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Abstract 

Objective To explore the role of cuproptosis in Alzheimer’s disease (AD).

Methods An AD‑related microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database 
(GSE140830). Weighted gene co‑expression network analysis was used to identify AD‑related modular genes. The 
Venn analysis was performed to obtain module genes associated with apoptosis and cuproptosis. Besides, we con‑
ducted an enrichment analysis of overlapped genes and constructed the protein–protein interaction (PPI) network, 
followed by screening hub genes and those significantly associated with AD were used to construct models of apop‑
tosis and cuproptosis, respectively. Further, receiver operating characteristic (ROC) curve analysis, decision curve 
analysis (DCA), and subgroup analysis were used to compare the AD prediction performance of two models. Finally, 
the accuracy and reliability of AD prediction models were verified by GSE26927.

Results We obtained 42 module genes related to apoptosis and 9 module genes related to cuproptosis. The enrich‑
ment analysis results revealed MAPK signaling pathway as the common signaling pathway of apoptosis‑ and cuprop‑
tosis‑related genes. Next, the hub genes associated with apoptosis (TRADD, FADD, BIRC2, and CASP2) and cuproptosis 
(MAP2K1, SLC31A1, and PDHB) in AD were identified, which were used to construct apoptosis and cuproptosis mod‑
els to distinguish AD patients from the control group (P < 0.05). The ROC, DCA, and subgroup analysis results showed 
that apoptosis‑related models and cuproptosis‑related models had comparable ability in predicting AD. GSE26927 
further confirmed that the two models have comparable predictive effects for AD.

Conclusions The cuproptosis model had a certain performance in predicting AD. Three hub genes (MAP2K1, 
SLC31A1, and PDHB) closely related to cuproptosis in AD might serve as biomarkers for AD diagnosis and treatment.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder 
characterized by cognitive decline and memory impair-
ment, which represents the primary manifestation of 
dementia [1, 2]. With the continuous development of the 
economy, the continuous improvement of people’s living 
standards, and the intensification of population aging, 
AD has become an international public health problem, 
which brings a huge burden to families and society, and 
seriously affects the quality of life of patients [3]. Despite 
the multitude of hypotheses proposed by researchers 
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regarding the etiology of AD, none have proven entirely 
satisfactory in elucidating its underlying mechanisms [4].

Apoptosis, an intricate and regulated mechanism of 
cellular demise, is of paramount importance in maintain-
ing cellular equilibrium and optimal functionality [5]. 
Several investigations have demonstrated the presence 
of apoptosis in both neurons and glia of AD [6]. The sig-
nificance of apoptosis in the initiation and progression of 
AD is well-established and widely acknowledged [5].

Moreover, a novel form of cell death known as cuprop-
tosis has recently emerged, distinguishing itself from 
other forms of regulated cell death such as oxidative 
stress-induced death, scorch death, ferroptosis, and 
necrotic apoptosis [7]. Copper is an essential trace ele-
ment that is a component of copper proteins involved in 
a variety of physiological functions, including energy pro-
duction, connective tissue production, and neurotrans-
mission [8, 9]. Based on pertinent reports, the primary 
mechanism underlying cuproptosis entails the excessive 
accumulation of lipid mitochondrial enzymes and the 
depletion of Fe–S cluster proteins during mitochondrial 
stress [10]. Furthermore, a substantial body of research 
has consistently demonstrated that mitochondrial dys-
function plays a crucial role in the progression of AD 
[11]. Previous studies have shown that metal chelators 
play an important role in improving metal homeosta-
sis (iron, copper, and zinc), inhibiting Aβ accumulation, 
inhibiting tau hyperphosphorylation, and relieving neu-
roinflammation [12]. These revelations open up novel 
avenues for the therapeutic intervention of AD. Never-
theless, despite the existing association between cuprop-
tosis and the pathogenesis of AD [13], further compelling 
evidence is required to substantiate this relationship.

Currently, scientists were mainly studying the relation-
ship between cuproptosis and AD from a mechanistic 
perspective [12]. However, the methodology employed in 
this study aimed to substantiate the correlation between 
cuproptosis and AD by contrasting the predictive efficacy 
of apoptosis models and cuproptosis models on AD.

