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Abstract 

Background:  Tumors in radiologically dense breast were overlooked on mammograms more often than tumors in 
low-density breasts. A fast reproducible and automated method of assessing percentage mammographic density 
(PMD) would be desirable to support decisions whether ultrasonography should be provided for women in addition 
to mammography in diagnostic mammography units. PMD assessment has still not been included in clinical routine 
work, as there are issues of interobserver variability and the procedure is quite time consuming. This study investi‑
gated whether fully automatically generated texture features of mammograms can replace time-consuming semi-
automatic PMD assessment to predict a patient’s risk of having an invasive breast tumor that is visible on ultrasound 
but masked on mammography (mammography failure).

Methods:  This observational study included 1334 women with invasive breast cancer treated at a hospital-based 
diagnostic mammography unit. Ultrasound was available for the entire cohort as part of routine diagnosis. Computer-
based threshold PMD assessments (“observed PMD”) were carried out and 363 texture features were obtained from 
each mammogram. Several variable selection and regression techniques (univariate selection, lasso, boosting, random 
forest) were applied to predict PMD from the texture features. The predicted PMD values were each used as new pre‑
dictor for masking in logistic regression models together with clinical predictors. These four logistic regression models 
with predicted PMD were compared among themselves and with a logistic regression model with observed PMD. The 
most accurate masking prediction was determined by cross-validation.

Results:  About 120 of the 363 texture features were selected for predicting PMD. Density predictions with boosting 
were the best substitute for observed PMD to predict masking. Overall, the corresponding logistic regression model 
performed better (cross-validated AUC, 0.747) than one without mammographic density (0.734), but less well than 
the one with the observed PMD (0.753). However, in patients with an assigned mammography failure risk >10%, 
covering about half of all masked tumors, the boosting-based model performed at least as accurately as the original 
PMD model.

Conclusion:  Automatically generated texture features can replace semi-automatically determined PMD in a predic‑
tion model for mammography failure, such that more than 50% of masked tumors could be discovered.

Keywords:  Mammography screening, Texture analysis, Masking, Mammographic density, Sensitivity, Risk prediction, 
Variable selection
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Background
The effort to improve breast cancer detection faces sev-
eral challenges. One of these is how to integrate differ-
ent diagnostic methods into a single diagnostic process. 
Although mammography screening programs do not 
include ultrasonography, some diagnostic mammography 
units do use ultrasound. However, no systematic guide-
lines are currently available to indicate when ultrasound 
should be used and when not. Some diagnostic units use 
ultrasound for every patient, but others do so only for 
certain indications, such as dense breasts, or if the patient 
requests it [1]. The reasons for the unsystematic way in 
which ultrasound is used lie in the associated costs and 
the lack of prediction models capable of identifying those 
patients in whom an additional method would increase 
sensitivity without necessarily decreasing specificity.

A recent study investigated risk factors for masking of 
invasive breast tumors on mammograms [2]. The authors 
showed that the probability of a tumor being detected on 
ultrasound but not on mammography (mammography 
failure) depended on the patient’s age, body mass index 
(BMI), previous breast surgery, and percentage mam-
mographic density (PMD). PMD was the strongest pre-
dictor of mammography failure. Tumors in dense breasts 
were overlooked more often than tumors in low-density 
breasts. Other studies, in which ultrasound was incor-
porated into screening programs for women with dense 
breasts, have also reported that sensitivity for tumor 
detection increased but specificity decreased when ultra-
sound was added to mammography [3, 4].

In clinical practice, PMD assessment has still not been 
included in clinical routine work, as there are issues of 
interobserver and intermethod variability and the proce-
dure is quite time consuming [5, 6]. In research settings, 
two readers usually determine the proportion of dense 
breast using semiquantitative software analysis. In clini-
cal routine, a fast, reproducible and automated method 
of assessing PMD would be desirable to help physicians 
decide whether ultrasonography should be provided for 
a woman in addition to mammography. Since texture 
features in the mammogram are useful for predicting the 
risk of breast cancer and estimating mammographic den-
sity [7–16], applying an adequate feature set might be a 
way of obtaining information from the mammogram that 
would be helpful in replacing mammographic density 
assessment.

The aim of the present study was, therefore, to inves-
tigate to which extent fully automatically generated 
texture features can replace time-consuming semi-auto-
matic assessment of mammographic density to predict 
a patient’s risk of having an invasive breast tumor that 
is visible on ultrasound but not on mammography, in a 
diagnostic mammography setting.

