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Abstract 

Background DNA methylation showed notable potential to act as a diagnostic marker in many cancers. Many 
studies proposed DNA methylation biomarker in OSCC detection, while most of these studies are limited to specific 
cohorts or geographical location. However, the generalizability of DNA methylation as a diagnostic marker in oral 
cancer across different geographical locations is yet to be investigated.

Methods We used genome-wide methylation data from 384 oral cavity cancer and normal tissues from TCGA 
HNSCC and eastern India. The common differentially methylated CpGs in these two cohorts were used to develop 
an Elastic-net model that can be used for the diagnosis of OSCC. The model was validated using 812 HNSCC and nor-
mal samples from different anatomical sites of oral cavity from seven countries. Droplet Digital PCR of methyl-sensitive 
restriction enzyme digested DNA (ddMSRE) was used for quantification of methylation and validation of the model 
with 22 OSCC and 22 contralateral normal samples. Additionally, pyrosequencing was used to validate the model 
using 46 OSCC and 25 adjacent normal and 21 contralateral normal tissue samples.

Results With ddMSRE, our model showed 91% sensitivity, 100% specificity, and 95% accuracy in classifying OSCC 
from the contralateral normal tissues. Validation of the model with pyrosequencing also showed 96% sensitivity, 
91% specificity, and 93% accuracy for classifying the OSCC from contralateral normal samples, while in case of adja-
cent normal samples we found similar sensitivity but with 20% specificity, suggesting the presence of early disease 
methylation signature at the adjacent normal samples. Methylation array data of HNSCC and normal tissues from dif-
ferent geographical locations and different anatomical sites showed comparable sensitivity, specificity, and accuracy 
in detecting oral cavity cancer with across. Similar results were also observed for different stages of oral cavity cancer.

Conclusions Our model identified crucial genomic regions affected by DNA methylation in OSCC and showed 
similar accuracy in detecting oral cancer across different geographical locations. The high specificity of this model 
in classifying contralateral normal samples from the oral cancer compared to the adjacent normal samples suggested 
applicability of the model in early detection.
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Background
Oral cancer is one of the most common malignancies 
in Southeast Asia, accounting for up to 30–40% of all 
malignancies in India [1]. Several oral habits like smok-
ing, chewing tobacco, alcohol, etc., are attributed to the 
development of Oral squamous cell carcinoma (OSCC). 
According to the latest GLOBOCAN Statistics, oral can-
cer is the 2nd most common cancer in India, being the 
most common among males and 4th most common 
among females in India [2]. OSCC is one of the most 
common malignant epithelial neoplasia within the oral 
cavity [3]. Despite the significant improvements in ther-
apeutic modalities in OSCC, 5  year survival rates are 
among the lowest of the major cancers and the main rea-
son being the lack of early detection.

The study of DNA methylation has unraveled its role in 
several fundamental biological processes, like genomic 
imprinting, activation or silencing of transposons, cell-
differentiation, development, etc., signifying the impor-
tance of robust regulation of DNA methylation for 
normal cellular processes. Altered DNA methylation lev-
els have been associated with multiple cancers [4–8].

Aberrant methylations in the promoter region of sev-
eral genes, including the cell cycle, DNA repair, apop-
totic, and tumor suppressor genes, are reported in OSCC 
[9]. Some recent studies reported differential methyla-
tion in OSCC and OPMD (Oral potentially malignant 
disorder) tissues and evaluated their potential to be used 
as biomarkers for OSCC detection [10–14]. However, 
most of them are limited in terms of universality as they 
are generally not replicated in other cohorts of OSCC 
patients. The major challenge thus remains in develop-
ing a universal set of biomarkers that can be used for 
detecting OSCC irrespective of the geographical region 
who might have different etiological factors. In our pre-
vious study, we conducted a genome-wide DNA meth-
ylation study of OSCC and adjacent normal tissues in 
patients from India [15]. On comparison of our data with 
the TCGA HNSC methylation data, we identified a set of 
hypomethylated and hypermethylated CpGs that were 
common between these two datasets [15]. These com-
mon differentially methylated CpG probes (DMPs) may 
play a more fundamental role in oral cancer development 
and should be of primary focus while detecting DNA 
methylation biomarkers in oral cancer.

Here, we used penalized (regularized) linear regression 
techniques with these common DMPs and predicted a 
model using promoter methylation levels, which can be 
used for detecting oral cancer. Our approach for identify-
ing the common differential promoters relies on a widely 
used feature selection procedure Elastic-net [16]. We 
selected the tuning parameters for the Elastic-net pro-
cedure in a data-driven manner by using the principles 

of cross-validation and aggregation. We validated this 
model in additional paired OSCC and contralateral nor-
mal tissue samples using a method called Droplet Digi-
tal PCR amplification of the methyl-sensitive restriction 
enzyme digested DNA (ddMSRE). To elucidate the 
potential of these differentially methylated promot-
ers, we used contralateral and adjacent normal samples. 
Using pyrosequencing, we validated the model for OSCC 
lesion, adjacent normal, and contralateral normal tissues 
[17]. Furthermore, our model showed promising results 
in predicting OSCC with the publicly available methyla-
tion array data comprising 812 HNSCC (Head and Neck 
squamous cell carcinoma) and normal samples, including 
131 FFPE samples.

Methods
Illumina infinium humanMethylation450K beadChip array 
data
For systemic investigation, we have used Illumina Infin-
ium HumanMethylation450K BeadChip array datasets 
from 982 HNSCC and 214 normal samples. For develop-
ment of a prediction model, we have used 324 HNSCC 
and 60 normal samples, and for validation and perfor-
mance assessment of our predicted model, we have used 
658 HNSCC and 154 normal samples (Fig. 1A). For model 
development, we have used 450  K BeadChip array data 
of 11 OSCC and 10 adjacent normal samples from our 
previous study (GSE87053) [15], and 313 HNSCC and 50 
normal samples from the TCGA database (https:// www. 
cancer. gov/ tcga). For validation, we have downloaded 
812 publicly available 450 K BeadChip array data (.IDAT 
files) of 658 HNSCC and 154 normal samples from the 
TCGA and 14 GEO databases (GSE123781, GSE79556, 
GSE38266, GSE67114, GSE75537, GSE41114, GSE97784, 
GSE52068, GSE204943, GSE178216, GSE178219, 
GSE38268, GSE136704, and GSE62336) [18–30]. The 
TCGA and GEO datasets used for validation included 
tumors from oral cavity, oropharynx, hypopharynx, lar-
ynx, and nasopharynx areas from Australia, Germany, 
the United Kingdom, India, the USA, China, and Brazil 
(Table 1, Additional file 1).

Patient selection and sample collection
After clinical inspection, patients with a provisional diag-
nosis of OSCC were recruited for the study with their 
informed written consent. Histopathologically confirmed 
25 well-differentiated squamous cell carcinoma patients 
were recruited in this study. OSCC and adjacent nor-
mal tissues from the 1 cm periphery of the visible tumor 
border were collected using incisional and 3-mm punch 
biopsy. A portion of the tumor tissue was collected in the 
formalin for histopathological analysis. The other portion 
and adjacent normal tissues were collected in RNA Later 

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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Fig. 1 A A schematic representation of the study design. B Heatmap showing the average methylation (β-value) of 42 promoters among 324 
HNSCC and 60 normal samples. Hierarchical clustering shows classification of differentially methylated CpG probes (DMPs) for oral cancer 
and normal tissues
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(Thermo Fisher) and stored at – 80   C until processing. 
Apart from the paired OSCC and adjacent normal tis-
sues, contralateral normal samples were also used for the 
experimental validation of the model. DNAs of the 43 
OSCC and contralateral normal samples were obtained 
from the samples reported in our previous study [15]. 
This study was approved by the Institutional Ethics Com-
mittee of the Indian Statistical Institute, Kolkata, India.

