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Limb ischemic preconditioning ameliorates 
renal microcirculation through activation 
of PI3K/Akt/eNOS signaling pathway after acute 
kidney injury
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Abstract 

Purpose:  Contrast-induced acute kidney injury (CI-AKI) resulting from administration of iodinated contrast media 
(CM) is the third leading cause of hospital-acquired acute kidney injury and is associated with substantial morbidity 
and mortality. Deteriorated renal microcirculation plays an important role in CI-AKI. Limb ischemic precondition-
ing (LIPC), where brief and non-injurious ischemia/reperfusion is applied to a limb prior to the administration of the 
contrast agent, is emerging as a promising strategy for CI-AKI prevention. However, it is not known whether the renal 
protection of LIPC against CI-AKI is mediated by regulation of renal microcirculation and the molecular mechanisms 
remain largely unknown.

Methods:  In this study, we examined the renal cortical and medullary blood flow in a stable CI-AKI model using 
5/6-nephrectomized (NE) rat. The LIPC and sham procedures were performed prior to the injection of CM. Further-
more, we analyzed renal medulla hypoxia using in vivo labeling of hypoxyprobe. Pharmacological inhibitions and 
western blotting were used to determine the underlying molecular mechanisms.

Results:  In this study, we found LIPC significantly ameliorated CM-induced reduction of medullary blood flow and 
attenuated CM-induced hypoxia. PI3K inhibitor (wortmannin) treatment blocked the regulation of medullary blood 
flow and the attenuation of hypoxia of LIPC. Phosphorylation of Akt/eNOS was significantly decreased via wortman-
nin treatment compared with LIPC. Nitric oxide synthase-inhibitor [Nω-nitro-l-arginine methyl ester (L-NAME)] treat-
ment abolished the above effects and decreased phosphorylation of eNOS, but not Akt.

Conclusions:  Collectively, the results demonstrate that LIPC ameliorates CM-induced renal vasocontraction and is 
mediated by activation of PI3K/Akt/eNOS signaling pathway.
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Background
With the increasing use of iodinated contrast medium 
(CM) in diagnostic and interventional procedures, 
CM-induced acute kidney injury (CI-AKI) has become 
the third most common cause for hospital-acquired 
AKI [1]. The development of CI-AKI is associated 
with increased morbidity, prolonged hospitalization, 
cardiovascular events, persistent kidney damage and 
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higher mortality, in addition to increased caregiver 
burden and higher financial cost [2]. The prophylac-
tic strategies developed to mitigate CI-AKI are largely 
restricted to pre- and post-hydration protocols and 
attempts of pharmacological interventions have been 
disappointing [3].

The pathophysiology of CI-AKI is complex and far 
from being elucidated; however, two major pivotal 
factors are recognized: (1) vasoconstriction and renal 
ischemic injury; (2) renal tubular cytotoxicity [4, 5]. 
CM administration induces transient and intense 
vasoconstriction, resulting from release of vasocon-
strictors such as adenosine and endothelin, as well as 
inhibition of vasodilators such as nitric oxide (NO) 
and prostaglandins, causing medullary ischemia and 
hypoxia [4, 6]. Furthermore, iodinated contrast agent 
and oxygen-free radical have direct cytotoxic effects, 
which mediate direct tubular injury, inducing vacu-
olization, change in mitochondrial function, and even 
apoptosis [7].

Limb ischemic preconditioning (LIPC) is a strategy of 
applying transient, brief episodes of ischemia to induce 
resistance in a target organ against the oxidative stress 
and injury caused by a larger ischemic insult [8], and 
may offer a highly appealing, non-invasive, nonpharma-
cological and cost-effective strategy on CI-AKI preven-
tion. Indeed, growing number of clinical reports have 
shown the beneficial effects of LIPC against CI-AKI [9–
11]. A recent meta-analysis concluded demonstrated 
that LIPC could effectively exert reno-protective role 
and significantly decrease the incidence of CI-AKI [12].

Despite growing understanding of the mechanisms 
of renoprotection by LIPC, it is not clear whether LIPC 
elicits ameliorative effect on renal microcirculation in 
CI-AKI. Accumulating evidence demonstrates that 
the important role of nitric oxide/nitrite in LIPC and/
or CI-AKI [7, 13, 14], and “reperfusion injury salvage 
kinase” (RISK) pathway has been found to be an impor-
tant target of LIPC-induced protection against CM-
AKI, in which Phosphatidylinositol3-kinase (PI3K)/
Akt signaling pathway is involved in mediating LIPC-
induced renoprotection [15, 16]. Endothelial nitric 
oxide synthase (eNOS) is a key enzyme in the regula-
tion of endothelial-derived NO production [17]. Akt 
has also been linked to renal NO production through 
activation of eNOS [18].

