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Abstract 

Background:  The aim of this study was to investigate the impact of diosgenin, an important monomer of sapogen‑
ins in yams, on ovarian reserve in a natural aging mice model.

Study design:  This randomized controlled trial included 60 9-month-old C57 naturally aging female mice. Twenty-
one mice were assigned to the dio group and were fed a single dose of diosgenin (200 mg/kg/day) suspended in 
0.3% CMC. Twenty mice were assigned to the DHEA group and were fed a single dose of DHEA (1.25 mg/kg/day) 
suspended in 0.3% CMC. The remaining 20 mice were assigned to the old control group and were fed a single dose 
of 0.3% CMC. Three months later, the reproductive performance of these female mice was determined by evaluating 
ovarian follicles and oocyte number and quality in IVF and comparing age-matched and young controls. The impact 
of NOBOX, GDF9 and BMP15 mRNA expression was also evaluated.

Results:  Diosgenin improves ovarian reserve in naturally aging mice in terms of increasing the number of primary 
follicles (P < 0.05) and serum levels of AMH (P < 0.05).

Conclusions:  Diosgenin could counteract age-associated ovarian dysfunction by improving the ovarian reserve in a 
natural aging mice model.
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Background
Many women in the workforce postpone their childbear-
ing, but their aging ovaries constitute a robust negative 
factor when they attempt to conceive [1]. Age-associated 
infertility has also been a great challenge to doctors using 
assisted-reproductive technologies. It has been reported 
that age is the strongest predictor of ovarian response 
and pregnancy rate [2]. Most evidences support the con-
cept that women are born with a fixed number of oocytes 

that cannot regenerate and are depleted with age [3]. 
However, in contrast, few studies have suggested the 
presence of germ stem cells that could potentially replace 
lost follicles [4, 5]. It is known that the ovarian primordial 
follicle reserve is established during fetal development 
and that after birth the primordial follicle pool is contin-
uously activated, while the rest of the pool remains quies-
cent for years or even decades until menopause [6]. With 
the remarkable decline in ovarian reserve, women by the 
age of 30 years retain only 12% of their ovarian reserve; 
and by the age of 40 years only 3% [7]. The extremely low 
pregnancy rate of women over the age of 40 years results 
from the decline in primordial follicle numbers. This par-
allels the decrease in healthy growing small antral fol-
licles (an important dynamic reserve for ovulation) and 
the deterioration of oocyte quality [8].
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Since the significant diminution in the ovarian reserve 
is a physiologic and anatomic fact that older women have 
to face, there is a need for greater attention on efficiency 
related to follicular development. Data indicate that the 
overwhelming majority of follicles undergo atresia at a 
relatively early stage of follicular development. Improving 
the efficiency of follicular development and preventing 
more primordial follicles from attaining the fate of atresia 
is the strategy we can use, in principle, to protect against 
ovarian aging and thereby prolong the reproductive life 
span. This is the current focus of our study.

The molecular control of oogenesis is complicated. 
A vast number of ovarian factors regulate this process 
including members of the transforming growth factor-
beta (TGF-β) family, which control the growth and 
differentiation of somatic and germ cells. Growth dif-
ferentiation factor-9 (GDF-9) and bone morphogenetic 
protein-15 (BMP-15) of the TGFβ family are well-known 
ovarian factors that regulate the process of follicu-
lar development and are secreted by oocytes [9]. With 
respect to the activation and suppression of primordial 
follicles, the PTEN/PI3k pathway plays a vital role [10, 
11]. A recent study has indicated that newborn ovary 
homeobox-encoding gene (NOBOX), one of the oocyte-
specific transcription factors, is an important player in 
the activation of primordial follicles and the transition 
to primary follicles. Without NOBOX, the majority of 
ovarian follicles are arrested at the primordial stage, and 
oocytes degenerate and do not develop beyond single-
layered cuboidal primary follicles. NOBOX expression 
can also influence other important oocyte transcripts 
such as GDF-9, BMP-15 and Oct4 that occupy roles at 
different follicular stages [12].

