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Abstract 

Background:  Hepatic fibrosis (HF), which is characterized by the excessive accumulation of extracellular matrix (ECM) 
in the liver, usually progresses to liver cirrhosis and then death. To screen differentially expressed (DE) long non-coding 
RNAs (lncRNAs) and mRNAs, explore their potential functions to elucidate the underlying mechanisms of HF.

Methods:  The microarray of GSE80601 was downloaded from the Gene Expression Omnibus database, which is 
based on the GPL1355 platform. Screening for the differentially expressed LncRNAs and mRNAs was conducted 
between the control and model groups. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses were performed to analyze the biological functions and pathways of the DE mRNAs. Additionally, 
the protein–protein interaction (PPI) network was delineated. In addition, utilizing the Weighted Gene Co-expression 
Network Analysis (WGCNA) package and Cytoscape software, we constructed lncRNA-mRNA weighted co-expression 
networks.

Results:  A total of 254 significantly differentially expressed lncRNAs and 472 mRNAs were identified. GO and KEGG 
analyses revealed that DE mRNAs regulated HF by participating in the GO terms of metabolic process, inflammatory 
response, response to wounding and oxidation–reduction. DE mRNAs were also significantly enriched in the path-
ways of ECM-receptor interaction, PI3K-Akt signaling pathway, focal adhesion (FA), retinol metabolism and metabolic 
pathways. Moreover, 24 lncRNAs associated with 40 differentially expressed genes were observed in the modules of 
lncRNA-mRNA weighted co-expression network.

Conclusions:  This study revealed crucial information on the molecular mechanisms of HF and laid a foundation for 
subsequent genes validation and functional studies, which could contribute to the development of novel diagnostic 
markers and provide new therapeutic targets for the clinical treatment of HF.
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Background
Hepatic fibrosis (HF), a common health issues worldwide, 
usually progresses to liver cirrhosis, primary liver cancer 
and then results in death [1–3]. Despite the impact of HF, 

it is regretful about note that an optimal treatment has 
yet to be identified. The good news is that advances in 
molecular biotechnology and high-throughput technol-
ogy have positioned us on the frontier of understanding 
the possible molecular mechanism of HF at the gene and 
protein levels [4–6]. However, a comprehensive under-
standing of the pathogenesis underlying HF still remains 
to be elucidated, due to its complexity, especially the 
complicated regulatory mechanisms of gene expression. 
Hence, understanding the underlying pathophysiology of 
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HF, and the screening of molecular markers in the devel-
opment of therapeutic targets remains critical.

More and more evidence has indicated that, rather 
than being transcriptional noise, lots of non-coding 
RNAs (ncRNAs) can affect the expression levels of target 
genes [7, 8]. Long non-coding RNAs (lncRNAs), one of a 
ncRNAs, which play critical roles in transcription, splic-
ing and translation [9]. However, up to now, compared 
with mRNAs, the function of lncRNAs has not been well 
annotated [10, 11]. Therefore, to research the roles of 
lncRNAs by studying the related to targeting genes such 
as mRNAs, whose functions have been known, have been 
certificated an efficient way in many kinds of diseases 
[12–14].

In the current study, we used microarray data to 
identify novel HF-related lncRNAs and mRNAs. Fur-
thermore, bioinformatics technologies, such as Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses, protein–protein interaction 
(PPI) network and weighted gene co-expression network 
analysis (WGCNA), were applied to analyze the differen-
tially expressed lncRNAs (DELs) and mRNAs (DEMs). 
The findings may provide in-depth molecular insight into 
the pathophysiology of HF.

Materials and methods
Raw data
The gene expression data of GSE80601 was downloaded 
from the National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo/) database, which is based on the 
Affymetrix Gene Chip Mouse Exon 1.0 ST Array. It has a 
total of 10 data in the dataset, including 5 samples in the 
control group and 5 samples in the HF group, which were 
induced by carbon tetrachloride [15].