Taken together, we hypothesized that LIPC ame-
liorated renal microcirculation through activation of 
PI3K/Akt/eNOS signaling pathway. In this study, we 
investigated the renal cortical and medullary blood 
flow in a stable CI-AKI model using 5/6-nephrecto-
mized (NE) rat and examined the underlying molecular 
signaling pathway using pharmacological inhibitors.

Materials and methods
Chemicals and reagents
The nonionic CM used was low-osmolar iohexol 
(350  mg iodine/mL, 844  mOsm/kg of water and 
10.4 cPs at 37  °C, GE Healthcare, Shanghai, China). 
Wortmannin and Nω-nitro-l-arginine methyl ester 
(L-NAME) were obtained from Abcam (Cambridge, 
MA, USA), which were dissolved in dimethyl sulfoxide 
(DMSO) (Sigma Inc, St. Louis, MO, USA) and diluted 
in saline so that the vehicle constituted less than 1% of 
the total volume injected.

Animals and establishment of CI‑AKI model
Male Sprague–Dawley rats (180–200  g) were obtained 
from the Animal Center of The Affiliated Changzhou 
No. 2 People’s Hospital of Nanjing Medical University, 
China. The rats were acclimatized for 7 days before the 
start of study and handled in accordance with the insti-
tutional and national guidelines for animal research. 
The 5/6 nephrectomy (NE) procedure was performed 
on animals anesthetized with intraperitoneal injection 
of 4% sodium pentobarbital (40  mg/kg). The proce-
dure involved NE of the right kidney and resection of 
two-thirds of the left kidney, as described previously 
[16, 19]. The CI-AKI model used 5/6 NE rats 6  weeks 
after the NE surgery and was established by dehydra-
tion for 48  h, followed by administration of 10  mL/kg 
body weight (3.5 gI/kg) iohexol via the tail vein. All ani-
mals had ad libitum access to water and food after the 
injection.

Grouping
Animals of CI-AKI model was randomly divided into 
four groups as follows:

1.	 CM + Sham
2.	 CM + LIPC
3.	 CM + LIPC + WORT
4.	 CM + LIPC + L-NAME

Measurement of renal microcirculation
Animals of CI-AKI model were anesthetized with 2% 
isoflurane vaporized by oxygen, laced on a small-animal 
operating table. The left kidney was exposed through a 
midline incision, decapsulated, and mechanically fixed. 
The body and renal temperatures were monitored and 
maintained at approximately 37 °C with a heating lamp 
and intermittent dripping of warm saline and paraf-
fin oil [20]. A Dual-Channel Laser Doppler flowmeter, 
PeriFlux 5000, (Perimed, Sweden) was used to meas-
ure renal microcirculation. Laser Doppler fibers were 
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inserted into the renal cortex to a depth of 2  mm and 
into the renal medulla to a depth of 4  mm. Measure-
ments were expressed as arbitrary perfusion units that 
represent the product of the velocity and the concen-
tration of moving blood cells within the measuring vol-
ume. After 5 min of equilibration, basal readings were 
recorded and subsequent readings were recorded every 
5 min [13, 21].

Limb ischemic preconditioning
An incision was made on the femoral triangle under a 
moderate level of ether anesthesia and local anesthe-
sia with a 1% procaine solution. The left lateral femoral 
arteries of the rats were dissected out and clamped four 
times for 5 min each, separated by 5-min intervals. The 
wound was sutured after the LIPC. The sham operation 
for LIPC included all surgical procedures or treatments 
except the clamping of the femoral arteries.

In vivo labeling of hypoxia
Renal tissue hypoxia was assessed at 15  min or 30  min 
after an intravenous injection of saline or CM using 
Hypoxyprobe-1 Omni Kit (Natural Pharmacia Inter-
national Inc., Burlington, MA, USA), which contains 
pimonidazole hydrochloride and rabbit polyclonal anti-
pimonidazole. Pimonidazole HCl remains in the hypoxic 
cells upon forming an irreversible adduct with thiol 
groups in tissues with a PO2 < 10 mmHg [22].

The protein adducts are effective immunogens for rab-
bit anti-pimonidazole antisera. At 60 min prior to being 
killed, each rat received injections via the tail vein of 
hypoxyprobe-1 in a 0.5-mL bolus (60 mg/kg bw). Immu-
nohistochemical staining procedure was identical with 
immunohistochemical staining for pimonidazole, except 
the primary antibody used was rabbit polyclonal anti-
pimonidazole (1:500) for 40-min incubation at room 
temperature. The specimens were scored by the extent 
and intensity of hypoxyprobe.

