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Abstract 

Objective In this study, we employed a bioinformatics approach to identify diagnostic biomarkers for tongue 
squamous cell carcinoma (TSCC) and investigate the infiltration of immune cells in TSCC, as well as the relationship 
between biomarkers and immune cells.

Methods We obtained the TSCC expression dataset from a database and conducted differential gene expres-
sion analysis between TSCC and adjacent normal tissues using R software. Enrichment analysis of the differentially 
expressed genes (DEGs) was performed using the DAVID website. Protein interaction networks for the DEGs were con-
structed, and hub genes were identified using tools such as STRING and Cytoscape. Survival analysis was conducted 
to identify diagnostic biomarkers and the infiltration of immune cells in TSCC was analyzed using the inverse convolu-
tion algorithm with Cibersort software. Finally, the expression of the discovered molecules was verified through clini-
cal pathological sections.

Results We identified 24 DEGs in TSCC, primarily associated with signal transduction, substance metabolism, innate 
immune response, and other related signaling pathways. Among the 24 hub genes screened through the construc-
tion of a protein–protein interaction (PPI) network, seven (MMP13, POSTN, MMP9, MMP10, MMP3, SPP1, MMP1) exhib-
ited prognostic value. Survival analysis indicated that SPP1 demonstrated diagnostic potential. The expression level 
of the SPP1 gene showed a correlation with TSCC as well as several immune cell types, including macrophage M0, M1, 
M2,  CD8+ T cell, activated NK cell, and monocyte (p < 0.05). Histological results confirmed higher expression of SPP1 
in TSCC tissues compared to adjacent non-cancerous tissues, particularly in CD68-expressing macrophages.

Conclusion Our findings suggest that SPP1 serves as a diagnostic biomarker for TSCC and is involved in immune cell 
infiltration within TSCC tissues. The correlation between SPP1 and macrophages may offer new insights for targeted 
therapeutic research on TSCC.
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Introduction
Oral squamous cell carcinoma (OSCC) is a highly 
prevalent malignancy, with an annual global incidence 
of 405,000 new cases reported [22]. OSCC is commonly 
associated with risk factors such as tobacco use, excessive 
alcohol consumption, and human papillomavirus 
(HPV) infection [8]. Among the subtypes of OSCC, 
tongue squamous cell carcinoma (TSCC) is the most 
common, accounting for 80% of all OSCC cases. TSCC 
is characterized by aggressive features, a high incidence 
of recurrence and metastasis, and a poor prognosis [5, 
16]. Despite advancements in diagnosis and treatment, 
the 5-year survival rate for TSCC remains around 50%, 
and it can severely impact patients’ quality of life by 
restricting tongue movement, causing difficulty in eating 
and swallowing, and posing a significant threat to human 
health [8, 25].

The standard treatment for TSCC typically involves 
surgical resection, with adjuvant therapies such as 
chemotherapy and radiotherapy [26]. However, these 
modalities often have substantial adverse effects, and 
approximately one-third of patients face the risk of 
recurrence and developing resistance to chemotherapy 
and radiotherapy [6]. Hence, there is an urgent need to 
identify novel targets for TSCC treatment and develop 
more effective drugs and approaches. Advancements 
in molecular profiling technology have facilitated 
faster and easier DNA/RNA sequencing and protein 
detection. Bioinformatics methods can be utilized to 
identify differentially expressed genes (DEGs) or proteins 
between tumors and normal tissues.

Recent studies have emphasized the correlation 
between tumors and the immune system, as the degree 
of immune cell infiltration within tumors is closely 
related to tumor growth, progression, and patient 
outcomes [34]. The tumor microenvironment comprises 
diverse types of immune cells, including T lymphocytes, 
B lymphocytes, tumor-associated macrophages, 
dendritic cells, and natural killer cells [1]. The type and 
extent of immune cell infiltration in solid tumor tissue 
are closely associated with the clinical characteristics 
of these tumors, and immune cell infiltration can be 
used for tumor risk classification [15, 18, 44]. Some 
biomarkers with altered levels in cancer tissues may 
influence tumor development by interacting with 
immune cells. However, only a limited number of TSCC 
prognostic biomarkers have been investigated from an 
immunological perspective. Therefore, it is crucial to 
elucidate the association between local immune activity 
and TSCC and explore the relationship between TSCC 
biomarkers and immune cells.