Materials and methods
Microarray data
The microarray datasets GSE140830 (https:// ftp. ncbi. 
nlm. nih. gov/ geo/ series/ GSE14 0nnn/ GSE14 0830/ 
matrix/) and GSE26927 (https:// ftp. ncbi. nlm. nih. gov/ 
geo/ series/ GSE26 nnn/ GSE26 927/ matrix/) were down-
loaded from the Gene Expression Omnibus (GEO) 
database, which were captured by the GPL15988 and 
GPL6255 platforms, respectively. The principle of inclu-
sion of data sets were that the number of data sets was 
greater than 100 and the proportion of AD patients to 
normal samples was similar. Finally, the GSE140830 data-
set was used as a training set including 261 AD patients 

and 281 normal samples. The GSE26927 dataset served 
as a validation set including 60 AD patients and 55 nor-
mal samples.

Weighted gene co‑expression network analysis (WGCNA)
Firstly, we removed batch effects from the data and pro-
ceeded to the next step of analysis. Second, this study 
used BiocManger (Version: 1.30.10) in the R suite to 
download an R package termed WGCNA (Version: 1.70-
3), and constructed the gene co-expression network. Sub-
sequently, constructing the adjacency matrix describes 
the correlation strength between nodes. Then, converted 
the adjacency matrix to the topological overlap matrix 
(TOM). The TOM matrix was a method of quantitatively 
describing the similarity between two nodes by compar-
ing their weighted correlations with other nodes. Next, 
the hierarchical clustering recognition module included 
at least 100 genes in each module. Finally, we calculated 
feature genes, performed hierarchical clustering on mod-
ules, and merged similar modules (abline = 0.25).

Identification of apoptosis and cuproptosis‑related genes 
associated with AD
In this study, the pathways with the highest scores asso-
ciated with apoptosis were selected from the PathCards 
database (https:// pathc ards. genec ards. org/ Search/ Resul 
ts? query= apopt osis), and genes associated with apopto-
sis were obtained. The genes related to cuproptosis were 
obtained based on research related literature, including 
“Pan cancer profiles of the cuproptosis gene set”, “The 
cuproptosis-related signature predicts diagnosis and 
indicators of the acute microenvironment in breast can-
cer”, and “A novel cuproptosis-related LncRNA signa-
ture to predict prognosis in hepatocellular carcinoma” 
[14–16]. Research overlapped these genes with the AD-
related module genes in WGCNA. The study used a Venn 
diagram constructed by the ggVennDiagram package of R 
software to represent the details of overlapped genes.

Functional enrichment analysis of overlapped genes
We used the R software clusterProfiler package and the 
org.Hs.eg.db package for gene ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
for overlapped gene enrichment analysis. The GO terms 
comprised three divisions: biological process (BP), cellu-
lar component (CC), and molecular function (MF). The 
KEGG database contained pathway datasets related to 
biological functions, diseases, chemicals, and drugs.

Protein–protein interaction (PPI) network establishment 
and identification of hub genes
The study used the online tool Search Tools for Retrieval 
of Interacting Genes (STRING) (https:// cn. string- db. 

https://ftp.ncbi.nlm.nih.gov/geo/series/GSE140nnn/GSE140830/matrix/
https://ftp.ncbi.nlm.nih.gov/geo/series/GSE140nnn/GSE140830/matrix/
https://ftp.ncbi.nlm.nih.gov/geo/series/GSE140nnn/GSE140830/matrix/
https://ftp.ncbi.nlm.nih.gov/geo/series/GSE26nnn/GSE26927/matrix/
https://ftp.ncbi.nlm.nih.gov/geo/series/GSE26nnn/GSE26927/matrix/
https://pathcards.genecards.org/Search/Results?query=apoptosis
https://pathcards.genecards.org/Search/Results?query=apoptosis
https://cn.string-db.org/


Page 3 of 14Ma et al. European Journal of Medical Research          (2024) 29:495  

org/) to analyze protein interactions between apoptosis-
related overlapped genes and cuproptosis-related over-
lapped genes. Hub genes in apoptosis overlapped genes 
were screened using the CytoHubba plug-in in Cytoscape 
(Version 3.9.0). The importance of nodes was evaluated 
by Degree, Closeness, and Between, and the top 10 nodes 
were selected. Then, the screened hub genes were com-
mon nodes. Finally, the PPI network was constructed to 
visualize the hub genes related to apoptosis and the hub 
genes related to cuproptosis.