Immunohistochemical staining for phosphorylated‑eNOS
Immunohistochemical staining was performed on 3-µm 
paraffinized sections. The samples were dewaxed and 
dehydrated, washed in phosphate-buffered saline (PBS), 
and incubated with 3% H2O2 for 10  min to eliminate 
endogenous peroxidase activity and then treated with 
normal goat serum (1:20) for 20 min. Next, the samples 
were incubated with anti-p-eNOS antibody (rabbit poly-
clonal, 1:200; Santa Cruz) at 4 °C overnight. The sections 
were then incubated with a horseradish peroxidase-
conjugated secondary antibody (anti-rabbit IgG). After 
rinsing three times with PBS, the sections were stained 

with 3,3′-diaminobenzidine (Sigma, Shanghai, China), 
counterstained with hematoxylin, and then evaluated 
under a light microscope. The stained specimens were 
assessed by a pathologist in a blinded fashion. We ran-
domly selected five high-magnification (200×) fields of 
the renal medulla. The specimens were scored according 
to the percentage of p-eNOS positive cells and the extent 
and the intensity of staining.

Western blot assay
Equal amounts of proteins (40 μg total protein or 80 μg 
nuclear protein per lane) were loaded onto a 12.5% gra-
dient 2-amino-2-(hydroxymethyl)propane-1,3-diol 
hydrochloride (Tris–HCl) sodium dodecyl sulfate–poly-
acrylamide gel and then transferred to a polyvinylidene 
difluoride membrane. Nonspecific binding to the mem-
brane was blocked for 1  h at room temperature with 
5% nonfat milk in 1 × TBS, followed by incubation with 
primary antibodies against total Akt (rabbit monoclonal 
1 :1000; Cell Signaling Technology, Danvers, MA), p-Akt 
(Ser473, rabbit monoclonal 1:2,000; Cell Signaling Tech-
nology), total eNOS (rabbit monoclonal 1:1000; 1:250 
dilution, Cell Signaling, USA), and p-eNOS (Ser1179, 
1:250 dilution, Invitrogen, USA) overnight at 4 °C. After 
washing with TBST three times, membranes were incu-
bated with horseradish peroxidase-conjugated rabbit or 
goat secondary antibody (1:10,000 dilution; Kang Chen 
Biotechnology, Guangzhou, China) for 1 h at room tem-
perature, followed by three washes for 10 min each. Blots 
were developed using enhanced chemiluminescent rea-
gents (Thermo Fisher Scientific, Pittsburgh, PA, USA) 
and target band density was scanned using an LAS-3000 
detection system. Image J software was used to analyze 
band intensities.

Statistical analysis
Data are presented as mean ± standard deviation (SD). 
Statistical differences between conditions were deter-
mined with GraphPad Prism software. Data were ana-
lyzed by one-way analysis of variance (ANOVA) with 
Tukey’s multiple comparisons (parametric tests) or 
Kruskal–Wallis test with Dunns’ multiple comparisons 
(nonparametric tests). Statistical significance of differ-
ence was defined as a P value < 0.05.

Results
CM administration altered renal microcirculation 
and induced hypoxia
To examine renal microcirculation change in our CM-
AKI model and the effect of LIPC, we used a dual-chan-
nel Laser Doppler flowmeter to determine renal cortical 
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and medullary blood flow. CM administration induced a 
transient decrease of both renal medullary and cortical 
blood flow. Compared with CM + Sham group, we found 
that LIPC significantly ameliorated CM-induced reduc-
tion of medullary blood flow, but not cortical blood flow, 
10 min after CM administration (Fig. 1a, b).

We then examine the effect of LIPC on hypoxia con-
dition of CM-AKI. We used in  vivo labeling of hypoxy-
probe to determine tissue hypoxia 15  min and 30  min 
followed by CM administration. We found that LIPC 
significantly alleviated hypoxia condition of renal tis-
sue after 15 and 30  min of CM administration (Fig.  1c, 
d), suggesting the important role of microcirculation in 
LIPC against CI-AKI.

Inhibition of PI3K abolished the protective effects on renal 
microcirculation and hypoxia of LIPC against CI‑AKI
To explore the role of reperfusion injury salvage kinases 
(RISK) pathway in LIPC against CI-AKI, we first phar-
macologically inhibited PI3K using PI3K inhibitor 

(wortmannin). We examined renal microcirculation 
and tissue hypoxia and found that inhibition of PI3K 
abolished the regulation of medullary blood flow and 
the attenuation of hypoxia of LIPC. Renal medul-
lary blood flow was significantly decreased compared 
with LIPC + CM group, but not cortical blood (Fig.  2a, 
b). Scores of hypoxyprobe staining were significantly 
increased compared with LIPC + CM group (Fig. 2c, d).