In our research, we downloaded TSCC mRNA expres-
sion data from databases and employed bioinformatics 

techniques to screen and analyze differentially expressed 
genes in TSCC. Additionally, we utilized the Cibersort 
algorithm to calculate the infiltration levels of various 
immune cell types in TSCC. This allowed us to explore 
the correlation between TSCC biomarkers and relevant 
immune cells. Our findings were preliminarily validated 
using histological methods, providing new insights for 
targeted therapeutic research on TSCC.

Materials and methods
Data access
We accessed the NCBI-GEO (Gene Expression 
Omnibus) database (https:// www. ncbi. nlm. nih. gov/ geo), 
which provides a collection of microarray/gene profiles 
and NGS data. For our study, we selected three datasets 
(GSE31056, GSE34105, and GSE13601) that contained 
expression profiles of tongue squamous cell carcinoma 
(TSCC) samples [4, 32, 33]. To ensure accuracy, we 
only included samples from the database that clearly 
indicated the sampling location as the tongue. The 
GSE31056 dataset consisted of 16 TSCC and 17 normal 
tissue samples. In the GSE34105 dataset, we filtered 
out 62 TSCC and 16 normal tissue samples. Lastly, the 
GSE13601 dataset provided us with a total of 30 TSCC 
and 25 normal tissue samples.

Identification of DEGs
We utilized the Limma package in R to identify DEGs 
between TSCC samples and normal tissues, consider-
ing an adjusted p-value < 0.05 and |log2FC| > 2 as the 
criteria. In the Limma analysis, we used the default 
parameter. Since false positives sometimes occur when 
multiple comparisons are made which could lead us to 
incorrectly reject the true null hypothesis, we need to 
control the false discovery rate using a multiple com-
parison correction method to ensure that the overall 
false positive rate does not exceed the preset thresh-
old. We, therefore, used the Benjamini–Hochberg (BH) 
method to calculate adjusted p-values to decrease the 
false discovery rate. In many biological studies, a two-
fold change is often considered to be biologically mean-
ingful as it may correspond to significant alterations in 
gene expression or protein abundance. The log2 trans-
formation provides a more intuitive representation of 
these multiplicative changes. Additionally, selecting this 
threshold is a balance between sensitivity and specific-
ity. A lower threshold might increase the chances of 
detecting true biological changes but also risks increas-
ing false positives. Conversely, a higher threshold might 
reduce false positives but could also overlook impor-
tant changes. The fold change represents the expression 
level in TSCC tissue samples relative to normal tissue 

https://www.ncbi.nlm.nih.gov/geo
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samples. Subsequently, we visualized the DEGs using 
SANGERBOX (http:// sange rbox. com/ Index), FUN-
RICH, and R. To obtain the common DEGs across all 
three datasets, we constructed a Venn diagram.

GO and KEGG enrichment analysis
To explore the biological functions of the DEGs, we 
performed Gene Ontology (GO) annotation and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses using the DAVID website (https:// 
david. ncifc rf. gov/ home. jsp). We considered a cutoff 
of p < 0.05 and FDR < 0.05 for significance. The GO 
enrichment analysis included biological processes (BP), 
molecular functions (MF), and cellular components 
(CC) [11].

Construction of PPI network and selection of hub genes
We constructed the PPI network using the STRING 
database https:// string- db. org/) [35]. The network was 
visualized using Cytoscape software (version 3.9.1), 
and the top 20 genes were selected as hub genes using 
the cytoHubba plug-in [2]. The default parameters for 
hub gene selection were as follows: degree cutoff = 10, 
k-core = 2, node score cutoff = 0.2, and max. depth = 100.

Clinical prognostic model analysis
We downloaded RNA-sequencing expression profiles 
and corresponding clinical information for TSCC from 
the TCGA dataset (https:// portal. gdc. cancer. gov). 
Univariate and multivariate Cox regression analyses 
were performed to identify the appropriate terms for 
building a nomogram. The “forestplot” R package was 
used to display the p-value, hazard ratio (HR), and 95% 
confidence interval (CI) for each variable.