HumanMethylation450K BeadChip array data analysis
The array data (.IDAT files) downloaded from the TCGA 
and GEO databases were analyzed using RnBeads [31]. 
The β values, which are the ratio of the methylated probe 
intensity to the overall probe intensity (sum of methyl-
ated and unmethylated probe intensities plus constant 
α, where α = 100), for each DMP represent the methyla-
tion status of the corresponding CpG. Receiver operat-
ing curve (ROC) analysis was performed for common 
DMPs with SPSS Statistics v18.00 (IBM). Bedtools were 
used to identify the DMPs that overlapped with the pro-
moters (− 2000 bp to TSS) of all genes annotated in the 
human genome (hg19) [32]. The average methylation of 
42 promoters was calculated for all 812 validation sam-
ples (Additional file 2: Table S2). Additionally, the model 
was validated using two experimental approaches with 
completely different patient cohorts: first, using a newly 
developed method ddMSRE with 22 paired OSCC and 
contralateral normal tissue DNA samples [15], and using 
pyrosequencing with 46 paired OSCC samples. Among 
these 46 paired samples, we used 21 paired OSCC and 
contralateral normal samples, whereas the rest of the 25 
paired samples consisted of OSCC and adjacent normal 
tissues. The demographic details of all these samples are 
presented in Additional file 3: Tables S3a, S3b, and S3c.

Feature selection and building predictive model using 
Elastic‑net
Regularization techniques use penalties to control 
the complexity of a model. L1 norm and L2 norm are 

used to control the least square or least absolute errors 
between the observed and predicted target values. 
LASSO regression model [33] uses the L1 regulariza-
tion technique, i.e., it imposes a penalty on the sum of 
the absolute values of the regression coefficients [34]. In 
contrast, ridge regression uses L2 regularization tech-
niques and adds a penalty on the sum of the squares of 
the coefficients [35]. The L1 penalization encourages 
a few coefficients to be non-zero in the fitted model, 
thereby attaining the variable selection along with esti-
mation. In contrast, L2 penalization is used to obtain 
better control on the risk characteristics of the result-
ing estimator. A hybrid method, such as Elastic-net, is a 
regularized regression model that uses a linear combi-
nation of the L1 penalty term from LASSO and the L2 
penalty term from ridge regression [16, 35]. The Elas-
tic-net procedure was proposed with the aim of obtain-
ing a better bias-variance trade-off than what would be 
possible through either L1 or L2 penalized regression, 
while also achieving a good variable selection perfor-
mance. Assuming that there are p features or predic-
tors, the corresponding optimization problem in the 
regression setting can be expressed as follows:

where yi corresponds to the disease outcome for the i-th 
patient. Xi is a vector of features (average promoter meth-
ylation) for the i-th patient. The βs are regression coef-
ficients that we estimate. When the response variable yi is 
binary (1 or 0 corresponding to OSCC and normal, in our 
setting), there is a version of Elastic-net that replaces the 
squared error loss in the above equation with the nega-
tive log-likelihood loss under a logistic regression model, 
assuming that the logit transformation of the conditional 
probability of the diseases outcome logit[Pr(y = 1|fea-
tures)] is a linear function of the features [35].

The tuning parameter λ is the weight of the regulari-
zation term and is chosen to minimize the mean square 
error. The regularization term  Pα(β) is given by the 
following:

minβ0,β1

[

N
∑

i=1

(

yi − β0 − XT
i β

)2

+ �Pα(β)

]

,

Table 1 Validation of the model using publicly available HNSCC methylation data

Site Sample Status Predicted

Disease Normal TP* FP* TN* FN* PLR* NLR* SN* SP* ACC *

Oral cavity 314 87 308 20 67 6 4.27 0.02 98.09 77.01 93.52

Oropharynx 167 18 155 6 12 12 2.78 0.11 92.81 66.67 90.27

Larynx 118 NA 117 NA NA 1 NA NA 99.15 NA NA

Hypopharynx 10 NA 10 NA NA 0 NA NA 100 NA NA

Nasopharynx 49 49 48 40 9 1 1.2 0.11 97.96 18.37 58.16
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Here, α is a number between 0 and 1 with α = 0 cor-
responding to ridge regression, α = 1 corresponding to 
LASSO, and α = 0.5 corresponding to Elastic-net. The 
parameter λ is non-negative and controls the level of 
the penalty, with larger λ leading to sparser (in the sense 
of having fewer features with non-zero estimated coef-
ficients) models, but also larger bias in the estimates. 
Thus, there is a need for specifying this parameter in 
a data-driven manner so that the resulting regression 
model has a satisfactory predictive performance.

For our current problem, Elastic-net regression was 
used to concurrently select features and produce a lin-
ear regression model for predicting the model using 
average promoter methylation of 42 genes. Follow-
ing the principle of cross-validation [36], we randomly 
sampled 80% of the data as a training dataset, while the 
remaining 20% data were used as the validation dataset. 
Model fitting and selection of the tuning parameter λ 
was done based on the training dataset. To determine 
the value of λ, we performed a tenfold cross-validation 
using the training dataset for λ value that gives the min-
imum mean cross-validation error. Cross-validation 
folds of the training set were randomly assigned with 
respect to the balance of classes within the training 
set and were repeated 100 times. The minimum value 
of the selected λ across 100 searches was subsequently 
defined as the best λ. With this best λ, the model was 
fitted using the training dataset and features with non-
zero coefficient were recorded. The remaining 20% vali-
dation samples were only used for calculating the mean 
error rate and recording the non-zero coefficient. The 
above process (involving the 80–20 random splitting of 
the data) was run 500 times and the features that were 
selected (i.e., with non-zero coefficient) more than 95% 
of the times were used as potential biomarkers for clas-
sifying the disease and normal tissues. This aggrega-
tion of the results, based on sub-sampling of the data, 
ensures that the feature selection procedure is robust 
to random fluctuations of the data. This resulted in the 
retention of 7 features which were used as the predic-
tors in the final model. We used a cross-validated Elas-
tic-net procedure with these 7 features to fit the final 
model with the full dataset.

The final model was validated using 812 publicly 
available 450  K BeadChip array data of 658 HNSCC 
and 154 normal samples. Sensitivity (SN), specificity 
(SP), accuracy (AC), Positive Likelihood ratio (PLR), 
and Negative Likelihood ratio (NLR) of the validation 
set were calculated for each anatomical site using true 

Pα(β) =

|xi|
∑

j=1

(

1− α

2
β2
j + α

∣

∣βj
∣

∣

) positive (TP), false positive (FP), true negative (TN), 
and false negative (FN) predictions by the predicted 
Elastic-net model.