Diosgenin ([25R]-5-spirosten-3β-ol) is a naturally 
occurring steroidal saponin that is present in a variety of 
plants including Dioscorea species, fenugreek and Costus 
speciosus [13]. Diosgenin has been initially acknowledged 
to be the starting material for the synthesis of a number 
of steroid hormones [14] and has now been reported to 
exert antiproliferative and proapoptotic actions on rheu-
matoid arthritis synoviocytes [15]. In addition, diosgenin 
exhibits other biological activities such as anticancer 
activity [16–18], antiviral activity [19] and antiinflam-
matory activity [20]. Diosgenin even shows potentially 
practical applications in the clinical treatment of heart 
disease [21]. However, diosgenin has never been reported 
to demonstrate actions with respect to improving ovar-
ian function. Thus far, as an important monomer in yams 
(which has been acknowledged to improve women’s 
ovarian function in traditional Chinese medicine, and is 
included by millions of Chinese women in their diets), 
there is the distinct possibility that diosgenin might 
improve ovarian function.

In this study, we hypothesize that diosgenin counter-
acts age-associated ovarian dysfunction and improves the 
ovarian reserve in a mouse model of reproductive aging. 
We performed a 3-month administration of diosgenin in 
mice, to test the effects of diosgenin on improving overall 
reproductive function.

Methods
Animals and treatments
Female C57 mice were purchased at 9  months of age 
from the Vital River Laboratory Animal Technology Co., 
Ltd. The animals were housed under 12:12-h light–dark 
cycle conditions in a specific pathogen-free animal facil-
ity located at the Experimental Animal Center of Shang-
hai University of Traditional Chinese Medicine, China. 
The protocol of this study was approved by the Institu-
tional Animal Committee. Mice were randomly divided 
into three groups: old control group, mice were fed 0.3% 
sodium carboxymethyl cellulose (CMC; purchased from 
Yuanye Bio-Technology Co., Ltd., Shanghai, China); 
DHEA group, mice were fed 1.25  mg/kg/day of dehy-
droepiandrosterone (DHEA; purchased from General 
Nutrition Center Inc., Pittsburgh, PA, USA), suspended 
in 0.3% CMC; dio group, mice were fed diosgenin (99% 
purity; purchased from Yuanye Bio-Technology Co., Ltd., 
Shanghai, China) at 200  mg/kg/day, suspended in 0.3% 
CMC. These treatments were intragastrically adminis-
tered in each group once daily. Following treatment with 
diosgenin or DHEA for 3 months, some of the mice were 
randomly chosen to assess the ovarian reserve, ovarian 
response and oocyte quality with in  vitro fertilization 
(IVF); while the remaining mice were used for breeding 
and evaluating litter size. Other mice were used to assess 
the expression of genes related to follicular development. 
Young mice at the age of 2–3 months served as controls 
(young control group) and were purchased from the Vital 
River Laboratory Animal Technology Co., Ltd.

Ovarian serial sectioning and quantification of follicle 
counts
Ovaries were randomly collected from mice in the dif-
ferent groups (dio, DHEA, old control and young control 
groups). After immersion in 10% neutral-buffered forma-
lin for at least 1  week, the tissues were dehydrated and 
embedded in paraffin wax and serially sectioned. Serial 
sections (5  µm) of each ovary were orderly aligned on 
glass microscope slides, stained with hematoxylin and 
eosin Y, and analyzed for the numbers of follicles at four 
different developmental stages using every fifth section 
with a random start in the first five sections. The total 
number of follicles per ovary was calculated by combin-
ing the counts in every fifth section throughout each 
entire ovary.
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The follicles were categorized as primordial, primary, 
secondary, antral or pre-ovulatory, according to a previ-
ous study [22]. Follicles were classified as primordial if 
these contained an oocyte surrounded by a single layer 
of squamous granulosa cells, and were classified as pri-
mary if these were surrounded by a single layer of cuboi-
dal granulosa cells. Secondary follicles were identified as 
having more than one layer of granulosa cells with no vis-
ible antrum. Antral follicles had small areas of follicular 
fluid (antrum), while pre-ovulation follicles had a single 
large antral space and cumulus oophorus.