Methods
Study population
The patients in this retrospective study of prospectively 
acquired data were selected from all breast cancer patients 
who were diagnosed and treated at the University Breast 
Center for Franconia, Erlangen University Hospital, 
between 2000 and 2009 and whose initial mammography 
was performed there, i.e., all mammograms were done at 
the point of the initial diagnosis of breast cancer. Patients 
are referred to the breast center to identify the need for a 
diagnostic biopsy. No invasive procedures had been car-
ried out before the patient’s referral to the hospital, and 
women whose breast cancer was initially discovered in 
the screening program were not included. The institu-
tion’s diagnostic procedures require that all patients are 
examined with both mammography and additional ultra-
sound, regardless of the result of either imaging method 
and regardless of any patient characteristics.

Patients were selected in the following hierarchical 
order from a total of 3974 breast cancers registered in the 
breast center’s database: invasive breast cancer (exclud-
ing 486 patients with in  situ cancers); no contralateral 
breast cancer (excluding 412 patients); mammography 
at primary diagnosis performed at the university breast 
center (excluding 1688 patients); physical availability of 
mammograms for the affected and contralateral sides 
(excluding five patients); availability of a structured 
Breast Imaging Reporting and Data System (BI-RADS) 
or analogous assessment of the mammogram and ultra-
sound scan (excluding 49 patients).

Clinical data
All patient characteristics were documented as part of 
the certification processes required by the German Can-
cer Society (Deutsche Krebsgesellschaft) and by the Ger-
man Society for Breast Diseases (Deutsche Gesellschaft 
für Senologie) [17].

Mammograms for the breast cancer patients partici-
pating were considered as mammography failures and as 
masked if the diagnostic assessment of the mammogram 
was BI-RADS 2 or 1. A total of 108 unsuspicious mam-
mograms from patients with suspicious lesions on the 
corresponding ultrasound were reviewed again, and one 
case was found that was reclassified as BI-RADS 4 and no 
longer regarded as a mammography failure.

Observed mammographic density
The mammograms were digitized using the CAD PRO 
Advantage® film digitizer (VIDAR Systems Corpora-
tion, Herndon, Virginia, USA). Both analog images and 
printouts of digital mammograms were used. Quantita-
tive computer-based threshold density assessments were 
carried out in 2011 and 2012 by two different readers 
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(C.C.H., K.H) with 6 and 5  years of experience in the 
method used [18]. Each mammogram was read in ran-
dom order by both readers independent of each other. 
To assess the density proportion, the readers used the 
Madena Software Program, version X (Eye Physics, LLC, 
Los Alamitos, CA, USA). Only the measurements for the 
contralateral healthy breast were used for analysis. Both 
readers were unaware of any previous classifications or 
pathological findings. Averages of the two observers’ val-
ues for PMD were used for analysis.

Image analysis
A total of 363 texture features were calculated to char-
acterize the mammographic images in the present study. 
Since an image is made up of pixels, it can be represented 
as a matrix in which each entry is an integer from 0 to 
255, describing the gray value of the corresponding pixel. 
Generally speaking, texture features provide informa-
tion about the gray-level distribution within an image 
or image region to distinguish between light and dark 
images—in this case, dense and soft breasts. Texture 
features may also provide information about the spatial 
relationship between gray levels, to distinguish between 
homogeneous and heterogeneous images and between 
cloudy and sharp patterns. There are also features that 
recognize periodicity of pattern [9].

Families of texture features used for analyses have been 
described previously [7]. Briefly:

Moment-based features (n =  76 features) They describe 
the gray-level distribution without regard to the spatial 
relationships of pixels. The central moments (mean, vari-
ance, skewness, kurtosis), normalized central moments 
(NCM), and transformations of the NCM belong to this 
feature family.

Histogram features (n = 16) The full spectrum of all gray 
levels was equally divided into 16 categories. The fre-
quency of pixels in a specific category is called the histo-
gram feature. Obviously, there are 16 histogram features.

Markovian features (n  =  93) They describe the spatial 
relationship of pixels. They are computed on the basis of 
measurements derived from co-occurrence matrices or 
sum and difference histograms. A co-occurrence matrix 
measures the probability that two pixels of certain gray 
levels will be positioned at a particular distance and ori-
entation. A sum histogram and accordingly a difference 
histogram count all combinations of two pixels with a 
particular distance, orientation and sum and difference of 
gray levels, respectively.