Droplet digital PCR amplification of the methyl‑sensitive 
restriction enzyme digested DNA (ddMSRE)
To establish the reliability of the prediction model, we 
used an approach for exact quantification of methylation 
level and named it as Droplet Digital PCR amplification 
of the methyl-sensitive restriction enzyme digested DNA 
(ddMSRE). To establish and validate ddMSRE as a reli-
able tool for quantification of methylation, we generated 
methylation standards of different methylation levels. We 
cloned a 296 bp human DNA (chr8: 19540274–19540569; 
promoter of CSGALNACT1 gene), having 49% GC-con-
tent into a pCpGL vector (InvivoGen, USA; Catalogue 
No. pcpgf-promlc) where the vector backbone is devoid 
of any CG sites. The DNA region was PCR amplified 
with primers containing BamHI and HindIII restric-
tion enzyme cut sites at their 5’ ends (Additional File 4: 
Table S4). Both the insert and the vector backbone were 
digested with BamHI and HindIII (NEB) followed by liga-
tion using T4 DNA Ligase (NEB) and transformation 
into E.coli-GT115 pir strain (InvivoGen, USA). Zeocin-
resistant-positive colonies were verified by colony-PCR 
and were cultured for plasmid isolation. The cloning was 
further confirmed by Sanger sequencing in 3100 Genetic 
Analyzer (Applied Biosystems, California––USA). 
Around 1  µg of construct containing 296  bp CSGAL-
NACT1 promoter (CSP-pCpGL) was subjected to 
in vitro methylation using CpG methyltransferase M.SssI 
(NEB) in the presence of S-adenosylmethionine (SAM) 
(NEB). To verify the completion of methylation, the 
methylated constructs were digested with methylation-
sensitive restriction enzymes and run on 1% Agarose gel. 
The absence of any digested fragment ensured the com-
plete methylation (Additional File 8: Figure S1). Finally, 
methylated and unmethylated CSP-pCpGL were mixed 
in different proportions according to the copy number 
to achieve methylation levels of 0%, 20%, 40%, 60%, 80%, 
and 100%, respectively.

Methylation‑sensitive restriction enzymes (MSRE) 
digestion of genomic DNA and vectors
CSP-pCpGL with different methylation proportions and 
1  µg of genomic DNA samples from the paired tissue 
samples were digested using 10 units of four methyla-
tion-sensitive restriction enzymes (MSREs), namely, AciI, 
HpaII, HpyCH4IV, and Hinp1I (NEB) in a 30 µl reaction 
volume for 1  h at 37    C. MSRE digested CSP-pCpGL 
along with the digested genomic DNA was further evalu-
ated through ddPCR to validate the consistency of this 
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newly developed method and then to determine the 
methylation status of 7 promoters.

Droplet digital PCR of MSRE digested DNA
Droplet Digital PCR enables absolute quantification of 
nucleic acid target sequences by counting the nucleic 
acid molecules that are encapsulated in discrete water-
in-oil droplets. Using the QX200 Droplet Digital PCR 
(Bio-Rad), at first, we validated its reliability as a poten-
tial novel tool for quantifying the exact methylation sta-
tus and secondly, we evaluated the methylation status of 
selected promoters in paired tissue samples of OSCC and 
normal individuals. The ddPCR reaction mixture con-
sisted of template DNA, 1X QX200 ddPCR EvaGreen 
super-mix (Bio-Rad), 500  nM of each primer (Addi-
tional File 4: Table  S4), and nuclease-free water up to a 
final volume of 20 µl. For genomic DNA, we used DNA 
that has ~ 8000 copies (30  ng), and for plasmids, we 
used ~ 10,000 copies (0.00003 ng) as template DNA. The 
20  µl reaction mixture and the 70  µl of QX200 Droplet 
Generation Oil were loaded gently into the DG8 Droplet 
Generator Cartridge. The loaded cartridge was covered 
with a DG8 Gasket and placed in the QX200 Droplet 
Generator. The droplet generator uses microfluidics and 
partitions around 20,000 nanoliter-sized water-in-oil 
droplets where each droplet represents a single polymer-
ase chain reaction (PCR) with or without a single tem-
plate DNA molecule. Around 40  µl of nanoliter-sized 
water-in-oil droplets was transferred to a 96-well plate 
and sealed with PX1 PCR Plate Sealer (Bio-Rad) followed 
by PCR amplification using a T100 Thermal Cycler (Bio-
Rad). Depending on the fluorescence amplitude of the 
droplets, distinct positive fractions were defined, and 
quantification of nucleic acids was performed using Pois-
son distribution [37]. The droplets were read by QX200 
Droplet Reader following the manufacturer’s instruc-
tions. Quantasoft Software (version 1.7) was used to ana-
lyze the data. The percent methylation for each promoter 
was calculated by taking the ratio of positive droplets 
obtained from the ddPCR reaction of DNA digested with 
methylation-sensitive restriction enzymes versus DNA 
without enzymatic digestion. The percent methylation of 
CSP-pCpGL methylation standards and for each of the 
7 promoters from 22 paired OSCC and adjacent normal 
tissues were plotted using GraphPad Prism software and 
a paired t-test was performed to determine the level of 
significance.

Bisulfite conversion and bisulfite sequencing PCR
For all OSCC and normal samples, 1  µg of isolated 
genomic DNA was treated with sodium bisulfite using 
EZ DNA Methylation Gold Kit (Zymo-Research Corp) 
following the manufacturer’s instructions. Converted 

DNA samples were used for bisulfite sequencing PCR to 
amplify selected promoter regions. The reverse primer, 
used for bisulfite sequencing PCR, was biotinylated in the 
5’-end and the forward primer was used as the sequenc-
ing primer in order to cover all the CpGs in the PCR 
amplified region. The primer details are given in Addi-
tional File 4: Table S4.

DNA methylation quantification using pyrosequencing
After bisulfite sequencing PCR, the PCR amplified prod-
uct was purified using a MinElute PCR Purification Kit 
(Qiagen, Germany) and subjected to pyrosequencing 
(PyroMark Q48 Autoprep, Qiagen). The methylation per-
centages for each CpG were calculated using PyroMark 
Q48 Autoprep software (Qiagen, Germany).

Survival data analysis
Apart from the model-based validation of the seven 
selected features, to elucidate any clinical significance of 
those selected features, we analyzed methylation values 
of those seven promoters with clinical follow-up data 
available at TCGA. For each of those seven promoters, 
top and bottom 25 percentile of methylation values was 
considered as high and low groups, respectively. Survival 
analyses of these seven features with the methylation 
value were done using the Kaplan–Meier survival analy-
sis in SPSS. Mantel–Cox log-rank P-value ≤ 0.05 was con-
sidered significant. Additionally, gene expression data for 
those seven genes were retrieved from the TCGA data-
base and Kaplan–Meier survival analysis was performed 
with top and bottom 25 percentile of gene expression 
(TPM) values.

Statistical analysis and code availability
All the statistical analyses apart from survival analysis 
were performed in the R programming language (ver-
sion 4.1.0). An adjusted p-value < 0.05 was considered to 
be the significance level. Heatmap was generated using 
gplots package in R. The Elastic-net regression model 
was developed in the R environment and the necessary 
codes are available upon request.

Results
Identification of potential candidates for universal set 
of markers
The comparison of genome-wide DNA methylation data 
of OSCC patients in India with the TCGA HNSCC data 
from anatomical sites like oral cavity, oral tongue, floor 
of mouth, base of tongue, buccal mucosa, and hard pal-
ate was used to identify 20,645 common differentially 
methylated CpG probes (DMPs)(5670 hypermethylated 
and 14,975 hypomethylated CpGs) between these two 
datasets[15]. We intended to evaluate the potential of 
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these common DMPs as epigenetic markers for OSCC 
detection. A brief schematic representation of our study 
design is shown in Fig. 1A. To identify the usable features 
for OSCC prediction, receiver operating curve (ROC) 
analysis was performed using these common DMPs. We 
identified 6453 hypo and 1711 hypermethylated CpGs 
that classified the normal and OSCC tissues with an area 
under the curve (AUC) ≥ 0.9 (Additional File 5: Table S5). 
These DMPs overlapped with 1,678 promoters, among 
which 42 promoters contained at least 4 DMPs (Addi-
tional File 6: Table S6). Average methylation of these 42 
promoters distinctly classified the normal and disease 
samples, indicating the significance of these promoters in 
predicting the disease (Fig. 1B).