Construction and evaluation of the nomogram model
To obtain the hub genes that can better distinguish AD 
patients from the control group, we used multivari-
ate logistic regression analysis to screen the hub genes 
associated with apoptosis and the hub genes associated 
with cuproptosis that were significantly associated with 
AD. Next, we used the ggplot2 package of R software to 
build nomograms and calibration curves associated with 
hub genes for predicting AD patients. Furthermore, the 
AD prediction model was constructed based on the hub 
genes. The performance of the models in predicting AD 
was evaluated using receiver operating characteristic 
(ROC) curve analysis constructed by the pROC package 
of R and decision curve analysis (DCA) constructed by 
the rmda package of R.

Subgroup analysis
To further study the performance of the models in pre-
dicting AD, subgroup analysis was conducted on samples 
based on gender and age. The ROC curve and DCA were 
used to compare the performance of the apoptosis model 
and cuproptosis model in predicting AD.

To more comprehensively compare the differences 
between apoptosis and cuproptosis models in predict-
ing AD. We included age and sex, two clinical factors of 
significant value, into multivariate logistic regression 
analysis. Moreover, we incorporated clinical features that 
were significantly associated with AD into the model and 
established a new predictive model. Besides, the predic-
tive performance of the model was compared using ROC 
curve analysis and DCA.

External validation of the model efficacy
To verify the clinical efficacy of the models, we identi-
fied the performance of apoptosis model and cuproptosis 
model in predicting AD using the GSE26927 dataset by 
ROC curves and DCA. Secondly, subgroup analysis was 
performed according to age and sex to further evaluate 
the predictive efficacy of the two models.

Statistical analysis
We used R language (Version 3.6.3) for bioinformat-
ics analysis and SPSS 25.0 software for statistical analy-
sis of the data. Sensitivity, specificity, accuracy, positive 
predictive value (PPV), negative predictive value (NPV), 
positive likelihood ratio (PLR), and negative likelihood 
ratio (NLR) were determined. The goodness of fit for 
models were assessed by the Hosmer–Lemeshow test. 
Area under the curve (AUC) calculation was carried out 
for comparing cuproptosis-related model and apopto-
sis-related model. DCA determined the usefulness of 
the model by evaluating the net benefit under different 
threshold probabilities. P < 0.05 was deemed statistically 
significant.

Results
Weighted co‑expression network construction 
and identification of core modules
To select core models related to AD, we performed 
WGCNA. The Pearson correlation coefficient was used to 
cluster GSE140830 samples and removed outliers. When 
the soft threshold was 6 (R2 = 0.86), the scale-free net-
work was constructed (Fig.  1A, B). Then, the adjacency 
matrix was established and the TOM was constructed. 
According to the different expression types of genes, 
19 co-expression modules were ultimately obtained 
(Fig.  1C). The study analyzed the correlation between 
characteristic genes and phenotype in the modules and 
ultimately found that three modules were associated with 
AD. These three modules included the magenta module 
(508 genes) (Cor = 0.15, P = 5.7e−4), the cyan module 
(266 genes) (Cor = −0.11, P = 7.6e−3), and the blue mod-
ule (3081 genes) (Cor = −0.11, P = 0.01) (Fig. 1D).

In this study, 185 apoptosis-related genes were down-
loaded from the Pathway database, and 44 cupropto-
sis-related genes were collected from the article. Venn 
diagram showed that there were 42 apoptosis-related 
overlapped genes in the intersection of the blue module 
and apoptosis-related genes, and 9 cuproptosis-related 
overlapped genes in the intersection of the blue module 
and cuproptosis-related genes (Fig.  2A, B). There were 
6 apoptosis-related overlapped genes in the intersection 
of the cyan module and apoptosis-related genes, and 1 
cuproptosis-related overlapped genes in the intersec-
tion of the cyan module and cuproptosis-related genes 
(Fig.  2C, D). There were 5 apoptosis-related overlapped 
genes at the intersection of the magenta module and 
apoptosis-related genes, but there was no cupropto-
sis-related overlapped gene intersection between the 
magenta module and cuproptosis-related genes (Fig. 2E, 
F). Based on the above results, the overlapped genes 
of blue module and apoptosis-related genes and the 

https://cn.string-db.org/
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Fig. 1 The results of weighted gene co‑expression network analysis (WGCNA). A Analysis of the scale‑free index for various soft‑threshold powers 
(β). B Analysis of the mean connectivity for various soft‑threshold powers. C WGCNA module picture, the upper part of the tree represents the initial 
module, while the lower part represents the final module. Different colors represent different modules, while gray represents unclassified genes. D 
WGCNA module and clinical phenotype correlation diagram, behavior module, column clinical phenotype
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overlapped genes of blue module and cuproptosis-related 
genes were selected for further analysis.