Systematic analysis of immune infiltrates
To gain a comprehensive understanding of the immune 
microenvironment in TSCC tissues and identify distinct 
immune cell proportions, we employed CIBERSORT 
(https:// ciber sort. stanf ord. edu/) to normalize and 
process the raw RNA-seq read counts. CIBERSORT 
utilizes a deconvolution model based on a presumed 
linear connection between mixed expression profiles in 
tissue samples and isolated cell type expression profiles 
to estimate the relative percentage of main immune cell 
types. We downloaded RNA-sequencing expression 
profiles and corresponding clinical information for TSCC 
from the TCGA dataset. Unless otherwise specified, 
two-group data were analyzed using the Wilcoxon test, 
and p-values less than 0.05 were considered statistically 
significant (*p < 0.05).

Immunohistochemistry and immunofluorescence staining
We obtained paraffin sections of TSCC and healthy para-
cancerous tissue for immunohistochemistry and immu-
nofluorescence staining. The research was conducted in 
accordance with the standards set by the Declaration of 
Helsinki and was authorized by the Ethics Committee 
of Beijing Stomatological Hospital Affiliated with Capi-
tal Medical University (approval number: CMUSH-IRB-
KJ-PJ-2022-26). Written informed consent was obtained 
from all participants.

The following steps were performed for immunohisto-
chemistry staining: after deparaffinization and rehydra-
tion, antigen retrieval was conducted using TE (Tris and 
ethylenediaminetetraacetic acid) buffer at pH 9.0. Sec-
tions were then blocked for endogenous peroxidase using 
hydrogen peroxide in methanol, followed by treatment 
with 10% normal goat serum and 0.1% Triton X-100. 
The tissues were incubated overnight at room tempera-
ture with a rabbit anti-SPP1 antibody (1:50, Proteintech, 
22952-1-AP). Subsequently, the sections were incubated 
with biotinylated anti-rabbit IgG secondary antibodies 
(ZSGB-Bio) and visualized using 3,3′-diaminobenzi-
dine (DAB) at room temperature. Brief counterstaining 
with H&E staining was performed, and the sections were 
mounted with neutral gum. Analysis of the stained sec-
tions was carried out using a Zeiss AxioPlan microscope.

For immunofluorescence staining, the sections were 
blocked with a 10% goat serum solution for 30  min at 
room temperature. They were then incubated overnight 
at 4 °C with primary antibodies against SPP1 (1:50, Pro-
teintech, 22952-1-AP) and CD68 (1:100, Invitrogen, 
14-0688-82). After washing the tissue sections three 
times in PBS (pH 7.2), secondary antibodies, such as goat 
anti-rabbit conjugated with Alexa Fluor 594 and goat 
anti-mouse conjugated with Alexa Fluor 488 (ZSGB-
Bio), were applied for 1 h at 37 °C. Subsequently, the tis-
sue sections were washed five times in PBS (pH 7.2), and 
DAPI (Sigma-Aldrich) was used for nuclear staining for 
20 min at 37  °C. Coverslips were mounted in a Fluores-
cence Mounting Medium (Dako, Glostrup, Denmark) for 
visualization.

Results
Screening and identification of DEGs
We screened microarray datasets from the NCBI-GEO data-
base to identify DEGs in TSCC tissue samples. The data-
sets used were GSE31056, GSE34105, and GSE13601. From 
GSE31056, which is based on the GPL10526 platform, we 
selected 16 TSCC and 17 normal tissue samples. GSE34105, 
based on the GPL14951 platform, provided data from 62 
TSCC and 16 normal tissue samples. Lastly, GSE13601, 
based on the GPL8300 platform, included 30 TSCC and 25 
normal tissue samples. R software was utilized to screen for 

http://sangerbox.com/Index
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
https://string-db.org/
https://portal.gdc.cancer.gov
https://cibersort.stanford.edu/
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DEGs, with adjusted p < 0.05 and |log2 FC| > 2 as the cut-off 
criteria. Ultimately, we extracted 862, 413, and 399 DEGs 
from these three datasets, respectively (Fig.  1A–C). Addi-
tionally, using R software, we performed cluster analysis 
and generated a heatmap to visualize the expression of 24 
DEGs from the three datasets (Fig. 1D–F). Through FUN-
RICH software, we identified 24 consistent DEGs across all 
three genome datasets (Fig. 1G). These DEGs consisted of 5 
downregulated genes and 19 upregulated genes (Table 1 and 
Fig. 1H, I).