Final model development using elastic‑net/development 
of prediction model using elastic‑net
The average methylation values of 42 promoters in 324 
HNSCC and 60 normal tissues were used to build a 
penalized (regularized) linear regression model. Ran-
domly sampled 80% of the data were used as training 
dataset, and the remaining 20% of data were kept for 
validation of the model. Model fitting and selection of 
the tuning parameter λ was done based on the train-
ing dataset. The best λ was determined using a tenfold 
cross-validation from the training dataset for which the 
model produced the minimum mean cross-validation 
error. With this best λ, the model was fitted using the 
training dataset and features with non-zero coefficient 
were recorded. To obtain the relevant features and esti-
mate the mean error rate, this process was repeated 500 
times. Box plot of the coefficients of the 42 promoters 
in 500 runs appeared among the top contributing fac-
tors in the model (Fig. 2A). The mean error rate, calcu-
lated using the remaining 20% validation data, was found 
to be 0.02% with a range of 0 to 6% (Fig. 2B). The model 
predicted 7 features that appeared > 95% of the times 
as non-zero coefficients in the model, thereby indicat-
ing them as promising candidates for potential DNA 
methylation markers of OSCC (Fig.  2C). Among these, 
CSGALNACT1, SLC5A9, and HOXAAS2 were non-zero 
coefficient in 100% of the runs, while coefficient for 
ZNF154, SNHG14, GPR75, and HOXAAS3 was non-zero 
in 99.8%, 99.2%, 97%, and 94% of the 500 runs, respec-
tively. The final Elastic-net model with these 7 promoters 
is given by the following equation:

y = 3.95− 7.97 ×MCSGALNACT1 − 6.36 ×MSLC5A9−

2.30 ×MSNHG14 + 2.52 × MGPR75+

5.43 × MHOXAAS2 + 2.14 ×MHOXAAS3+

3.26 ×MZNF154,

where M indicates the average promoter methylation for 
the genes that are presented as the subscript.

Among these 7 promoters, CSGALNACT1, SLC5A9, 
and SNHG14 were hypomethylated, while the remain-
ing 4 promoters, GPR75, HOXAAS2, HOXAAS3, and 
ZNF154, were hypermethylated in OSCC tissues com-
pared with the adjacent normal tissues. To evaluate the 
clinical significance of these 7 promoters, we performed 
survival analysis with the methylation values (β-value) 
of these promoters. Among the hypomethylated pro-
moters, CSGALNACT1 (P-value = 0.010) and SNHG14 
(P-value = 0.043) showed significant prognostic rel-
evance, while for the hypermethylated promoters, the 
survival analysis failed to show any significant association 
(Additional File 8: Figure S2). We also performed sur-
vival analysis based on the gene expression values (TPM) 
of these respective genes. ZNF154 and HOXAAS3 were 
hypermethylated in OSCC samples and showed better 
survival (P-value = 0.021 and P = 0.027) with higher gene 
expression (Additional File 8: Figure S3).

Validation of the predicted model using publicly available 
HNSCC data
The prediction accuracy of the model was determined 
with publicly available genome-wide methylation data 
of 812 (658 HNSCC and 154 normal) HNSCC sam-
ples from different anatomical sites, and seven differ-
ent countries (Table  1, Additional File 1: Table  S1). The 
data have been classified broadly according to the site 
of occurrence, country of origin, tumor staging, and 
specific dataset (Table 1, Additional File 7: Table S7, S8, 
S9), and sensitivity (SN), specificity (SP), and accuracy 
(AC) of the model were calculated. The accuracy of our 
model is the best for patients with tumors on oral cav-
ity, which showed an overall accuracy of 93.52% with 
98.09% sensitivity and 77.01% specificity (Table  1). For 
the oropharynx, larynx, and hypopharynx, the sensitivi-
ties are 92 to 100%. The positive likelihood ratio (i.e., true 
positive rate/false positive rate) of oral cavity (4.27) was 
higher compared to oropharynx (2.78). The tumor on 
the nasopharynx showed 98% sensitivity, but the speci-
ficity of this anatomical site is very low (18%) (Table 1), 
suggesting its limitation in predicting tumors at naso-
pharynx. Methylation data generated from FFPE tissues 
(GSE38266 and GSE79556) also predicted 100% sensi-
tivity in cancer  of the  oral cavity and 98% sensitivity in 
cancers of the oropharynx. The efficiency of the model in 
predicting the disease was also comparable across stud-
ies conducted in different geographical locations, except 
the study reported from China, which mainly included 
tumors at nasopharynx, depicting the universality of our 
predictive model in oral cavity cancer (Additional File 
7: Table  S7). Our model showed outstanding sensitivity 
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for different tumor stages. We found almost similar sen-
sitivity for both early-stage (Stages I and II) and late-
stage (Stages III and IV) tumors (98.93 and 98.67%, 

respectively) (Additional File 7: Table S8). Study-specific 
classification also showed the excellent performance of 
the model for predicting oral cavity cancer (Additional 

Fig. 2 A Box plot of Elastic-net coefficients for 42 promoters in 500 runs. B Mean error rate of the model as measured using the validation samples. 
C Percentage of occurrences of differentially methylated promoters as non-zero coefficients in the predicted model
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File 7: Table S9). Even for the TCGA samples from Alveo-
lar Ridge, Hypopharynx, Larynx, Oropharynx, and tonsil 
(n = 200), the model showed 99.5% sensitivity.

Validation with droplet digital PCR of MSRE digested DNA 
(ddMSRE)
We next attempted to validate the predicted model using 
methylation data generated from a completely different 
experimental approach. To calculate the average meth-
ylation, we developed a novel method using methylation-
sensitive restriction enzymes (MSRE) digestion followed 
by amplification with the Droplet Digital PCR (ddPCR) 
using primers for methylated CpGs. Here, MSREs were 
chosen so that only unmethylated DNA gets digested, 

while methylated DNA remains intact and is available for 
amplification. Droplets receiving undigested methylated 
DNA will amplify and be counted as positive droplets 
and those without DNA or with digested DNA will not 
amplify and be counted as negative droplets. With the 
number of positive droplets obtained from each sample, 
we can calculate the exact copies of undigested methyl-
ated DNA (Fig. 3A). The copy number ratio between the 
digested and undigested samples was used to calculate 
the percent methylation of a DNA segment (Additional 
File 8: Figure S4). A strong positive correlation between 
the known and observed methylation values indicated 
the robustness of our proposed method (Correlation 
coefficient = 0.99 and P-value < 0.0001) (Fig.  3B). The 

Fig. 3 A The schematic presentation of the proposed methodology for quantifying DNA methylation using Methylation-sensitive restriction 
enzymes followed by droplet digital PCR (ddMSRE). B Line graph showing the correlation between the actual and observed percent methylation 
using ddMSRE
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proportional increase in the positive droplets was also 
in concordance with the increasing methylation per-
centage (Additional File 8: Figure S4). To validate the 
reliability of our predicted Elastic-net model, we deter-
mined the methylation level of 7 promoters in an addi-
tional set of 22 paired OSCC and contralateral normal 
tissues using ddMSRE (Additional File 7: Table  S10). 
DNA isolated from paired tissue samples was digested 
with MSRE and subjected to ddPCR amplification 
(Additional File 8: Figure S5). We observed a significant 
hypomethylation for the promoters ofCSGALNACT1 

(P-value = 0.0047), SLC5A9 (P-value = 0.0002) and 
SNHG14 (P-value = 0.0033), and significant hypermeth-
ylated (P-value < 0.0001) for ZNF154, HOXAAS2, HOX-
AAS3, and GPR75 in OSCC compared to adjacent normal 
tissues (Fig.  4). The methylation status of these seven 
promoters was used in our predicted Elastic-net model. 
Among the 22 OSCC samples, our model predicted 20 
as the disease, while among 22 contralateral normal sam-
ples, it could predict all 22 as the normal samples. The 
sensitivity, specificity, and accuracy of our independent 
validation are 91%, 100%, and 96%, respectively (Table 2).