Enrichment analysis of overlapped genes
To investigate the possible pathways of the apopto-
sis gene set and cuproptosis gene set, we performed a 
function enrichment analysis. The GO analysis results 
(including BP, CC, and MF) of 42 apoptosis-related 
overlapped genes are reflected in Fig.  3A. The results 
showed that overlapped genes were mainly concen-
trated in cell death, apoptotic process, and regulation 

of cell death. The results of the KEGG pathway analysis 
indicated that overlapped genes involved in apoptosis, 
NOD-like receptor signaling pathway, apoptosis-multi-
ple species, p53 signaling pathway, and MAPK signal-
ing pathway (Fig. 3B).

The GO analysis of 9 overlapped genes related to 
cuproptosis exhibited that overlapped genes were 
closely related to metal ion transport, copper ion trans-
port, and cuproptosis (Fig.  3C). The KEGG pathways 
that overlapped genes involved in included prion dis-
eases, HIF-1 signaling pathway, apoptosis, and MAPK 
signaling pathway (Fig. 3D).

Fig. 2 Venn diagram showing the number of AD‑related module genes and apoptosis‑related genes, as well as genes that overlap 
with cuproptosis‑related genes. A,B Venn diagram of blue module genes and apoptosis genes, as well as blue module genes and cuproptosis 
genes. C,D Venn diagram of cyan module genes and apoptosis genes, as well as cyan module genes and cuproptosis genes. E,F Venn diagram 
of magenta module genes and apoptosis genes, as well as magenta module genes and cuproptosis genes
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PPI network construction and hub gene identification
To screen for apoptosis genes related to AD, the study 
used CytoHubba in Cytoscape to calculate the close-
ness, betweenness, and degree between various pro-
teins and ranked them according to their correlation. 
The study selected the first 10 genes to cross, and 
finally, 8 overlapped genes were obtained, including 
BCL2, BIRC2, CASP1, CASP2, CASP3, CASP9, FADD, 
and TRADD (Fig. 4A). PPI analysis was performed on 8 
apoptosis-related hub genes and 9 cuproptosis-related 
hub genes using the STRING database. Finally, the piv-
otal genes related to apoptosis and cuproptosis were 
visualized using Cytoscape (Fig. 4B, C).

Construction and evaluation of the nomogram model
To explore the predictive efficacy of the hub genes, we 
first performed multivariate logistic regression analy-
sis. As shown in Table 1, apoptosis hub genes including 
TRADD, FADD, BIRC2, and CASP2 were significantly 
related to AD (P < 0.05), which were used for apopto-
sis model construction and visualized by nomogram 
(Fig. 5A). Calibration curve results showed that nomo-
gram predictions showed an agreement with the actual 
observations (Fig.  5B). ROC curve (AUC = 0.638) and 
DCA results exhibited that the apoptosis model had 
good performance in predicting AD (Fig. 5C, D).

Fig. 3 Enrichment analysis of overlapped genes. A Gene ontology (GO) analysis of apoptosis‑related overlapped genes. B Analysis of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway of apoptosis‑related overlapped genes. C GO analysis of cuproptosis‑related overlapped 
genes. D KEGG pathway analysis of cuproptosis‑related overlapped genes
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Meanwhile, the multivariate logistic regression analy-
sis results of the module genes related to cuproptosis 
revealed that MAP2K1, SLC31A1, and PDHB were nota-
bly associated with AD (P < 0.05) (Table  2). These three 
genes were used to cuproptosis model establishment and 
demonstrated by nomogram (Fig. 6A). Calibration curve 
results showed that nomogram predictions showed an 
agreement with the actual observations (Fig.  6B). The 
results of the ROC curve (AUC = 0.576) and DCA rep-
resented that the cuproptosis model had a certain pre-
dictive effect on AD (Fig.  6C, D). However, the AUCs 
between two groups were not statistically different 
(P = 0.055) (Table 3).

Subgroup analysis
To further evaluate the efficacy between the apoptosis 
model and the cuproptosis model in predicting AD, we 
performed the subgroup analysis. In participants aged 
≤65 or male sex, the results of the ROC curve and DCA 
revealed that the efficacy of the apoptosis model in pre-
dicting AD was not significantly different from that of the 

cuproptosis model (P > 0.05) (Fig. 7A, C, E, G; Table S1). 
In those with age >65 or sex female, the performance of 
the apoptosis model in predicting AD was higher than 
that of the cuproptosis model (P < 0.05) (Fig. 7B, D, F, H; 
Table S1).