Regional features (n = 48) Pixels are clustered to regions 
in accordance with a similarity criterion. The criterion 
may depend on the distance, or the gray level, or both. 

A regional feature then characterizes the number of 
regions, the shape of the regions, or the gray-level distri-
bution of the regions.

Run-length features (n = 60) They examine runs of simi-
lar gray levels in an image. Runs may be labeled according 
to their length, gray value, and direction. Long runs of the 
same gray value correspond to coarser textures, whereas 
shorter runs correspond to finer textures.

Fourier features (n = 33) They characterize image regions 
that show periodic structures. The image was trans-
formed to a Fourier space. Then features are extracted 
from different portions of the Fourier space correspond-
ing to low- and high-frequency image content.

Wavelet features (n  =  37) They characterize spectral 
properties such as periodic structures at various spatial 
resolution levels. The image was iteratively transformed 
into four sub-images based on frequency content and 
orientation using wavelets. The features describe the 
energy of the sub-images. Sub-images of different levels 
correspond to different scales. Hence, this feature group 
extracts features for different scales.

Statistical analysis: preselection of texture features
Box plots were created for all 363 features. Four very 
skew-distributed features were excluded after visual 
inspection of the box plots. The features were randomly 
ordered, and Spearman’s correlation coefficients were 
calculated for all pairs of features among the remaining 
359 features. Each feature with a correlation >0.98 with a 
higher ranked feature was excluded to obtain a feature set 
without highly correlated features. Some basic features 
(central moments, histogram features) that had proved to 
be predictive in a previous study [7] were accepted with-
out preselection. In total, 218 features were considered 
for further analysis.

Statistical analysis: prediction of PMD
Identifying relevant predictors for PMD among the rela-
tively high number of texture features was a challenge, 
which can be summed up as follows. The complete data-
set was randomly divided into two parts: one training set 
with about two-thirds of the patients and one validation 
set with about one-third of the patients. Different feature 
selection methods and regression techniques, respectively, 
were applied to training data to obtain PMD predictions. 
All of the regression techniques considered comprise a 
bundle of candidate models characterized by a tuning 
parameter λ. The optimal λ has to be determined before 
a specific prediction model representing the regression 
technique can be fitted to predict PMD. The following 
regression techniques were applied to training data:
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Univariate selection For each feature, a linear regression 
model with the specific feature was set up and a global F 
test was performed. The features were ordered according 
to increasing p values for these F tests. The λ top-ranked 
features were selected and included in a multiple lin-
ear regression model. Here λ, ranging from 1 to 150, is 
a tuning parameter representing the number of selected 
features.

Lasso (least absolute shrinkage and selection operator) 
[19] It is a regression technique in which the regression 
coefficients are shrunk towards zero. The amount of 
shrinkage is controlled by a tuning parameter λ. Depend-
ing on the value of λ, a number of coefficients reach 
exactly zero, which means that lasso is also a variable 
selection method. In this study, we set up a regression 
model with all features. The coefficients of the features 
were shrunk by variation of λ. In contrast to the usual 
regression models, lasso can deal with large numbers of 
predictors.

Component-wise gradient boosting [20, 21] It fits a regres-
sion model iteratively. It starts with an empty model with-
out any predictors. In each iteration, the best-performing 
predictor is added to the model with a small step size, or 
its coefficient is updated if it was included before. More 
relevant predictors are included earlier than less relevant 
ones. The number of iterations λ is a tuning parameter 
that controls the number of selected predictors and the 
shrinkage of the coefficients.

Random forest [22] A forest consisting of many deci-
sion trees was fitted to the data. Each tree is based on 
binary splits of randomly chosen features. This technique 
already takes into account overfitting during the fitting 
process, and nonlinear relationships between predictors 
and outcome are considered. The number of variables 
randomly sampled as candidates at each split was con-
trolled by a tuning parameter λ.

The optimal λ for each method except for random for-
est was found by 10-fold cross-validation on the train-
ing dataset. For a given value of λ, the prediction model 
was estimated on nine folds and then applied on the 
tenth fold. The mean squared error (MSE) was taken as 
the evaluation measure. The MSE is a summary meas-
ure of the differences between the observed PMD val-
ues for patients in the tenth fold, which was not used for 
model building, and their predicted PMD values using 
the regression model. This procedure was done ten times, 
leaving one fold out at a time, and the average MSE was 
calculated. The λ value with the smallest average MSE 
was regarded as the optimal λ. The whole training set 
was finally used to fit a regression model with the opti-
mal λ. At random forest, various forests depending on λ 

were fitted to the training dataset, and the forest with the 
smallest out-of-bag error was selected.