Fig. 4 Methylation level of 7 promoters of 22 paired OSCC and contralateral normal tissue samples using ddMSRE. P-values were calculated using 
paired t-test for each promoter

Table 2 Validation of the model using ddMSRE

Sample Status Predicted

Sample type Disease Normal TP* FP* TN* FN* PLR* NLR* SN* SP* ACC *

OSCC (Indian 
patient cohort)

22 22 20 0 22 2 – 0.09 90.91 100 95.45
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Validation of the model using pyrosequencing
To establish the rigor and robustness of the model, we 
further validated the model in an additional set of paired 
tissue samples through pyrosequencing. Owing to the 
specificity of the model for contralateral normal sam-
ples, we attempted to explore contralateral and adja-
cent normal samples for the validation of the model. 
We used 21 paired OSCC and contralateral normal 
samples as well as 25 paired OSCC and adjacent nor-
mal samples (Additional File 7: Tables S11, S12). In case 
of 21 paired OSCC and contralateral normal samples, 

we observed significant hypomethylation for CSGAL-
NACT1, SNHG14, and SLC5A9, and significant hyper-
methylation for ZNF154, HOXAAS2, HOXAAS3, and 
GPR75 in OSCC compared to contralateral normal tis-
sues (Fig. 5). However, we did not observe any significant 
changes in methylation for SNHG14, SLC5A9, HOX-
AAS3, and GPR75 in 25 paired OSCC and adjacent nor-
mal samples (Additional File 8: Figure S6), possibly due 
to hyperplasia or dysplasia in the phenotypically normal 
adjacent normal samples. The average methylation values 
of seven promoters from both sample sets were used to 

Fig. 5 Methylation level of 7 promoters of 21 paired OSCC and contralateral normal tissue samples using pyrosequencing. P-values were calculated 
using paired t-test for each promoter

Table 3 Validation of the model of paired contralateral normal samples using pyrosequencing

Sample type Sample Status Predicted

Disease Normal TP* FP* TN* FN* PLR* NLR* SN* SP* ACC *

OSCC (Indian patient cohort) 21 21 20 2 19 1 10 0.05 95.24 90.48 92.86
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validate the model. For 21 paired OSCC and contralateral 
normal samples, our model showed 95.24% sensitivity, 
90.48% specificity, and 92.86% accuracy (Table 3). But in 
case of 25 paired OSCC and adjacent normal, the model 
showed 96% sensitivity, 20% specificity, and 58% accuracy 
(Table 4), indicating potential early detection of this pre-
dictive model.

Discussion
Aberrant DNA methylation is one of the hallmarks of 
cancer including oral squamous cell carcinoma. Poten-
tial of CpG methylation as a biomarker for OSCC detec-
tion has been evaluated, but most of the time it was not 
replicated in patient cohorts. In this study, we proposed 
a model for detecting oral cancer in patients irrespec-
tive of their anatomical origin, oral habits, etiology, and 
geographical locations of the study. Since DNA methyla-
tion is known to be an early molecular event appearing 
prior to phenotypic changes, we intended to construct a 
universal set of DNA methylation markers that can dis-
tinguish the disease state from normal. In our previous 
study, we reported a set of common differentially methyl-
ated CpGs between OSCC patients of India and any of 
the four stages (S1–S4) of the TCGA methylation data. 
From these common differentially methylated CpGs, usa-
ble features were selected to develop a regularized linear 
regression Elastic-net model. Among different machine 
learning algorithms, such as Lasso, Ridge, Random For-
est, and KNN, the Elastic-net showed the best perfor-
mance in terms of sensitivity, specificity, and accuracy 
of the model (data not shown). The proposed Elastic-net 
model uses average methylation values of 7 promoters 
in classifying oral cancer and normal oral tissues. We 
evaluated the applicability and universality of the pre-
dicted model using 812 HNSCC 450 k methylation array 
and EPIC array data (Disease = 658, Normal = 154) avail-
able in TCGA HNSCC and 14 GEO databases reported 
from Australia, China, Germany, Brazil, India, the UK, 
and the USA. We further classified the data based on 
the anatomical sites of disease occurrence. The model 
showed a classification accuracy of 93.52% with 98.09% 
sensitivity in identifying tumor and normal tissues of 
the oral cavity. However, the model was developed using 

methylation data excluding oropharyngeal, laryngeal, 
hypo-pharyngeal, and nasopharyngeal carcinoma sam-
ples, but we obtained 92% to 100% sensitivity for oro-
pharyngeal, laryngeal, and hypo-pharyngeal samples. 
We could not determine the specificity of our model for 
laryngeal and hypo-pharyngeal samples due to lack of 
data for corresponding normal samples. Interestingly, 
our model worked well for the methylation data gener-
ated from FFPE tissues with sensitivity ranging from 98 
to 100%. Our model showed 98% sensitivity for both 
early and late-stage samples, suggesting the applicabil-
ity of the model in predicting very early-stage cancer. 
The model was also evaluated according to the country 
of origin and it showed almost consistent sensitivity and 
accuracy across Germany, India, the UK, the USA, and 
Australia. However, one of the limitations of this study is 
the low sample size for some of the countries. A multi-
institutional study with sufficient number of samples may 
further substantiate the prediction of this model.

In addition to the validation of our model using 450 k 
methylation array data, we explored its applicability using 
a ddMSRE. DNA methylation of 7 promoters was quanti-
fied using ddMSRE and used to assess the performance of 
the model in classifying OSCC and contralateral normal 
tissues. For validation of the DNA methylation quanti-
fied using ddMSRE, we determined the methylation sta-
tus of known methylation standards. Comparison of the 
observed methylation with the known methylation val-
ues showed a strong positive correlation, suggesting the 
robustness of the method. Our predicted model was fur-
ther validated using an additional set of 22 paired OSCC 
and contralateral normal samples by ddMSRE (Addi-
tional File 8: Figure S5). The predicted model identified 
the normal samples with 100% precision and classified 
the disease and normal samples with 95% accuracy. All 3 
hypomethylated (SNHG14, CSGALNACT1, and SLC5A9) 
and 4 hypermethylated (ZNF154, HOXAAS2, HOXAAS3, 
and GPR75) promoters showed significant differen-
tial methylation in OSCC compared to adjacent normal 
samples. As ddMSRE showed 100% precision for con-
tralateral normal samples, we also preferred to choose a 
different set of clinically normal samples to evaluate the 
precision of the model. We selected 21 paired OSCC with 

Table 4 Validation of the model of paired adjacent normal samples using pyrosequencing

NA# Not calculated due to lack of normal samples
* TP true positive, FP false positive, TN true negative, FN false negative, PLR positive likelihood ratio, NLR negative likelihood ratio, SN Sensitivity, SP Specificity, ACC 
Accuracy. 