External validation of the model efficacy
To further explore the accuracy and reliability of the 
model, the performance of the apoptosis model and 
cuproptosis model in predicting AD was verified in the 
GSE26927 dataset. ROC curve and DCA results exhib-
ited that the apoptosis model and cuproptosis model had 
certain ability in predicting AD, and there was no sig-
nificant difference between the two models (Fig.  8A, B; 
Table 4). In the age ≥65, male and female subgroups, the 
apoptosis model had no significant difference in predict-
ing AD compared with the cuproptosis model (P > 0.05) 
(Fig. 8D–F, H–J; Table S2). However, cuproptosis model 
had higher predictive ability of AD than apoptosis model 
in the age <65 group (P < 0.05) (Fig. 8C, G; Table S2).

Gene–clinical model construction
To further explore the difference between the apoptosis 
model and cuproptosis model in predicting AD, we com-
bined clinical features associated with AD to construct 
new predictive models. TRADD, FADD, BIRC2, CASP2, 
and age were significantly related to AD, which was used 
for the construction of the apoptosis-clinical model 
(P < 0.05) (Table  S3). MAP2K1, PDHB, PDHB, and age 
were significantly related to AD, which was used for the 
construction of the cuproptosis-clinical model (P < 0.05) 
(Table S4). The ROC curve and DCA indicated that the 
ability of the apoptosis-clinical model and cuproptosis-
clinical model to predict AD was similar (P = 0.116) 
(Fig. 9A, B; Table S5).

Fig. 4 Construction of protein–protein interaction (PPI) network. A Screening of apoptosis‑related overlapped genes according to the criteria. B PPI 
network construction of apoptosis‑related hub genes. C PPI network construction of cuproptosis‑related hub genes

Table 1 Multivariate logistic regression analysis of apoptosis hub 
genes

N number, 95% CI 95% confidence interval

Characteristics Total (N) Odds ratio (95% CI) P value

CASP3 542 0.594 (0.221–1.599) 0.303

CASP9 542 0.173 (0.014–2.058) 0.165

TRADD 542 4.529 (1.696–12.095) 0.003

FADD 542 7.930 (2.269–27.717) 0.001

BIRC2 542 3.537 (1.550–8.074) 0.003

CASP2 542 2.841 (1.398–5.773) 0.004

BCL2 542 0.878 (0.441–1.750) 0.712

CASP1 542 0.566 (0.317–1.009) 0.054
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Discussion
AD is a neurodegenerative disorder characterized by 
cognitive decline and memory impairment, significantly 
compromising individuals’ occupational and daily func-
tioning [17, 18]. Lesion marker of AD includes β-amyloid 
plaque precipitation and neuronal fiber entanglement of 
hyperphosphorylated tau [19]. Cuproptosis, a novel form 
of cellular demise, has been recently unveiled through 
scientific inquiry [20, 21]. Research has shown a correla-
tion with the occurrence of AD, but there is no direct evi-
dence to prove it. Consequently, this study aims to delve 
deeper into the role of cuproptosis in the assessment of 
prognosis and treatment of AD patients.

The study used the GEO database to obtain data on 
a total of 542 samples, including 261 patients with AD 
and 281 normal samples. Additionally, three module 
gene sets associated with AD were procured through 
the application of WGCNA. Subsequently, a total of 44 

Fig. 5 The efficiency of a model constructed from apoptosis‑related hub genes in predicting AD. A The nomogram predicts the occurrence of AD, 
which includes apoptotic genes TRADD, FADD, BIRC2, and CASP2. B Calibration curve of the nomogram. C,D ROC curve analysis and DCA were used 
to evaluate the prediction performance of the apoptosis gene model. TPR, true positive rate; FPR, false positive rate; AUC, area under the curve; CI, 
confidence interval

Table 2 Multivariate logistic regression analysis of cuproptosis 
hub genes

N number, 95% CI 95% confidence interval

Characteristics Total (N) Odds ratio (95% CI) P value

COX17 542 0.828 (0.361–1.898) 0.655

LIPT1 542 0.138 (0.009–2.226) 0.163

MAP2K1 542 3.843 (1.466–10.073) 0.006

MAP2K2 542 1.154 (0.548–2.429) 0.706

MTF1 542 1.880 (0.659–5.363) 0.238

PDHB 542 0.279 (0.105–0.738) 0.010

SCO1 542 0.329 (0.028–3.807) 0.374

SLC31A1 542 0.025 (0.112–0.017) 0.025

SOD1 542 1.600 (0.787–3.250) 0.194
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genes associated with apoptosis and 9 genes associated 
with cuproptosis were identified through the intersection 
of the apoptosis gene set, the cuproptosis gene set, and 
three AD-related module gene sets.

