, acknowledging both the potential and the 
limitations of stem cell-based therapies and to ensure 
that the interests of patients and the public are always at 
the forefront of scientific endeavors.
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