Anti‑Mullerian hormone (AMH) measurements
A mouse AMH kit (US Biological Life Sciences, 23452, 
USA) was used to determine plasma AMH levels through 
enzyme-linked immunosorbent assay (ELISA). The ana-
lytical sensitivity of the kit was 0.05  ng/mL, and the 
standard curve spanned the range from 0.1 to 40 ng/mL.

Oocyte retrieval
Female mice from the different groups were superovu-
lated by injecting 10 IU of equine chorionic gonadotropin 
(eCG), followed by the administration of 10 IU of human 
chorionic gonadotropin (hCG) after 48  h. Female mice 
were humanely killed (CO2 overdose) 16  h after hCG 
injection and the oviducts were collected. The cumulus–
oocyte complexes (COCs) were released from the ampul-
lar region of each oviduct by puncturing the oviduct with 
a 28-gauge needle affixed to a 1-mL syringe, and these 
were collected by flushing the oviducts with human tubal 
fluid (HTF; EmbryoMax®, Millipore, USA). COCs were 
transferred and cultured in KSOM medium (Millipore, 
USA) with 5% CO2 at 37 °C and stored until use.

IVF and embryo culture
To obtain sperm for IVF, 12-week-old male ICR mice 
were euthanized by cervical dislocation and epididymides 
were collected by dissection. Then, the epididymides were 
placed in the central well of an IVF dish with HTF medium. 
After making five to seven longitudinal cuts on each 
epididymis using a needle-affixed syringe, the epididy-
mides were incubated for 20 min at 37 °C with 5% CO2 in 
compressed air to allow for sperm dispersion. The sperm 
suspensions were incubated for 1 h at 37 °C with 5% CO2 
air to allow for capacitation. For IVF, MII oocytes were 
inseminated with 2 × 104 sperms in a droplet of 150 µL of 
HTF medium for 4.5 h. The fertilized oocytes were subse-
quently cultured in a drop of 20 μL of KOSM medium at 
37 °C with 5% CO2 in compressed air and high humidity. 
The development of the fertilized oocytes was monitored 
under an inverted microscope (Motic AE2000TRI) for the 
formation of two-cell-, four-cell-, morula-, and blastocyst-
stage embryos at various intervals for up to 5 days.

Gene expression by real‑time PCR
Ovaries were lysed using TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA) and DNA was reverse transcribed. 
The mRNA levels of three important genes related to fol-
licle growth were measured by real-time PCR (RT-PCR) 
using iQSYBR green reagent (Qiagen, Valencia, CA, 
USA) and a Continuous Fluorescence Detection System 
(MJ Research Inc., Waltham, MA, USA). The mRNA 
expression was normalized to that of hypoxanthine-gua-
nine phosphoribosyltransferase (HGPRT) for each sam-
ple, and the fold changes for each gene were calculated 
against those in normal mice. The details are shown in 
“Statistical analysis”.

Statistical analysis
Experimental data were presented as mean ±  standard 
deviation (SD). Data were obtained from three independ-
ent experiments, with three replicates per experiment. 
Data were evaluated by one-way analysis of variance 
(ANOVA) with the Tukey HSD post hoc test for com-
parisons between groups. P < 0.05 was considered to be 
statistically significant.

Diosgenin increases primary follicle numbers
Young C57 females exhibited a large number of primary 
and primordial follicles, as well as secondary, antral and 
mature follicles. At the same time, the number of folli-
cles was remarkably reduced in every category of aging 
female mice (old control group). Age-matched female 
mice treated with diosgenin exhibited more primary 
and primordial follicles, compared with aging controls. 
Although the number of primary follicles in the dio 
group was statistically greater than that in the old control 
group, the difference in the number of primordial folli-
cles was not statistically significant (albeit a tendency for 
an increase was observed). However, diosgenin did not 
increase the number of growing or pre-ovulatory follicles 
after 3 months of treatment. Furthermore, the number of 
atretic follicles did not differ between the old control and 
the dio groups (Figs. 1 and 2, Table 1).  

Diosgenin increased AMH serum levels
Anti-Mullerian hormone serum levels in aging mice (old 
control group) were significantly decreased compared 
with the young control group, while AMH levels were 
markedly higher in aging mice treated with diosgenin 
(dio group) compared with age-matched mice in the old 
control group and the mice treated with DHEA (Fig. 3).