Based on the results of the enrichment analysis of over-
lapped genes, we found that the MAPK signaling path-
way was closely related to apoptosis and cuproptosis. 

Previous research has demonstrated that cadmium can 
induce apoptosis in retinal pigment epithelium cells by 
activating the MAPK signaling pathway [22]. There were 
also studies indicating that the MAPK signaling pathway 
is involved in DSF/Cu induced death in cancer [23]. This 
pathway and other factors had been reported to cause Aβ 
and hyperphosphorylated tau proteins to aggregate in 

Fig. 6 The efficiency of a model constructed from cuproptosis‑related hub genes in predicting AD. A The nomogram predicts the occurrence 
of AD, and the genes responsible for cuproptosis in the column chart include MAP2K1, SLC31A1, and PDHB. B Calibration curve of the nomogram. 
C,D ROC curve analysis and DCA of the cuproptosis model. TPR, true positive rate; FPR, false positive rate; AUC, area under the curve; CI, confidence 
interval

Table 3 ROC curve analysis of two prediction models

AUC  area under the curve, 95% CI 95% confidence interval

AUC 95% CI Specificity Sensitivity Accuracy P value

All samples

Apoptosis 0.636 0.589–0.683 0.506 0.712 0.612 0.055

Cuproptosis 0.576 0.528–0.623 0.460 0.658 0.563
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the brain and induce neuronal apoptosis in AD [24, 25]. 
Based on the previous research, it can be inferred that 
there is a connection between the mechanisms of apop-
tosis and cuproptosis in the progression of AD.

Through multivariate logistic regression analysis, four 
apoptosis-related hub genes (TRADD, FADD, BIRC2, 
and CASP2) and three cuproptosis-related hub genes 

(MAP2K1, SLC31A1, and PDHB) were identified. Subse-
quently, this study examined the potential mechanisms of 
action of each hub gene in cuproptosis in AD. MAP2K1 
is an important member of the mitogen-activated pro-
tein kinase family, also known as MEK1, which plays a 
role in cell proliferation and apoptosis. In hepatocellular 
carcinoma, miR-539 could directly target and regulate 

Fig. 7 The performance of the apoptosis model and cuproptosis model in predicting AD in different subgroups. A–D ROC curve of AD 
predicted by the apoptosis model and cuproptosis model in each clinical subgroup. E–H The DCA of AD was predicted by the apoptosis model 
and cuproptosis model in each clinical subgroup. TPR, true positive rate; FPR, false positive rate; AUC, area under the curve; CI, confidence interval; A, 
apoptosis; C, cuproptosis
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Fig. 8 External validation of the apoptosis model and cuproptosis model. A,B ROC curves and DCA of apoptosis model and cuproptosis model 
in GSE26927. C–F The models predicted the ROC curve of AD in each clinical subgroup. G–J The models predicted the DCA of AD in each clinical 
subgroup. TPR, true positive rate; FPR, false positive rate; AUC, area under the curve; CI, confidence interval; A, apoptosis; C, cuproptosis
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MAP2K1 to inhibit the proliferation, migration, and 
invasion of hepatocellular carcinoma, and promote cell 
apoptosis [26]. In gastric cancer, miRNA-34c-5p inhib-
ited the proliferation, migration, and invasion of gastric 
cancer cells through MAP2K1 [27]. Studies in AD have 
exhibited that trametinib can increase autophagic lysoso-
mal activity through TFEB activation, thereby inhibiting 
MEK, thereby protecting neurons from Aβ loading [28]. 
SCL31A1 encodes the copper transporter Ctr1, which is 
a fundamental player in the maintenance of human cop-
per homeostasis. Pan-cancer analysis of SLC31A1 indi-
cated that it plays a key role in lung, stomach, kidney, and 
colorectal cancers [29]. Studies related to fruit flies have 
shown that inhibiting Ctr1 in the nervous system of dros-
ophila can effectively improve Aβ42-induced Alzheimer’s 
disease-like symptoms [30]. Pyruvate dehydrogenase E1 
subunit beta (PDHB) is a cuproptosis acid gene located in 
mitochondria that converts pyruvate to acetyl coenzyme 
A. Studies on colon cancer have shown that miR-146b-5p 
can directly target PDHB, thereby participating in regu-
lating the growth, invasion, and metabolism of colon can-
cer cells [31]. In clear cell renal cell carcinoma, low PDHB 
expression was strongly associated with an increased risk 
of tumor progression in clear cell renal cell carcinoma 