The procedures described above resulted in four 
regression models each for predicting PMD. Four contin-
uous variables with PMD predictions were generated on 
training data and validation data, respectively, by apply-
ing the regression models to the corresponding datasets.

Statistical analysis: prediction of masking
The binary outcome variable “masking status” was cre-
ated to distinguish between patients whose tumor was 
detected with ultrasonography but not with mammog-
raphy (status = 1) and those whose tumor was detected 
with mammography, regardless of the ultrasonography 
result (status = 0). The primary aim of the study was to 
generate a continuous variable that predicts PMD from 
texture features (“predicted PMD”) and could replace 
the semi-automatically determined predictor PMD 
(“observed PMD”) in the prediction model for masking 
proposed in a previous study [2].

The new PMD predictors based on univariate selec-
tion, lasso, boosting and random forest, respectively, 
were each entered into a logistic regression model on the 
training data, together with the clinical predictors from 
the previously proposed prediction model for masking, 
i.e., age (continuous), BMI (continuous), previous breast 
surgery (yes/no), HRT status and menopausal status (pre-
menopausal, postmenopausal and no HRT usage, post-
menopausal and HRT usage), and imaging technique 
(digital/analog) [2].

The logistic regression models were evaluated on the 
validation dataset to measure their performance in new 
patients. They were fitted on the training dataset and, 
again, the MSE on the validation dataset was taken as a 
performance criterion. Here, the MSE is a summary sta-
tistic of the differences between the observed masking 
status (either 0 or 1) of patients from the validation set 
and the expected probability obtained from the model 
(between 0 and 1) for these patients having status = 1. 
Furthermore, a null model without any predictors, the 
clinical logistic regression model without PMD, and a 
logistic regression model with clinical predictors and 
the observed PMD as in [2] were fitted on the training 
data and their MSEs were calculated with the validation 
data.

The predictive performance of the logistic regression 
models, in terms of discriminating between overlooked 
and detected tumors, was assessed using the receiver 
operating characteristic (ROC) curve, the area under the 
ROC curve (AUC) and the continuous net reclassifica-
tion improvement (NRI). Roughly speaking, the contin-
uous NRI is the proportion of patients with overlooked 
or detected tumors who are correctly given a higher or 
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lower predicted probability of masking by the regres-
sion model with mammographic density, rather than by 
the clinical model without PMD, corrected by wrongly 
assigned lower or higher probabilities [23].

To demonstrate a possible future application of a pre-
diction model, various cut-off points for the masking 
risk between 0 and 100% were defined, e.g., 12%. Sub-
jects were classified as “low risk” if the prediction model 
assigned a masking risk below 12%. Otherwise, they were 
classified as “high risk.” Discovery rates—i.e., the pro-
portion of patients classified as “high risk” among true 
masked tumors—are presented.

To overcome the drawbacks of only splitting the data 
into training and validation sets once, we divided the 
dataset several times into training and validation sets 
and repeated the procedure described above each time 
[24]. More precisely, 3-fold cross-validation with 100 
repetitions was done. For each regression technique for 
predicting PMD, the average value of the 300  MSEs of 
the corresponding logistic regression models was taken 
as a final evaluation criterion. The regression technique 
with the smallest average MSE in logistic regression is 
regarded as the best method (the “winner” method) for 
substituting the semi-automatically assessed PMD by 
an automatically generated PMD in a logistic regression 
model for predicting masking. The average AUC and 
average NRI were used as further criteria.

The best prediction method was applied to the whole 
dataset to obtain the final prediction model for masking. 
This was done by repeating all model building steps, this 
time not on the training data, but on the complete data-
set. That is, the tuning parameter λ was determined as 
described above and a corresponding regression model 
was fitted on the complete dataset to obtain predicted 
PMD values, which were entered into a logistic regres-
sion together with clinical predictors.

Statistical analysis: prediction of PMD (part 2)
The best regression technique for substituting the 
observed PMD to predict masking as well as possible 
does not need to be the most accurate technique for pre-
dicting PMD itself. A comparison of the regression tech-
niques in relation to PMD prediction performance was a 
secondary study aim. The prediction performance of the 
regression models was assessed using the average MSE 
and the average R2 statistic on validation datasets.