Sample type Sample status Predicted

Disease Normal TP* FP* TN* FN* PLR* NLR* SN* SP* ACC *

OSCC (Indian patient cohort) 25 25 24 20 5 1 1.2 0.2 96 20 58
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contralateral normal and 25 paired OSCC with adjacent 
normal samples. Interestingly, all the 7 promoters were 
significantly differentially methylated among 21 paired 
OSCC and contralateral normal samples, but only 3 pro-
moters showed significant differential methylation for 25 
paired OSCC and adjacent normal samples. Interestingly, 
for both sample sets, the model showed 96% sensitivity 
which suggests the rigor of the model in disease predic-
tion. For contralateral normal samples, the model showed 
91% specificity but the specificity drops down to 20% for 
adjacent normal samples. This observation suggests the 
occurrence of early molecular events in the vicinity of 
tumor samples and those early molecular events in the 
adjacent clinically normal samples can also be captured 
through the methylation status of these 7 promoters. Our 
Elastic-net model is rigorous as it predicted the disease 
phenotype based on the early molecular events. Certain 
morphological alterations known as malignancy-asso-
ciated changes (MACs) develop in adjacent histologi-
cally normal cells due to the close proximity of the tumor 
[38]. Assays based on those molecular events also found 
significant differences between adjacent normal and 
contralateral normal samples [39]. These observations 
broadly suggest two important aspects, first, the methyla-
tion value from any qualified in vitro methylation deter-
mining assay can be used in our model and second, the 
model with these seven promoters distinguishes oral can-
cer from the normal samples.

Higher expression of long non-coding RNA (lncRNA) 
SNHG14 is already attributed to colorectal cancer metas-
tasis, cervical cancer, bladder cancer, non-small cell lung 
carcinoma, hepatocellular carcinoma, ovarian cancer, 
retinoblastoma, pancreatic cancer, colorectal cancer, and 
endometrial cancer progression [40–42]. Promoter hypo-
methylation usually leads to overexpression of genes, and 
hence, SNHG14 promoter hypomethylation in OSCC 
might also play a significant role in OSCC prognosis. 
Investigation on copy number alterations in oral cancer 
identified CSGALNACT1 gene to be one of the most fre-
quent gene losses, but no epigenetic regulation has been 
reported yet [43]. In case of SLC5A9, better survival was 
attributed to low expression for renal cancer [44], but 
no epigenetic regulation or expression-based studies are 
reported for oral cancer. Promoter hypermethylation of 
tumor suppressor ZNF154 is reported in many cancer 
types including triple-negative breast cancer, clear cell 
renal cell carcinomas, and nasopharyngeal carcinoma 
[45–49]. Overexpression of ZNF154 in a gastric cancer 
cell line (MGC-803) showed reduced cell proliferation, 
migration, and invasion and enhanced apoptosis. Res-
toration of the gene expression with treatment of 5-aza-
2-deoxycytidine showed higher expression of ZNF154 
followed by inhibition of cell-migration and invasion 

in nasopharyngeal carcinoma cells [45]. Moreover, the 
robust hypermethylation of ZNF154 as a multi-cancer 
signature made this to be a promising blood-based diag-
nostic marker for cancer [48, 49].

The oncogenic role of another lncRNA, HOXAAS2, is 
also well established in the literature [50–53]. The knock-
down of HOXAAS2 showed a significant reduction in 
cell proliferation while promoting apoptosis in colorectal 
cancer [53]. Knockdown of this lncRNA showed inhibi-
tion in cell viability, migration, and invasion in osteo-
sarcoma cells [54]. Higher expression of HOXAAS3 was 
also reported in lung adenocarcinoma, while shRNA-
mediated knockdown of this lncRNA showed inhibited 
tumorigenesis in ng adenocarcinoma cells [55]. Similarly, 
GPR75 was also reported to be methylation-driven gene 
and proposed to be one of the independent prognos-
tic biomarkers in lung squamous cell carcinoma [56]. In 
order to decipher the clinical significance of seven pro-
moters examined in our study, we performed survival 
analysis using the average promoter methylation values 
in the TCGA HNSCC dataset. Average promoter meth-
ylation of SNHG14 and CSGALNACT1 showed a sig-
nificant association, but the remaining 5 promoters did 
not show any significant association with the survival of 
HNSCC patients (Additional File 8: Figure S2). Survival 
analysis with gene expression values of these genes also 
showed that higher expression of ZNF154 and HOXAAS3 
leads to significant association of better survival.

Conclusions
To conclude, we identified a set of DNA methylation 
markers that may have the potential to be used as bio-
markers in detecting oral cavity cancer irrespective of 
geographical locations and indigeneity, having different 
oral habits or etiological factors. We used Elastic-net 
regression to develop the predictive model with seven 
promoters. Validation of the model showed excellent per-
formance in classifying oral cavity cancer from the con-
tralateral normal samples, while the performance of the 
model is relatively low in classifying the oral cavity can-
cer from the adjacent normal sample, suggesting possible 
molecular involvement in the adjacent but clinically nor-
mal regions near the tumor lesion.

Abbreviations
OSCC  Oral squamous cell carcinoma
OPMD  Oral potentially malignant disorder
DMPs  Differentially methylated CpG probes
ddPCR  Droplet digital PCR
ddMSRE  Droplet digital PCR amplification of the methyl-sensitive 

restriction enzyme digested DNA
HNSCC  Head and Neck squamous cell carcinoma
ROC  Receiver operating curve
LASSO  Least absolute Shrinkage and selection operator
CSP-pCpGL  CSGALNACT1 Promoter cloned pCpGL vector
MSRE  Methylation-sensitive restriction enzymes



Page 14 of 15Das et al. European Journal of Medical Research          (2024) 29:458 

AUC   Area under the curve
CSGALNACT1  Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1
SLC5A9  Solute carrier family 5 (sodium/glucose cotransporter), mem-

ber 9
SNHG14  Small nucleolar RNA host gene 14
ZNF154  Zinc finger protein 154
HOXAAS2  HOXA cluster antisense RNA 2
HOXAAS3  HOXA cluster antisense RNA 3
GPR75  G protein-coupled receptor 75

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40001- 024- 02047-4.

Additional file 1

Additional file 2

Additional file 3

Additional file 4

Additional file 5

Additional file 6

Additional file 7

Additional file 8

Acknowledgements
SD was supported by the SERB grant (CRG/2020/003837). SK was supported 
by the DBT-Junior Research Fellowship. BB and AC were supported by the CSIR 
fellowship. JC was supported by the DST-INSPIRE fellowship. The authors want 
to acknowledge all the patients who participated in this study.

Author contributions
SD, SK, AC and BB conducted the experiments. JC, AC, DP, AET and RC con-
ducted the analysis. AS and JG recruited the patients and collected samples. 
DP, AC and RC conceptualize the study. ML, SB and AET provided the clinical 
information from UK cohort. SD, AC, DP and RC wrote the manuscript. ML, SB 
and AET edited the manuscript. All the authors have reviewed the manuscript.

Funding
The research is funded by the DST, Govt. of India for partial support through 
the Technology Innovation Hub (TIH) on Data Science, Big Data Analytics, and 
Data Curation at ISI [grant number NMICPS/006/MD/2020-21].

Availability of data and materials
All data used in the manuscript were downloaded from the publicly available 
database. Illumina Infinium HumanMethylation450BeadChip array data for 21 
OSCC and adjacent normal tissues from OSCC patients in India are available in 
the GEO database (GSE87053).