[32]. Furthermore, a discernible correlation between 
PDHB and AD was also identified [33]. Therefore, it can 
be inferred that the pivotal gene in the cuproptosis model 
exhibits a strong connection with AD.

Studies have exhibited that the change of copper 
homeostasis is closely related to the pathogenesis of AD, 
and copper may interact with the pathogenic factors of 
Aβ and tau [20]. Copper can also directly bind to Aβ 
peptides, thereby increasing the aggregation of Aβ and 
enhancing neurotoxicity [34]. In addition, in AD patients, 
copper may play a pathogenic role in tau proteins, such 
as triggering phosphorylation and clustering of tau pro-
teins, thereby enhancing the neurotoxicity of tau aggre-
gates [35, 36]. Thus, cuproptosis might be related to the 
progression of AD via interacting with Aβ and regulating 
tau proteins.

Apoptosis model and cuproptosis model were devel-
oped to predict AD based on hub genes. The findings 
from the nomogram, calibration curve, ROC curve 
analysis, and DCA consistently demonstrated that both 
the apoptosis model and cuproptosis model exhibited 
comparable efficacy in predicting AD, which was vali-
dated by the GSE26927 dataset. To verify this conclu-
sion, the model further combined clinical features of 

Table 4 ROC curve analysis of two prediction models in GSE26927

AUC  area under the curve, 95% CI 95% confidence interval

AUC 95% Specificity Sensitivity Accuracy P value

All samples

Apoptosis 0.612 0.509–0.714 0.267 0.964 0.600 0.857

Cuproptosis 0.596 0.492–0.701 0.717 0.473 0.600

Fig. 9 Comparison of apoptosis and cuproptosis models in predicting AD performance after incorporating clinical features. A Two models predict 
AD’s ROC curve analysis. B Two models predict the DCA of AD. TPR, true positive rate; FPR, false positive rate; AUC, the area under the curve. AUC, 
area under the curve; 95% CI, 95% confidence interval
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age, and the results indicated that the performance 
of the new apoptosis model and the new cupropto-
sis model in predicting AD was also comparable. The 
investigation of relevant literature indicates that apop-
tosis is closely related to the occurrence and devel-
opment of AD [6]. In summary, the research results 
further confirm the crucial role of cuproptosis in the 
occurrence and development of AD.

This study has some advantages. First, the innovation 
of this paper is to compare the efficacy of cuproptosis-
related model and apoptosis-related model in predict-
ing AD by constructing multiple models and subgroup 
analysis, so as to prove the value of copper death in AD. 
Second, we construct a cuproptosis model with good 
performance in predicting AD. Third, we identified 
MAP2K1, SLC31A1, and PDHB as potential biomark-
ers for AD. This study exhibits certain limitations. First, 
when the two modules with the strongest correlation 
with AD intersected with the apoptosis gene set and 
the cuproptosis gene set, it was found that the num-
ber of overlapped genes was too small to continue the 
analysis. Therefore, the study selected modules with a 
weaker correlation with AD for further analysis. Sec-
ondly, the gene set related to cuproptosis is derived 
from existing research findings, and there are still more 
genes to be discovered. Thirdly, there is a lack of experi-
mental validation, and relevant experiments are needed 
to further validate the research results of this article. 
Since the broader populations might be as the factors 
such as age, genetic diversity, and disease severity can 
influence the generalizability of prediction models, the 
insufficient sample size of this study will lead to the 
limitation of the applicable population of the model. 
Therefore, the findings should be verified in a larger 
cohort.

Conclusion
In conclusion, cuproptosis plays a very important role 
in the progression of AD, providing a more direct theo-
retical basis for the treatment of AD. The hub genes 
associated with cuproptosis can serve as biomarkers for 
diagnosing and treating AD.
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