Calculations were carried out using the R system for sta-
tistical computing (version 3.0.1; R Core Team, Vienna, 
Austria, 2013). Particularly, the R packages mboost (version 
2.2-3), randomForest (version 4.6-7) and glmnet (version 1.9-
5) were used to fit boosting, random forest and lasso models.

Results
Patient characteristics
A total of 1334 patients were included in the analysis. The 
percentages of missing data for each variable were below 
5%. Missing values were imputed, as described previously 
in [2]. In all, 107 patients (8.0%) had tumors that were 
detected with ultrasound alone but not with mammogra-
phy. Clinical data are shown in Table 1.

Prediction of PMD (secondary study aim)
The results, after the evaluation procedures were applied 
to each of the four prediction methods, are summa-
rized in Table 2. Lasso turned out to be the most accu-
rate feature selection method and had a slightly smaller 
cross-validated prediction error MSE than boosting. 

Table 1  Patient characteristics in  relation to  mammogra-
phy failure (yes/no)

Mean and standard deviation (SD) are shown for continuous characteristics, and 
frequency and percentage for categorical characteristics

BMI body mass index, HRT hormone replacement therapy, PMD percentage 
mammographic density, US ultrasonography

Characteristic Visible on mammog-
raphy and US

Visible only on US 
(mammography 
failure)

Mean  
or n

SD  
or %

Mean  
or n

SD  
or %

Age 60.2 12.5 52.5 12.1

BMI 26.4 4.7 23.7 3.5

PMD 34.5 18.3 51.3 20.5

Previous breast surgery

 No 1080 87.4 79 80.6

 Yes 156 12.6 19 19.4

Menopausal and HRT status

 Premenopausal 269 21.8 46 46.9

 Postmenopausal and 
no HRT

721 58.3 28 28.6

 Postmenopausal and 
HRT

246 19.9 24 24.5

Imaging technique

 Analog 761 61.6 55 56.1

 Digital 475 38.4 43 43.9

Table 2  Prediction of PMD

Summary statistics (mean and standard deviation) of mean squared error (MSE) 
and R2 obtained from (linear) regression models with selected features, as 
well as the number of selected features N, are shown. All measurements were 
obtained by 3-fold cross-validation with 100 repetitions

MSE mean squared error, PMD percentage mammographic density
a  There was no variable selection with random forest

Method MSE R2 N

Univariate selection 117.0 (8.6) 0.67 (0.02) 132.5 (9.7)

Lasso 111.9 (8.4) 0.69 (0.02) 108.8 (12.9)

Boosting 113.0 (8.6) 0.68 (0.02) 126.1 (8.8)

Random forest 120.2 (9.7) 0.66 (0.03) –a
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Univariate selection and random forest performed dis-
tinctly less well than lasso and boosting. As expected, 
smaller prediction errors are reflected in larger R2 val-
ues. The average number of selected features is relatively 
large, with more than half of all considered features. 
Fig.  1 shows the observed mammographic density and 
predictions on a validation dataset using lasso and 
boosting models that had previously been fitted on 
training data.

After lasso and boosting had been found to be the best 
prediction techniques, a lasso and a boosting model were 
fitted on the whole dataset for analysis in greater detail 

(Table 3). Features from all feature families were selected. 
Nearly all histogram features were selected by both lasso 
and boosting. A higher than average number of features 
were taken from the wavelet and regional family. Nearly 
90% of the boosting features were also selected by lasso. 
As expected, features that strongly correlated with PMD 
were preferred in the selection procedures. The features 
with the highest correlation with PMD within a feature 
family were almost always chosen in both models. The 
median correlation coefficients of the selected features 
were similar to the median correlation coefficients of 
the complete feature set, indicating that in total, selected 

Fig. 1  Predicted and observed percentage mammographic density (PMD) values on a validation dataset (one-third of the patients), based on linear 
regression models fitted on a training dataset (two-thirds of the patients) using lasso (a) and boosting (b)

Table 3  Selected texture features for predicting percentage mammographic density (PMD)

a  Selected number of features using lasso and boosting method, respectively, to predict PMD. Prediction models were fitted on the complete dataset. The tuning 
parameters were estimated by cross-validation
b  Number of features selected both by lasso and boosting
c  Each feature was correlated with PMD. Summary statistics (median, minimum, maximum) of Spearman correlation coefficients between (all and selected) features 
and PMD are shown

Feature family Number of features Correlation with PMD
Median (min., max.)c

All Lassoa Boostinga Commonb All Lasso Boosting

Fourier 12 9 9 6 0.16 (0.03, 0.28) 0.10 (0.03, 0.28) 0.12 (0.03, 0.28)