Declarations

Ethics approval and consent to participate
This study was conducted after obtaining ethical approval from the “Review 
Committee for Protection of Research Risks to Humans” of the Indian Statistical 
Institute and obtaining consent from each participant.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Human Genetics Unit,  Indian Statistical Institute, 203 B T Road, Kolkata 700 
108, India. 2 Univeristy of Pennsylvania, Philadelphia 19104, USA. 3 Depart-
ment of Mathematical Sciences, IISER Kolkata, Kalyani, India. 4 Department 
of Statistics, U C Davis, 4222 Mathematical Sciences Building, Davis, CA 95616, 

USA. 5 Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, 
Kolkata, India. 6 University College London Cancer Institute, University College 
London, 72 Huntley St, London WC1E 6DD, UK. 7 CAS Key Laboratory of Com-
putational Biology, Shanghai Institute of Nutrition and Health, University 
of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 
China. 

Received: 23 May 2024   Accepted: 1 September 2024

References
 1. Llewellyn CD, Johnson NW, Warnakulasuriya KA. Risk factors for squamous 

cell carcinoma of the oral cavity in young people–a comprehensive 
literature review. Oral Oncol. 2001;37(5):401–18.

 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global 
cancer statistics 2018: GLOBOCAN estimates of incidence and mor-
tality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2018;68(6):394–424.

 3. Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of diag-
nostic aids for the detection of oral cancer. Oral Oncol. 2008;44(1):10–22.

 4. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—bio-
logical and translational implications. Nat Rev Cancer. 2011;11(10):726–34.

 5. Irimie AI, Ciocan C, Gulei D, Mehterov N, Atanasov AG, Dudea D, et al. 
Current insights into oral cancer epigenetics. Int J Mol Sci. 2018;19(3):670.

 6. Bakhtiar SM, Ali A, Barh D. Epigenetics in head and neck cancer. Methods 
Mol Biol. 2015;1238:751–69.

 7. Esteller M. Cancer epigenetics for the 21st century: what’s next? Genes 
Cancer. 2011;2(6):604–6.

 8. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the 
genome integrates intrinsic and environmental signals. Nat Genet. 
2003;33(Suppl):245–54.

 9. Shaw RJ, Liloglou T, Rogers SN, Brown JS, Vaughan ED, Lowe D, et al. Pro-
moter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin 
in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer. 
2006;94(4):561–8.

 10. Huang YK, Peng BY, Wu CY, Su CT, Wang HC, Lai HC. DNA methylation of 
PAX1 as a biomarker for oral squamous cell carcinoma. Clin Oral Investig. 
2014;18(3):801–8.

 11. Cheng SJ, Chang CF, Ko HH, Lee JJ, Chen HM, Wang HJ, et al. Hypermeth-
ylated ZNF582 and PAX1 genes in mouth rinse samples as biomarkers for 
oral dysplasia and oral cancer detection. Head Neck. 2018;40(2):355–68.

 12. Cheng SJ, Chang CF, Ko HH, Liu YC, Peng HH, Wang HJ, et al. Hypermeth-
ylated ZNF582 and PAX1 genes in oral scrapings collected from cancer-
adjacent normal oral mucosal sites are associated with aggressive pro-
gression and poor prognosis of oral cancer. Oral Oncol. 2017;75:169–77.

 13. Li YF, Hsiao YH, Lai YH, Chen YC, Chen YJ, Chou JL, et al. DNA methylation 
profiles and biomarkers of oral squamous cell carcinoma. Epigenetics. 
2015;10(3):229–36.

 14. Foy JP, Pickering CR, Papadimitrakopoulou VA, Jelinek J, Lin SH, William 
WN Jr, et al. New DNA methylation markers and global DNA hypometh-
ylation are associated with oral cancer development. Cancer Prev Res. 
2015;8(11):1027–35.

 15. Basu B, Chakraborty J, Chandra A, Katarkar A, Baldevbhai JRK, Dhar 
Chowdhury D, et al. Genome-wide DNA methylation profile identified a 
unique set of differentially methylated immune genes in oral squamous 
cell carcinoma patients in India. Clin Epigenet. 2017;9:13.

 16. Zou H, Hastie T. Regularization and variable selection via the elastic net. J 
Royal Statist Soc Series B Statist Methodol. 2005;67(2):301–20.

 17. Poulin M, Zhou JY, Yan L, Shioda T. Pyrosequencing methylation analysis. 
Methods Mol Biol. 1856;2018:283–96.

 18. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene 
expression and hybridization array data repository. Nucleic Acids Res. 
2002;30(1):207–10.

 19. Nemeth CG, Rocken C, Siebert R, Wiltfang J, Ammerpohl O, Gassling V. 
Recurrent chromosomal and epigenetic alterations in oral squamous cell 
carcinoma and its putative premalignant condition oral lichen planus. 
PLoS ONE. 2019;14(4): e0215055.

https://doi.org/10.1186/s40001-024-02047-4
https://doi.org/10.1186/s40001-024-02047-4


Page 15 of 15Das et al. European Journal of Medical Research          (2024) 29:458  

 20. Lim AM, Wong NC, Pidsley R, Zotenko E, Corry J, Dobrovic A, et al. 
Genome-scale methylation assessment did not identify prognostic 
biomarkers in oral tongue carcinomas. Clin Epigenetics. 2016;8:74.

 21. Lechner M, Fenton T, West J, Wilson G, Feber A, Henderson S, et al. Identi-
fication and functional validation of HPV-mediated hypermethylation in 
head and neck squamous cell carcinoma. Genome Med. 2013;5(2):15.

 22. Worsham MJ, Chen KM, Datta I, Stephen JK, Chitale D, Gothard 
A, et al. The biological significance of methylome differences in 
human papilloma virus associated head and neck cancer. Oncol Lett. 
2016;12(6):4949–56.

 23. Krishnan NM, Dhas K, Nair J, Palve V, Bagwan J, Siddappa G, et al. A 
minimal DNA methylation signature in oral tongue squamous cell car-
cinoma links altered methylation with tumor attributes. Mol Cancer Res. 
2016;14(9):805–19.

 24. Pickering CR, Zhang J, Yoo SY, Bengtsson L, Moorthy S, Neskey DM, et al. 
Integrative genomic characterization of oral squamous cell carcinoma 
identifies frequent somatic drivers. Cancer Discov. 2013;3(7):770–81.

 25. Khongsti S, Lamare FA, Shunyu NB, Ghosh S, Maitra A. Whole genome 
DNA methylation profiling of oral cancer in ethnic population of Megha-
laya, North East India reveals novel genes. Genomics. 2018;110(2):112–23.

 26. Jiang W, Liu N, Chen XZ, Sun Y, Li B, Ren XY, et al. Genome-wide iden-
tification of a methylation gene panel as a prognostic biomarker in 
nasopharyngeal carcinoma. Mol Cancer Ther. 2015;14(12):2864–73.

 27. Dai W, Cheung AK, Ko JM, Cheng Y, Zheng H, Ngan RK, et al. Compara-
tive methylome analysis in solid tumors reveals aberrant methyla-
tion at chromosome 6p in nasopharyngeal carcinoma. Cancer Med. 
2015;4(7):1079–90.

 28. Inchanalkar M, Srivatsa S, Ambatipudi S, Bhosale PG, Patil A, Schaffer AA, 
et al. Genome-wide DNA methylation profiling of HPV-negative leukopla-
kia and gingivobuccal complex cancers. Clin Epigenet. 2023;15(1):93.