Diosgenin tends to increase the number of oocytes 
retrieved and improves the fertilization rate in IVF
The number of oocytes retrieved, MII oocytes and ferti-
lized oocytes in aging mice treated with diosgenin tended 
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to increase, compared with the old control and DHEA 
groups, but the difference was not statistically significant 
(Table 2).

Diosgenin influences the gene expression of NOBOX 
and GDF‑9
The expression of NOBOX, GDF-9 and BMP-15 
decreased in aging mouse (old control group) ovaries 
compared with the young mice (P  <  0.05). However, in 
ovaries from aging mice treated with diosgenin, NOBOX 
and GDF-9 gene expression revealed a tendency to 
increase; but the increase was not significant. This was 
also the case for aging mice treated with DHEA with 
regard to the expression of GDF-9. Neither diosgenin nor 
DHEA influenced the expression of BMP-15 (Fig. 4).

Discussion
Our results indicate that diosgenin can increase the num-
ber of primary follicles, and a tendency for the number 
of primordial follicles to increase was observed, thereby 
improving the ovarian reserve in aging mice. Diosgenin 
revealed a tendency to increase oocyte retrieval and 

fertilization rate in vitro. This suggests that diosgenin can 
slow ovarian aging and improve the response to gonado-
tropin by aging ovaries in IVF by replenishing the reduc-
tion in the follicular pool.

According to classical gynecologic theory, female 
mammals are born with a fixed number of oocytes that 
continuously reduces until these animals are no longer 
able to conceive [23]. The potential presence of ovarian 
stem cells remains controversial, and most scholars une-
quivocally state that oocytes in female mammals cannot 
be renewed.

In today’s society, more women continue to delay their 
childbirth; therefore, when a woman first wishes to con-
ceive at the age of 30 or even 40 years, the reduction in 
oocyte quality and quantity can cause problematic issues. 
In terms of classic gynecologic theory, the tendency for 
the decline in fertility is inevitable. However, this does 
not mean that we have no ability to delay ovarian aging. 
Our results revealed that diosgenin treatment contrib-
uted to the improvement in the ovarian reserve of nat-
urally aging mice by increasing the number of primary 
follicles, when compared with aging controls.

Anti-Mullerian hormone is produced by granulosa 
cells of developing pre-antral and small antral follicles 
[24]. Serum AMH levels are widely used to estimate the 
size of the ovarian reserve and are regarded as a sensitive 

Fig. 1  Typical photomicrographs (× 100) of the mice in the young 
control group (a), old control group (b), dio group (c) and DHEA 
group (d), and the details of the dio group (e)

Fig. 2  Primary follicle numbers. Bars with ★ superscripts indicate that 
the value is significantly different compared with the value for the 
dio group (★P < 0.05); (2) bar with ● superscript indicates that the 
value is significantly different compared with the value for the OLD 
group (●P < 0.05); (3) bars with ▲ superscripts indicate that the value 
is significantly different compared with the value for the DHEA group 
(▲P < 0.05). Values are mean ± SD
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indicator of ovarian function in the clinic [25]. In our 
study, serum AMH levels, together with the quantifi-
cation of follicle numbers, indicated that the ovarian 
reserve in aged mice could be improved to some extent. 
In addition, IVF results revealed that diosgenin tended 
to increase the number of oocytes retrieved, MII oocytes 
and fertilized oocytes in aging mice, although our inter-
pretations were limited by the small sample size. The 
increased number of MII oocytes and fertilized oocytes 

in the dio group, compared to the old control group, 
indicates that diosgenin could improve both the number 
and quality of oocytes. Therefore, diosgenin appeared 
to protect against ovarian aging and contributed to the 
improvement in IVF results in aging mice.

Primordial follicles constitute the total reservoir of 
germ cells available during the entire female reproductive 
life span. Despite this, the mechanism(s) for the forma-
tion and activation of primordial follicles are not fully 
understood, although GDF9, BMP15 and NOBOX are 
known to be involved in these processes.