Histogram 14 13 13 12 0.18 (0.00, 0.25) 0.19 (0.00, 0.25) 0.17 (0.00, 0.25)

Markovian 37 24 24 20 0.44 (0.00, 0.72) 0.39 (0.00, 0.72) 0.43 (0.00, 0.72)

Moment-based 70 54 33 32 0.21 (0.00, 0.61) 0.21 (0.00, 0.61) 0.21 (0.00, 0.61)

Regional 45 36 32 28 0.22 (0.01, 0.52) 0.23 (0.03, 0.52) 0.20 (0.01, 0.52)

Run length 28 18 15 12 0.59 (0.04, 0.71) 0.60 (0.15, 0.70) 0.62 (0.04, 0.71)

Wavelet 12 10 8 8 0.24 (0.01, 0.42) 0.26 (0.06, 0.42) 0.26 (0.06, 0.31)

Total 218 164 134 118
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features and not-selected features behaved similarly with 
regard to correlation with PMD. Particularly, many fea-
tures that hardly correlate with PMD were selected.

Prediction of masking (primary study aim)
The PMD prediction from boosting (cross-validated 
MSE, 0.0654) and, slightly less well, lasso (0.0655) turned 
out to be the best replacement for the observed PMD 
in the logistic regression model for predicting masking 
(Table  4). The original logistic regression model with 
observed PMD, however, was more accurate (0.0645). 
Each model with observed or predicted PMD performed 
better than the clinical model without PMD (0.0657).

The AUC values of the logistic regression models with 
predicted PMD based on lasso and boosting (cross-vali-
dated AUC, both 0.747) were in the middle between that 
of the clinical model (0.734) and that of the observed PMD 
model (0.753), indicating an improved ability of these 
models to differentiate between patients whose tumor will 
be overlooked and patients whose tumor will not be over-
looked in comparison with the clinical model. As with the 
MSE, the AUCs for univariate selection and random forest 
were poorer than those of boosting and lasso, but still bet-
ter than that of the clinical model without PMD.

All methods except random forest correctly increased 
the predicted probabilities of masking for the major-
ity of patients with a masked mammogram in compari-
son with the clinical model (“correct reclassification 
upwards” in Table  4). Lasso and boosting showed the 
largest improvement, followed by the model with the 
observed PMD and univariate selection. In patients 

without a masked mammogram, all methods correctly 
decreased the predicted probabilities for the major-
ity of patients (“correct reclassification downwards” in 
Table  4). In total, the reclassification improvement of 
the model with the observed PMD (cross-validated NRI, 
35.7%) was slightly better than the models with pre-
dicted PMD based on boosting (32.5%) or lasso (33.1%), 
and much better than the models with predicted PMD 
using univariate selection (27.9%) or random forest 
(4.4%, Table 4).

Discovery rates are presented for the boosting model, 
the winner in the method comparison, in Table  5, and 
compared with the clinical model and the observed PMD 
model. The discovery rates for the boosting model are 
generally better than those of the clinical model. They 
are slightly better than those for the observed PMD 
model for cut-off points up to 10%, but poorer thereaf-
ter. For instance, if a physician decides to offer ultra-
sound to women with a predicted risk of masking of 
more than 10%, then 57.7% of all tumors that are missed 
with diagnosis relying on mammography alone will be 
detected with the boosting model, in comparison with 
55.6% with the original PMD model. Assuming that the 
general population has a similar risk distribution, addi-
tional ultrasound would be necessary in 26.4% of all 
women presenting at a diagnostic mammography unit. 
The ROC curves shown in Fig.  2 for all possible cut-off 
points confirm that the boosting model lies between the 
clinical model and the observed PMD model. Table 6 lists 
the coefficients of the logistic regression model with pre-
dicted PMD using boosting.