Inhibition of PI3K reduced the activation of Akt/eNOS 
pathway
To further explore the role of RISK pathway in LIPC 
against CI-AKI, we immunohistochemical stained 
p-eNOS in kidney sections. We found that the score of 
p-eNOS staining was significantly reduced via PI3K 
inhibition (Fig. 3a, b). We further examined the protein 
phosphorylation level using Western blotting analysis. 
The ratios of phosphorylated Akt and eNOS were signifi-
cantly decreased compared with LIPC + CM (Fig. 3c, d), 
suggesting that the ameliorated renal microcirculation 

Fig. 1  CM administration-induced vasoconstriction was attenuated significantly following LIPC in the medulla (a) but not in the cortex (b). 
Representative photomicrographs of kidney sections of CI-AKI with hypoxyprobe staining (c). LIPC significantly decreased score of hypoxyprobe 
staining in 15 and 30 min followed by CM administration (d). Original magnification ×200. *P < 0.05, **P < 0.01, #P < 0.01; n = 7 each. The values 
shown are the mean ± SD
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and hypoxia is mediated by PI3K/Akt/eNOS signaling 
pathway in LIPC against CI-AKI.

Inhibition of eNOS abolished the protective effects 
on renal microcirculation and hypoxia of LIPC 
against CI‑AKI
To further examine the role of eNOS in LIPC against 
CI-AKI, we pharmacologically inhibited eNOS using 
L-NAME and examined renal microcirculation and tis-
sue hypoxia. Renal medullary blood flow was significantly 
decreased compared with LIPC + CM group, but not 
cortical blood (Fig. 4a, b). Scores of hypoxyprobe staining 
were significantly increased compared with LIPC + CM 
group (Fig. 4c, d).

L‑NAME reduced the phosphorylation of eNOS, but not Akt
We then examine the role of eNOS in RISK pathway of 
LIPC against CI-AKI. We used immunohistochemical 
staining and Western blotting analysis to determine the 

phosphorylation of eNOS and Akt. Nitric oxide synthase 
inhibitor, L-NAME, significantly decreased the phospho-
rylation level of eNOS (Fig. 5a, b, d), but not Akt (Fig. 5c), 
suggesting the essential role of eNOS in PI3K/Akt/eNOS 
signaling pathway in LIPC against CI-AKI.

Discussion
The alteration of renal microcirculation due to CM 
administration is considered a key pathophysiology 
mechanism of CM-AKI [3]. CM induced a transient and 
intense renal vasocontraction especially in medulla [23, 
24]. Medulla receives only ~ 10% of total renal prefu-
sion even in functionally normal kidney [25], making it 
a more severe hypoxia environment [26]. Animal studies 
indicate that all CM, irrespective of osmolality, reduce 
velocity and increase aggregation of red blood cells in 
the renal medullary vessels [24, 27]. Previous study also 
reported reduced medullary blood flow but increased 
cortical flow following administration of both high- and 

Fig. 2  Inhibition of PI3K abolished the renoprotective effects of LIPC on microcirculation and hypoxia following in CM-AKI. WORT (wortmannin) 
significantly decreased renal medullary blood flow (a), but not cortical blood flow (b) in LIPC + CM. Representative photomicrographs of kidney 
sections of CI-AKI with Hypoxyprobe staining (c). WORT significantly increased score of Hypoxyprobe staining in 15 and 30 min in CM + LIPC (d). 
Original magnification × 200. *P < 0.05, **P < 0.01, #P < 0.01; n = 6 each. The values shown are the mean ± SD
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low-osmolality CM in rats [23]. Our results demonstrate 
that LIPC ameliorates the vasoconstriction following 
CM administration in the renal medulla, but not in the 
cortex, supporting that reduced medullary flow plays an 
important role in the pathogenesis of CM-AKI.

It has not been fully examined whether LIPC exert ben-
eficial effects on renal microcirculation. Studies using 3T 
functional magnetic resonance imaging (fMRI) suggested 
that on humans, LIPC alone could induce a higher oxy-
gen content in kidney tissue [28], as well as increasing 
intra-renal perfusion [29]. Studies using laser Doppler 
flowmetry reported improved microcirculation on other 
organs, such as liver in Ischemia/Reperfusion (IR) model 
[30, 31], and spinal cord blood flow [32]. In the present 
study, we first reported the amelioration of impaired 
renal medulla blood flow of LIPC in CI-AKI, and allevi-
ated hypoxia condition of renal tissue after 15 and 30 min 
of CM administration, suggesting the important role of 
microcirculation in LIPC against CI-AKI.