Gene ontology (GO) and signaling pathway enrichment 
analyses
The selected candidate DEGs were subjected to Gene Ontol-
ogy (GO) analysis using the Database for Annotation, Visu-
alization, and Integrated Discovery (DAVID). The DEGs 
were divided into three functional groups: molecular func-
tional group, biological process group, and cell component 
group. In the biological process group (Fig. 2A), the DEGs 
were enriched in processes such as collagen catabolic pro-
cess, extracellular matrix disassembly, extracellular matrix 
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Fig. 1 Screening and Identification of DEGs. A total of 24 DEGs were indentified. （A-C) Distributions of DEGs in tumor and control tissues 
in the database of GSE31056 (A), GSE34105 (B), and GSE13601 (C) were displayed in the volcano maps (|log2FC| >2 and adjusted p-value < 0.05). 
Red dots stand for up-regulated genes, blue dots stand for down-regulated genes and grey dots stand for normal expression in volcanoes. Each 
dot represents a gene. (D-F) The heatmaps showed the relative expression levels of DEGs between normal and tumor samples in the database 
of GSE31056 (D), GSE34105 (E), and GSE13601 (F). Each row represents a gene and each column represents a sample. The colour and intensity 
of the boxes represent changes of gene expression. From dark red to dark blue, the expression of genes decreased. (G–I) Venn diagram 
was visualized in FUNRICH software
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organization, response to beta-amyloid and proteolysis, and 
innate immune response. The molecular function group 
(Fig.  2B) showed enrichment in processes like metalloen-
dopeptidase activity, serine-type endopeptidase activity, 
endopeptidase activity, zinc ion binding, collagen binding, 
and peptidase activity. The cell component group (Fig. 2C) 
indicated enrichment in processes associated with the 
extracellular matrix, extracellular space, and extracellular 
region. Furthermore, our analysis revealed common signal-
ing pathways and reaction processes among the candidate 
DEGs (Fig. 2D). These DEGs were found to be involved in 
pathways such as the IL-17 signaling pathway, TNF signal-
ing pathway, relaxin signaling pathway, lipid metabolism, and 
atherosclerosis.

PPI network screening and analysis
We used the STRING database to filter the 24 DEGs and 
construct a PPI network consisting of 24 nodes and 51 
edges (Fig.  2E). The average node degree was 4.25, and 
the average local clustering coefficient was 0.612. The PPI 
concentration p-value was found to be less than 1.0e−16. 
Among the DEGs, PDPN, RBP1, HLF, and APOD did 
not connect within the PPI network, resulting in the 
identification of 20 key genes. We performed a k-means 
clustering analysis to categorize the DEGs into three 
groups. Subsequently, we used CYTOSCAPE to remove 
genes without nodes and create a PPI network diagram 
based on the interaction and expression between the 
nodes (Fig.  2F). Further applying the MCODE modular 
analysis in CYTOSCAPE, we screened out 7 candidate 
genes (Table  2). Additionally, we sought to validate the 
results using an alternative calculation. We employed 
cytoHubba, a Cytoscape plugin, to perform topological 
analysis methods and rank the nodes in the PPI network. 
Four centrality indexes, including maximal clique 
centrality (MCC), maximum neighborhood component 
(MNC), edge percolated component (EPC), and degree, 
were chosen to filter the top 20 genes. All 7 previously 
screened genes ranked highly (Table 3).