Table 4  Prediction of masking

Summary statistics (mean and standard deviation) of MSE, AUC, and the net reclassification improvement (NRI) in percentages obtained from logistic regression 
models with clinical predictors and the observed or predicted PMD using various regression methods. All measurements were obtained by 3-fold cross-validation with 
100 repetitions

AUC area under the curve, BMI body mass index, HRT hormone replacement therapy, MSE mean squared error, NRI net reclassification improvement, PMD percentage 
mammographic density
a  Logistic regression model without any predictors
b  Logistic regression model with clinical predictors (age, BMI, prior breast surgery, menopausal and HRT status, imaging technique) but without PMD
c  Logistic regression model with clinical predictors and PMD predicted from texture features using univariate selection, lasso, boosting, or random forest
d  Logistic regression model with clinical predictors and the original PMD values (“observed PMD”)

Method MSE AUC NRI Reclassification

Correctly upwards Correctly downwards

Nulla 0.0682 (0.0095) 0.500 (0.000)

Clinical findingsb 0.0657 (0.0085) 0.734 (0.037)

Univariate selectionc 0.0656 (0.0085) 0.743 (0.036) 27.9 (16.2) 57.9 (9.1) 56.1 (3.0)

Lassoc 0.0655 (0.0084) 0.747 (0.036) 33.1 (15.6) 60.0 (8.7) 56.6 (3.0)

Boostingc 0.0654 (0.0084) 0.747 (0.036) 32.5 (15.5) 59.8 (8.6) 56.5 (3.0)

Random forestc 0.0656 (0.0087) 0.739 (0.035) 4.4 (16.3) 45.1 (9.0) 57.1 (3.4)

Observed PMDd 0.0645 (0.0082) 0.753 (0.036) 35.7 (14.4) 58.5 (8.2) 59.4 (2.9)
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Discussion
The study shows that prediction of masking on diagnos-
tic mammograms can be improved if mammographic 
density estimations using texture features are added to a 
prediction rule based on age, BMI, prior surgery, meno-
pausal and HRT status, and imaging technique. How-
ever, the overall performance of such a prediction model 
was inferior to a prediction model with semi-automated 
measurements of PMD. Nonetheless, a clinically rel-
evant group of patients was identified in which the new 

prediction model performed at least as well as the tradi-
tional one. A clinical application for this automated algo-
rithm might be envisaged in automated fusion machines 
performing mammography and additionally ultrasound 
in case of increased risk of masking.

In patients with a predicted risk of masking greater 
than 10%, the boosting model outperformed the semi-
automated prediction model from [2] in relation to the 

Table 5  Discovery rates for three models and different cut-off points

All measurements were obtained by 3-fold cross-validation with 100 repetitions

BMI body mass index, HRT hormone replacement therapy, PMD percentage mammographic density
a  Patients were classified into a “high-risk” group if the prediction model assigned a masking risk above the cut-off point. Discovery rates are defined as the proportion 
of masked tumors in the “high-risk” group
b  Proportion of “high risk” classified patients in the total study population, using boosting-based prediction model
c  Logistic regression model with the clinical predictors age, BMI, previous breast surgery, menopausal and HRT status, and imaging technique
d  Logistic regression model with the same clinical predictors and additionally PMD predicted by a boosting regression model beforehand
e  Logistic regression model with the clinical predictors and the observed PMD

Cut-off point for predicted  
masking risk (%)a

Frequency above  
cut-off point (%)b

Discovery rates for tumors not seen on mammography (%)

Clinical modelc Boosting PMD modeld Observed PMD modele

5 47.5 81.8 80.9 78.9

10 26.4 54.5 57.7 55.6

12 20.0 44.8 47.4 48.7

15 13.6 32.9 35.1 39.7

20 7.5 16.2 21.0 25.4
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Fig. 2  Cross-validated receiver operating characteristic (ROC) curves, 
showing the discriminative value of logistic regression models, each 
with clinical predictors but with different percentage mammographic 
density (PMD) measures (without PMD, with observed PMD, and with 
predicted PMD using boosting)

Table 6  Logistic regression model for  predicting masking 
with predicted PMD based on boosting

The model is fitted on the complete dataset. To estimate a patient’s risk 
for masking, the following steps are necessary: texture features values are 
calculated from the mammogram, the boosting regression model is applied to 
obtain the predicted PMD, and patient characteristics and predicted PMD are 
linearly combined with the logistic regression coefficient to obtain interim value 
z. Finally, exp (z)/(1 + exp (z)) is the predicted risk for masking
a  Reference category

Variable Coefficient (standard 
error)

Baseline –0.906 (1.308)

Age (year) –0.018 (0.014)

BMI (kg/m2) –0.080 (0.033)

Previous breast surgery

 Noa 0

 Yes 0.502 (0.286)

Menopausal and HRT status

 Premenopausala 0

 Postmenopausal and no HRT –0.530 (0.357)

 Postmenopausal and HRT 0.208 (0.355)

Imaging technique

 Analoga 0

 Digital 0.416 (0.223)