GDF9 and BMP15 are important members of the 
TGF-β family and are produced exclusively by growing 
oocytes in the ovary, playing a vital role in regulating 
the development of oocytes and proliferation and differ-
entiation of ovarian granulosa cells. In GDF9-null mice, 
folliculogenesis does not progress beyond the primary 
stage [26], while BMP15-null mice have impaired oocyte 
maturation that leads to infertility [27]. In our study, 
GDF9 and BMP15 were significantly different between 
the young and old control groups, which indicate that the 
reduced ovarian reserve observed with decreasing pre-
antral follicle count was associated with the reduction 
in the expression of GDF9 and BMP15 in aging ovaries. 
NOBOX is an oocyte-specific homeobox gene expressed 
in germ cell cysts, as well as in primordial and growing 
oocytes. The proper expression of NOBOX is crucial for 
ovarian development in both mice and humans [28–36]. 
Our data also confirmed these concepts. The reduced 
expression of NOBOX in the ovaries was commensu-
rate with ovarian aging and the reduction in the ovarian 
reserve.

Our results revealed that there were increasing num-
bers of primary follicles and a growth trend of primordial 
follicles in the dio group, compared with the old control 
group. Furthermore, this suggests that diosgenin appears 
to stimulate the formation and activation of primordial 
follicles. Consequently, we hypothesized that the ovar-
ian reserve could be improved in old mice treated by 

Table 1  Follicle counts of ovarian specimens from diosgenin, DHEA, old and young groups

(1) Values with ★ superscripts are significantly different compared with the value for the dio group (★P < 0.05); (2) values with ● superscript are significantly different 
compared with values for the OLD group (●P < 0.05); (3) values with ▲ superscript are significantly different compared with values for the DHEA group (▲P < 0.05). 
Values are mean ± SD

Group n Primordial Primary Secondary Antral Pre-ovulation Atretic

Diosgenin 8 18.63 ± 10.06 17.00 ± 2.14 6.63 ± 2.26 6.75 ± 2.92 2.13 ± 2.64 1.88 ± 2.23

DHEA 8 10.50 ± 3.38 15.00 ± 4.00 8.50 ± 3.89 7.25 ± 2.82 0.50 ± 0.53 1.13 ± 1.36

Old 8 8.88 ± 4.88 9.63 ± 2.97★ 5.88 ± 2.64 6.25 ± 3.01 1.50 ± 1.93 3.63 ± 1.92▲

Young 8 27.38 ± 8.62▲● 23.25 ± 8.29▲● 30.25 ± 8.92★▲● 65.50 ± 17.39★▲● 10.63 ± 3.46★▲● 0.50 ± 0.76●

F 10.979 10.321 40.821 84.182 30.431 5.272

P < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.005

Fig. 3  Serum AMH levels in mice. Bars with ★ superscripts indicate 
that the value is significantly different compared with the value for 
the dio group (★P < 0.05); (2) bar with ● superscript indicates that the 
value is significantly different compared with the value for the OLD 
group (●P < 0.05); (3) bars with ▲ superscripts indicate that the value 
is significantly different compared with the value for the DHEA group 
(▲P < 0.05). Values are mean ± SD
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diosgenin. NOBOX was expressed in oocytes, and GDF9 
was expressed in granulosa cells in growing follicles. Due 
to increasing numbers of primary follicles and the growth 
trend of primordial follicles in the dio group, the elevated 
level of NOBOX and GDF9 was understandable. Interest-
ingly, the expression of GDF9 was also increased in mice in 
the DHEA group. Despite this, there was a slight non-sig-
nificant increase in the number of primordial, primary and 
secondary follicles in the DHEA group. DHEA appeared 
to increase the number of pre-antral follicles to some 
extent, but did not enhance the retrieval of MII oocytes 
or promote the quality of oocytes in our study. This might 
be related to the reduced expression of NOBOX and 
increased expression of GDF9 in the DHEA group.

Conclusions
The present study supports our hypothesis that diosgenin 
increases the number of primary follicles, leading to the 
promotion of ovarian reserve in a naturally aging mouse 
model. Although our research shows that diosgenin ben-
efits ovarian reserve in aging mice, data in this mouse 
model may not be directly extrapolatable to human ovar-
ian reserve. Hence, more extensive research is needed if 
any clinic trials are to be attempted.
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