Prognostic analysis
We downloaded RNA-sequencing expression profiles 
and corresponding clinical information for TSCC from 

the TCGA dataset, including a total of 156 patients. Uni-
variate and multivariate Cox regression analysis was con-
ducted to identify 24 DEGs and construct a predictive 
signature in the discovery group (Fig. 3A, B). The results 
of the analysis indicated that only one DEG, SPP1, was 
considered a prognostic factor (p < 0.05). Furthermore, 
the combined Kaplan–Meier curves with the log-rank 
p-test demonstrated a clear association between SPP1 
and overall survival in TSCC (Fig. 3C).

Analysis of SPP1 gene expression and immune cell 
infiltration in TSCC tissue
To evaluate the relative abundance of major immune cell 
subsets, we employed CIBERSORT, which revealed vary-
ing proportions of activated monocytes and macrophages 
in TSCC (Fig.  4A). A comparison of immune cell infil-
tration in normal and TSCC tissues revealed signifi-
cant differences, with a higher number of immune cells, 
including M0 and M1 macrophages, and T cell regulatory 
(Tregs), observed in TSCC tissues. Conversely, the con-
trol group exhibited higher recruitment of monocytes, 
M2 macrophages, naïve B cells,  CD8+ T cells,  CD4+ T 
cell memory resting, myeloid dendritic cells at rest, and 
activated mast cells. Additionally, CIBERSORT analysis 
was used to examine the relationship between SPP1 gene 
expression and immune cell infiltration in TSCC samples 
from the TCGA database (Fig.  4B). TSCC samples with 
high SPP1 gene expression displayed higher distributions 
of M0 and M2 macrophages, while samples with low 
SPP1 gene expression exhibited elevated levels of naïve B 
cells,  CD8+ T cells, T cell follicular helper cells, activated 
NK cells, monocytes, M1 macrophages, and neutrophils.

Prognostic gene validation using clinical tissue samples
To validate the prognostic significance of the identified 
gene SPP1, immunohistochemical (IHC) staining was 
performed on para-cancer tissues and tumor tissues. 
The results confirmed that SPP1 was highly expressed in 
TSCC tissues compared to para-cancer tissues (Fig. 5A), 
aligning with the conclusions drawn from the research. 
Furthermore, double immunolabeling demonstrated 
that the increased expression of SPP1 in tumor tis-
sues was primarily localized to macrophages expressing 
CD68 (Fig.  5B), suggesting that the production of SPP1 

Table 1 Up and down regulation of 24 differentially expressed genes (DEGs)

DEGs Gene symbol

Up PDPN POSTN TYMP IFI6 CXCL10 LAMC2 MMP1

MMP9 MMP10 MMP12 MMP13 PTHLH RBP1 SPP1

OASL RSAD2 ISG15 MMP3 MMP9 AIM2

Down CRISP3 HLF FOXA1 APOD KRT4
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Fig. 2 Enrichment Analyses and PPI network analysis. The enrichment analysis of 24 DEGs in tumor (David 6.8). (A–C) Bubble diagram of GO 
enrichment in biological process terms, molecular function terms and cellular component terms. (D) Bubble diagram of KEGG enriched terms. 
(E) The PPI network was visualized in STRING that contained 24 nodes and 51 edges, with an average node degree of 4.25, and an average local 
clustering coefficient of 0.612 with a PPI concentration p-value less than 1.0e-16. (F, G) Four out of 24 DEGs (PDPN, RBP1, HLF, and APOD) did not fall 
within the PPI network
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is associated with macrophages. This finding further sup-
ports the involvement of SPP1 and its interaction with 
macrophages in tongue squamous cell carcinoma.

Discussion
In this study, we aimed to identify potential therapeutic 
targets and develop more effective approaches for the 
treatment of TSCC. By analyzing mRNA expression pro-
files and immune cell infiltration in TSCC, a total of 24 
DEGs related to TSCC were identified. By constructing a 
PPI network and performing enrichment analysis, seven 
key genes were screened, including MMP13, POSTN, 
MMP9, MMP10, MMP3, SPP1, and MMP1. Among 
them, SPP1 was found to have prognostic value for 
TSCC. Secretory phosphoprotein 1 (SPP1), also known 
as osteopontin (OPN) or early T lymphocyte activation 1 
protein, is a multifunctional secretory acidic glycoprotein 

involved in various physiological and pathological pro-
cesses [3]. While healthy organisms only secrete small 
amounts of SPP1 for normal physiological functions, its 
overexpression has been observed in numerous human 
tumors, including lung, prostate, breast, colorectal, and 
liver cancers [30]. High levels of SPP1 expression in 
tumor tissues have been associated with poorer patient 
prognosis, indicating its potential as a biomarker for 
monitoring tumor progression [13, 19, 20, 31, 41].