Various studies have demonstrated the relationship 
between nitrite/nitric oxide (NO) and CM-induced vaso-
constriction, as NO synthesis is down-regulated by CM 
[21], and the decreased renal blood flow in CI-AKI can 
be restored by l-arginine (a NO precursor) [33] and fur-
ther decreases by L-NAME [13]. Studies suggest that 

the generation of NO and the activation of eNOS play 
important roles in the protective effects of LIPC [34, 35]. 
The reperfusion injury salvage kinases (RISK) pathway 
that activated in LIPC, such as the phosphatidylinositol-3 
kinase/Akt (PI3K/Akt) pathway which involved in signal 
transduction related to cell growth, proliferation, differ-
entiation, motility, survival and metabolism, plays a key 
part in LIPC [36, 37]. Akt, which is activated by phos-
phorylation via activated PI3K, phosphorylates eNOS 
on serine 1177 (p-eNOS), thereby activating this enzyme 
[38, 39]. The protective effect of this signaling pathway, 
PI3K/Akt/eNOS, has been confirmed in many studies 
[15, 40], including LIPC [41, 42]. In this study, we vali-
dated the activation of this signaling pathway, and also 
demonstrated its role in regulating renal microcircula-
tion. Pharmacological inhibition of PI3K or eNOS abro-
gated the regulation of renal microcirculation in LIPC, 
and restored the hypoxia condition induced by CM. 
However, it is important to note that the recruitment of 
pro-survival kinases is protective when acutely activated, 
while their chronic activation would be considered to be 
harmful and proinflammatory [43, 44]. Second, the path-
way must be activated before insult like reperfusion or 
chemical agent to be nonprotective [37].

Fig. 3  Inhibition of PI3K significantly decreased phosphorylation of Akt and eNOS. Representative photomicrographs of kidney sections of CI-AKI 
sections with p-eNOS staining (a). Score of p-eNOS staining was significantly decreased in WORT + LIPC + CM (b). Representative western blots 
and quantitative analysis of p-Akt and Akt (c), p-eNOS and eNOS (d). WORT significantly decreased the ratios of phosphorylated Akt and eNOS in 
LIPC + CM. Original magnification ×400. **P < 0.01; n = 6 each. The values shown are the mean ± SD
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Even though, it is important to note that the protective 
effect of LIPC is not only due to ameliorated microcircu-
lation mediated by NO. Study showed that the decrease 
in NO is related to increased local production of reac-
tive oxygen species (ROS) [45], with NO being an anti-
oxidant, NO may exert its protective effect via reducing 
oxidative stress [46]. Moreover, study has showed that 
CM-induced direct cell damage leads to oxidative stress 
and low-nitric oxide levels in medullary thick ascending 
limbs of the Henle’s loop in an environment where tissue 
hypoxia is absent [14]. It has been shown that NO also 
directly affects the oxygen availability for regulating the 
mitochondrial oxygen utilization [47–49].

eNOS/NO is important for promoting endothelial cells 
proliferation, adhesion, migration and angiogenesis of 

progenitor cells [50]. Study showed that LIPC induced 
great accumulation of endothelial progenitor cells (EPCS) 
in renal medulla, suggesting that the renal protection of 
LIPC partly exerts on EPCs in promoting proliferation 
and angiogenesis [51]. Thus, it would be very interesting 
to examine the eNOS activity on recruited EPCs followed 
by LIPC in CI-AKI.

Conclusions
Our study demonstrates that the LIPC ameliorates 
CM-induced renal vasocontraction and attenuates CM-
induced hypoxia. The regulation of microcirculation 
is mediated by activation of PI3K/Akt/eNOS signaling 
pathway.

Fig. 4  Inhibition of eNOS abolished the regulation of microcirculation and hypoxia of LIPC against CI-AKI. L-NAME significantly decreased renal 
medullary blood flow (a), but not cortical blood flow (b) in LIPC + CM. Representative photomicrographs of kidney sections of CI-AKI with 
Hypoxyprobe staining (c). L-NAME significantly increased score of Hypoxyprobe staining in 15 and 30 min in CM + LIPC (d). Original magnification 
×200. *P < 0.05, **P < 0.01, #P < 0.01; n = 6 each. The values shown are the mean ± SD
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