Predicted PMD 0.032 (0.009)
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discovery rate of masked tumors. Lowering the cut-off 
point would lead to similar performances with both 
models. Furthermore, the discovery rate would increase, 
but the proportion of patients to whom ultrasound 
should be offered would also increase. Using higher cut-
off points would reduce the number of patients requiring 
additional ultrasound but only a minority of all tumors 
not seen on mammography would be discovered. It 
appears, therefore, that with a discovery rate that was 
desirably high for clinical purposes (e.g.,  >50% when 
taking a 10% risk as the cut-off point), boosting-based 
mammographic density estimations might be able to 
replace semi-automated assessment of mammographic 
density without any loss of accuracy. This procedure 
could be implemented after further empirical validation.

Incorporating additional imaging methods into a diag-
nostic algorithm always harbors a risk of further inva-
sive interventions being carried out in women who do 
not have a malignant lesion. It is, therefore, important 
to ensure that the cohort of women for whom a recom-
mendation for additional diagnostic procedures is being 
developed is characterized very carefully. For example, 
women with high breast density values are offered ultra-
sound in addition to mammography in more than 24 
states in the US [25]. In screening programs, it has been 
shown that breast density should not be the only crite-
rion for whether additional diagnostic workup is justified, 
since not all women with a high mammographic density 
are at high risk for the occurrence of interval cancers, and 
other predictors also influence the risk of an interval can-
cer [26]. Similarly, the accuracy for predicting masking 
could be improved using additional oogenetic factors that 
were not taken into account in the present study and pos-
sibly genetic factors as well. Increasing the accuracy might 
reduce the number of unnecessary invasive interventions.

The texture feature selection process was carried out 
following a prespecified plan. Univariate selection is a 
simple method that does not take correlations among 
features into account. It is known to perform less well 
in general than more sophisticated methods such as 
lasso [24], a result that was confirmed in this study and 
recently in [27]. Lasso and boosting performed similarly, 
although the model fitting is rather different. However, 
the two methods share the common feature that variable 
selection is a continuous process that leads to “weakly” 
selected features in addition to strong predictors. All 
regression techniques except for random forest treated 
features as linear predictors that were summed up in 
a certain way to estimate PMD. A further study might 
show whether nonlinear usage of the features at lasso and 
boosting would improve the prediction. Random forest 
can deal with nonlinear effects, but its performance was 

poorest. A promising strategy in medical image analy-
sis is the use of deep learning algorithms, in particular 
convolutional neural networks [28]. In [15], unsuper-
vised deep learning was applied to texture features from 
mammograms.

Double cross-validation with an inner loop to spec-
ify the prediction model and an outer loop to compute 
model performance measures was carried out to ensure 
that all model building steps were performed completely 
independent of the validation step [29, 30]. That is, all 
reported measures were based on data that were not used 
for model building. Otherwise, the measures would have 
been over-optimistic. Preselection of texture features 
was performed once on the complete dataset before the 
actual model building and model assessment procedures 
started, and was not repeated during later steps. It did not 
employ any information related to the outcome to avoid 
biasing model assessments. Schild et al.  [31] and Häberle 
et al.  [27] provide examples of double (cross-)validation 
being applied in gynecological studies. Another strength 
of this study is the use of a large cohort of more than 
1000 breast cancer patients. The cohort did not focus on 
women with a high mammographic density, but included 
all women attending a diagnostic mammography unit, 
regardless of any criteria other than admission.

This study has certain limitations. The results are 
restricted to a clinical diagnostic setting in which the 
complementary use of breast ultrasound and mammog-
raphy is already routine practice. No direct conclusions 
can be drawn with regard to application in a screening 
setting, nor can any conclusions regarding specificity be 
drawn at present. At most, the discovery rates described 
can serve as preliminary estimations for discovery rates 
in a screening setting. Further research in the screening 
setting is warranted to assess the specificity and feasibil-
ity of the algorithm.

Conclusions
Automatically generated texture features can replace 
semi-automatically determined PMD values in a pre-
diction model for a patient’s risk for having a masked 
tumor, such that more than 50% of masked tumors could 
be discovered. Automated risk prediction allows imple-
mentation of observer-independent, model-based risk 
calculation in high-throughput mammography settings. 
After further empirical validation, our risk prediction 
algorithm might be implemented in fusion machines 
performing mammography and additionally ultrasound 
if necessary. The sophisticated statistical procedures 
applied in this study follow a prespecified, systematic 
plan and are described generally enough to be easily 
adapted for other study purposes.
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