Previous studies have linked SPP1 expression to vari-
ous aspects of tumorigenesis and tumor progression, 
such as angiogenesis [14], distant metastasis [17, 23, 29], 
maintenance of tumor cell stemness [24], and activation 
of cell proliferation pathways [12, 28]. In the context of 
oral squamous cell carcinoma (OSCC), several studies 
have suggested that SPP1 may play a role in its occur-
rence and development [9, 10, 42, 46]. In the present 
study, SPP1 expression was found to be significantly ele-
vated in TSCC tissues compared to normal tissues, con-
sistent with previous findings by other researchers [38]. 
Moreover, the expression levels of SPP1 were found to 
significantly correlate with patients’ survival compared to 
other differentially expressed genes (DEGs). These find-
ings highlight the potential of SPP1 as a molecular thera-
peutic target in TSCC.

The tumor microenvironment (TME) is composed of 
various cell populations that play critical roles in tumor 
pathogenesis. Among the immune cells infiltrating 
tumors, macrophages are the major cell type involved 
and serve as a key link between inflammation and cancer. 
Macrophages can be polarized into two distinct pheno-
types: M1 and M2 [36]. M1 macrophages are associated 
with cytokine production, recruitment of pro-immune 
stimulated leukocytes, and phagocytosis of tumor cells, 
while M2 macrophages promote tumor development 
through basement membrane rupture, leukocyte recruit-
ment, angiogenesis, and immune evasion. Higher levels 
of M1 macrophages have been associated with better 
patient prognosis, while higher levels of M2 macrophages 
have been linked to worse prognosis in various tumor 
types [21, 40]. Therefore, the balance between M1 and 
M2 macrophages in the tumor microenvironment can 
influence clinical outcomes. Understanding the composi-
tion and functional characteristics of immune cell infiltra-
tion, particularly macrophages, provides valuable insights 
into tumor biology and potential therapeutic targets. In 
this study, the increased expression of SPP1 was found 

Table 2 Seven DEGs in MCODE modular analysis

DEGs Gene symbol

Up MMP13 POSTN MMP9 MMP10 MMP3 SPP1 MMP1

Table 3 Comparison of hub genes ranked in the cytohubba 
plugin of cytoscape

The bolded genes represent the overlapping hub genes that were also screened 
out by using MCODE modular analysis in CYTOSCAPE

MCC maximum clique centrality, MNC maximum neighborhood component, 
degree degree of connection between nodes, EPC edge percolated component

Catalog Rank methods in cytoHubba

MCC MNC Degree EPC

Gene top 20 SPP1 SPP1 CXCL10 SPP1
MMP9 MMP9 SPP1 MMP9
POSTN MMP3 MMP9 CXCL10

MMP1 POSTN MMP3 MMP3
MMP10 MMP1 MMP13 POSTN
MMP3 MMP13 POSTN MMP1
MMP13 MMP10 MMP1 MMP13
CXCL10 MMP12 MMP10 MMP10
MMP12 CXCL10 MMP12 MMP12