 29. Soares-Lima SC, Mehanna H, Camuzi D, de Souza-Santos PT, Simao TA, 
Nicolau-Neto P, et al. Upper aerodigestive tract squamous cell carcinomas 
show distinct overall DNA methylation profiles and different molecular 
mechanisms behind WNT signaling disruption. Cancers. 2021;13(12):3014.

 30. Marthong L, Ghosh S, Palodhi A, Imran M, Shunyu NB, Maitra A, et al. 
Whole genome DNA methylation and gene expression profiling of 
oropharyngeal cancer patients in North-Eastern india: identification of 
epigenetically altered gene expression reveals potential biomarkers. 
Front Genet. 2020;11:986.

 31. Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehen-
sive analysis of DNA methylation data with RnBeads. Nat Methods. 
2014;11(11):1138–40.

 32. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics. 2010;26(6):841–2.

 33. Tibshirani R. Regression shrinkage and selection via the Lasso. J Roy Stat 
Soc: Ser B. 1996;58(1):267–88.

 34. Kennard RW. Ridge regression: biased. Estimation Nonorthogonal Prob-
lems Technometr. 1970;12(1):55–67.

 35. Bunea F. Honest variable selection in linear and logistic regression models 
via ℓ1 and ℓ1+ℓ2 penalization. Electron J Statist. 2008;2:1153–94.

 36. Friedman J, Hastie T. The elements of statistical learning data mining 
inference, and prediction. Berlin: Springer; 2009.

 37. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz 
AJ, et al. High-throughput droplet digital PCR system for absolute quanti-
tation of DNA copy number. Anal Chem. 2011;83(22):8604–10.

 38. Palcic B. Nuclear texture: can it be used as a surrogate endpoint bio-
marker? J Cell Biochem Suppl. 1994;19:40–6.

 39. Jabalee J, Carraro A, Ng T, Prisman E, Garnis C, Guillaud M. Identification of 
malignancy-associated changes in histologically normal tumor-adjacent 
epithelium of patients with HPV-positive oropharyngeal cancer. Anal Cell 
Pathol. 2018;2018:1607814.

 40. Di W, Weinan X, Xin L, Zhiwei Y, Xinyue G, Jinxue T, et al. Long noncoding 
RNA SNHG14 facilitates colorectal cancer metastasis through targeting 
EZH2-regulated EPHA7. Cell Death Dis. 2019;10(7):514.

 41. Zhang YY, Li M, Xu YD, Shang J. LncRNA SNHG14 promotes the develop-
ment of cervical cancer and predicts poor prognosis. Eur Rev Med 
Pharmacol Sci. 2019;23(9):3664–71.

 42. Shen S, Wang Y, Zhang Y, Dong Z, Xing J. Long non-coding RNA small 
nucleolar RNA host gene 14, a promising biomarker and therapeutic 
target in malignancy. Front Cell Dev Biol. 2021;9: 746714.

 43. Yong ZW, Zaini ZM, Kallarakkal TG, Karen-Ng LP, Rahman ZA, Ismail SM, 
et al. Genetic alterations of chromosome 8 genes in oral cancer. Sci Rep. 
2014;4:6073.

 44. Gatto F, Ferreira R, Nielsen J. Pan-cancer analysis of the metabolic reaction 
network. Metab Eng. 2020;57:51–62.

 45. Hu Y, Qi MF, Xu QL, Kong XY, Cai R, Chen QQ, et al. Candidate tumor 
suppressor ZNF154 suppresses invasion and metastasis in NPC by 
inhibiting the EMT via Wnt/beta-catenin signalling. Oncotarget. 
2017;8(49):85749–58.

 46. Stirzaker C, Zotenko E, Song JZ, Qu W, Nair SS, Locke WJ, et al. Methylome 
sequencing in triple-negative breast cancer reveals distinct methylation 
clusters with prognostic value. Nat Commun. 2015;6:5899.

 47. Arai E, Chiku S, Mori T, Gotoh M, Nakagawa T, Fujimoto H, et al. Single-
CpG-resolution methylome analysis identifies clinicopathologically 
aggressive CpG island methylator phenotype clear cell renal cell carcino-
mas. Carcinogenesis. 2012;33(8):1487–93.

 48. Margolin G, Petrykowska HM, Jameel N, Bell DW, Young AC, Elnitski L. 
Robust detection of DNA hypermethylation of ZNF154 as a pan-cancer 
locus with in silico modeling for blood-based diagnostic development. J 
Mol Diagn. 2016;18(2):283–98.

 49. Miller BF, Petrykowska HM, Elnitski L. Assessing ZNF154 methylation in 
patient plasma as a multicancer marker in liquid biopsies from colon, 
liver, ovarian and pancreatic cancer patients. Sci Rep. 2021;11(1):221.

 50. Feng Y, Hu S, Li L, Peng X, Chen F. Long noncoding RNA HOXA-AS2 
functions as an oncogene by binding to EZH2 and suppressing LATS2 in 
acute myeloid leukemia (AML). Cell Death Dis. 2020;11(12):1025.

 51. Xiao S, Song B. LncRNA HOXA-AS2 promotes the progression of prostate 
cancer via targeting miR-509–3p/PBX3 axis. 2020. Biosci Rep. https:// doi. 
org/ 10. 1042/ BSR20 193287.

 52. Song N, Zhang Y, Kong F, Yang H, Ma X. HOXA-AS2 promotes type I 
endometrial carcinoma via miRNA-302c-3p-mediated regulation of ZFX. 
Cancer Cell Int. 2020;20:359.

 53. Tong G, Wu X, Cheng B, Li L, Li X, Li Z, et al. Knockdown of HOXA-AS2 
suppresses proliferation and induces apoptosis in colorectal cancer. Am J 
Transl Res. 2017;9(10):4545–52.

 54. Wang L, Zhang X. Knockdown of lncRNA HOXA-AS2 inhibits viability, 
migration and invasion of osteosarcoma cells by miR-124-3p/E2F3. Onco 
Targets Ther. 2019;12:10851–61.

 55. Zhang H, Liu Y, Yan L, Zhang M, Yu X, Du W, et al. Increased levels of the 
long noncoding RNA, HOXA-AS3, promote proliferation of A549 cells. Cell 
Death Dis. 2018;9(6):707.

 56. Han P, Liu Q, Xiang J. Monitoring methylation-driven genes as prognos-
tic biomarkers in patients with lung squamous cell cancer. Oncol Lett. 
2020;19(1):707–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1042/BSR20193287
https://doi.org/10.1042/BSR20193287

	Universal penalized regression (Elastic-net) model with differentially methylated promoters for oral cancer prediction
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Illumina infinium humanMethylation450K beadChip array data
	Patient selection and sample collection
	HumanMethylation450K BeadChip array data analysis
	Feature selection and building predictive model using Elastic-net
	Droplet digital PCR amplification of the methyl-sensitive restriction enzyme digested DNA (ddMSRE)
	Methylation-sensitive restriction enzymes (MSRE) digestion of genomic DNA and vectors
	Droplet digital PCR of MSRE digested DNA
	Bisulfite conversion and bisulfite sequencing PCR
	DNA methylation quantification using pyrosequencing
	Survival data analysis
	Statistical analysis and code availability

	Results
	Identification of potential candidates for universal set of markers
	Final model development using elastic-netdevelopment of prediction model using elastic-net
	Validation of the predicted model using publicly available HNSCC data
	Validation with droplet digital PCR of MSRE digested DNA (ddMSRE)
	Validation of the model using pyrosequencing

	Discussion
	Conclusions
	Acknowledgements
	References