RSAD2 RSAD2 RSAD2 LAMC2

OASL OASL LAMC2 PTHLH

IFI6 IFI6 OASL RSAD2

ISG15 ISG15 IFI6 IFI6

PTHLH PTHLH ISG15 ISG15

LAMC2 LAMC2 PTHLH OASL

AIM2 AIM2 AIM2 AIM2

KRT4 CRISP3 KRT4 CRISP3

CRISP3 TYMP CRISP3 TYMP

TYMP FOXA1 TYMP KRT4

FOXA1 KRT4 FOXA1 FOXA1
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to be localized mainly to CD68-expressing macrophages, 
indicating that macrophages are associated with the pro-
duction of SPP1 in TSCC. Previous studies have shown 
that SPP1 can influence macrophage behavior and polari-
zation in different cancer models. For example, in a hepa-
tocellular cancer model, SPP1 produced by tumor cells 
was found to activate the PI3K-AKT-p65 signaling path-
way, leading to the secretion of colony-stimulating factor 
1 by macrophages, resulting in macrophage infiltration 
and M2 polarization [45]. Similarly, in a glioblastoma 
model, SPP1 was found to promote macrophage migra-
tion and preserve the properties and phenotype of M2 
macrophages through binding to integrin avβ5 recep-
tors. The expression levels of SPP1 were also found to be 
associated with the degree of macrophage infiltration and 
glioma grade in patients, suggesting that the interaction 
between SPP1 and macrophages affects immunological 
regulation and tumor progression [37].

In our study, using the “deconvolution algorithm,” we 
analyzed immune cell infiltration in paraneoplastic tis-
sues and tongue carcinoma tissues and observed signifi-
cant differences in the immune cell composition between 
the two. CIBERSORT calculates based on gene expres-
sion profile data, which can classify and identify mixed 
cell types, and can help researchers better understand 
the gene expression profile data and dig deeper into the 

background biological information, which is of great sig-
nificance in future research. The parameter adjustment 
in CIBERSORT is mainly permutation, which refers to 
the number of times of alignment on the analysis, and 
the larger the number, the more accurate the final result 
will be. Elevated SPP1 expression was associated with a 
higher prevalence of M2 macrophages during immune 
cell infiltration analysis. Previous studies have demon-
strated that M2 macrophages can play a role in promot-
ing tumor cell proliferation and suppressing lymphatic 
T cell function through the release of various cytokines. 
They have been identified as important factors influenc-
ing host immunity and promoting immune evasion by 
tumor cells [27]. While several studies have explored the 
impact of SPP1 expression on tongue tumor cells, there 
is relatively less research on the involvement of SPP1-
affected macrophages in TSCC.

In the past several years, compelling evidence has 
demonstrated that the posttranscriptional regulation of 
mRNA, such as N6-methyladenosine  (m6A) RNA methyl-
ation, plays a critical role in controlling RNA metabolism 
and function in tumor immune response [7, 39]. A recent 
study has revealed that m6A modification plays a cru-
cial role in the diversity and complexity of the immune 
microenvironment of periodontitis [43]. Understanding 
the role of posttranscriptional regulation of mRNA in 
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TSCC pathogenesis and immune response could provide 
a promising therapy for TSCC.

This study, however, is subjected to some limita-
tions that could be addressed in future research. First, 
the expression of SPP1 in TSCC was found to be corre-
lated with the expression of macrophage marker on our 
study. To improve further upon these findings, we are 
now collaborating with other institutions to enroll addi-
tional patients to carry out external validation of the 
expression of SPP1 and other immunological biomark-
ers in TSCC. Second, the molecular mechanism regu-
lating SPP1 expression and immune microenvironment 
in TSCC is unclear. In the past several years, compelling 
evidence has demonstrated that the posttranscriptional 
regulation of mRNA, such as N6-methyladenosine  (m6A) 
RNA methylation, plays a critical role in controlling RNA 
metabolism and function in tumor immune response 
[7, 39]. A recent study has revealed that m6A modifica-
tion plays a crucial role in the diversity and complexity 
of the immune microenvironment of periodontitis [43]. 
Understanding the role of posttranscriptional regulation 
of mRNA in TSCC pathogenesis and immune response 
could provide a promising therapy for TSCC. Further 
study may focus on the potential roles of mRNA modifi-
cation in TSCC immunity and therapy.

Based on the findings of our analysis, the interaction 
between SPP1 and macrophages could represent a poten-
tial immune-related therapeutic target in TSCC. Further 
research into the role of SPP1 in modulating macrophage 
behavior and its impact on the immune response in 
TSCC may uncover novel therapeutic strategies for the 
disease.
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