Gene chip probe re‑annotation
A number of lncRNAs represented on the Affymetrix 
microarray were identified based on the lncRNAs clas-
sification pipeline constructed in previous research [16]. 
First, we gained the latest version of the NetAffx Anno-
tation File (MoEx-1_0-st-v1 Probeset Annotations, CSV 
Format, Release 36 93 MB, 7/6/16) from the Affymetrix 
official website. The annotation file was mapped to the 
MoEx-1_0-st-v1 probe sets ID. Second, among the probe 
sets from the Refseq database, the IDs beginning with 
‘NP’ were wiped off, while the transcript IDs labeled with 
‘NR’ were retained. For the probe sets from the Ensembl 
database, Affymetrix microarray IDs and the correspond-
ing gene type were converted to Ensembl IDs by using 

the online software BioMart. The probe sets from NON-
CODE were reserved. Only genes that were annotated as 
‘lincRNA’, ‘sense_intronic’, ‘processed_transcript’, ‘anti-
sense’, ‘sense overlapping’, ‘3prime_overlapping_ncRNA’, 
and ‘misc_RNA’ were retained. Next, probe set IDs anno-
tated as ‘microRNA’, ‘snoRNAs’, ‘pseudogenes’ and other 
small RNAs were removed.

Data preprocessing
Based on the annotation of GPL1355 platform, we con-
verted the expression data of probes to the correspond-
ing gene symbols. The average expression value, used 
for genes corresponding to multi-probes, was calculated 
using Aggregate function of R, the missing values of 
probes were added via the KNN method of Impute pack-
age of R [17]. Next, using the preprocessCore package of 
R, quantile normalization was carried out [18]. We used 
the above steps to get the expression matrix.

Identification of DELs and DEMs
After the raw data from the mRNA-lncRNA Affymetrix 
microarray were selected, we screened the differential 
probes by applying the Limma (linear models for micro-
array data) package in R via T-test with the screening 
criteria: fold Change (FC) > 1.5 and P value < 0.05. Then, 
the differential probes representing the DELs and DEMs 
were re-annotated. Based on these two steps, the DELs 
and DEMs were obtained.

GO and pathway enrichment analysis
GO biological processes term and KEGG pathway for 
DEMs were performed using Cytoscape-bingo and Data-
base for Annotation, Visualization and Integration Dis-
covery (DAVID, https​://david​.ncifc​rf.gov/), respectively. 
Then, A FDR was calculated to correct the p-value and 
FDR < 0.05 was selected as the threshold.

Construction of PPI network
The online String database (Search Tool for the Retrieval 
of Interacting Genes, http://strin​g-db.org/) was used to 
analyze the interactions of proteins. Genes without con-
nection to other genes were removed, with a cut-off crite-
rion of the combined score > 0.90. Then, the PPI network 
was delineated by Cytoscape (http://cytos​capew​eb.cytos​
cape.org/).

Construction of lncRNA‑mRNA WGCNA
The R package WGCNA was applied for network con-
structions [19]. The steps of network construction were 
as follows: (1) Network construction: the lncRNA/

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://david.ncifcrf.gov/
http://string-db.org/
http://cytoscapeweb.cytoscape.org/
http://cytoscapeweb.cytoscape.org/
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mRNA weighted co-expression network is fully speci-
fied by its adjacency matrix amn, where amn encodes the 
network connection strength between nodes m and n. 
To calculate the adjacency matrix, the default approach 
defines the co-expression similarity Smn as the absolute 
value of the correlation coefficient between nodes of m 
and n: Smn = |cor am, an)|. The weighted adjacency 
amn between two genes is proportional to their similar-
ity on a logarithmic scale with b30.8, log (amn) = b× log 
(Smn). Adjacency functions were obtained by approxi-
mate scale-free topology criterion. Then, we converted 
the adjacency matrix to the topology matrix. (2) Module 
detection: the modules with a minimum of 30 lncRNA/
genes were identified using Dynamic Tree Cut method 
and Static Tree Cut method.

Results
Identification of DELs and DEMs
According to our filtering criteria FC > 1.5 and P < 0.05, 
a total of 254 DELs, including 107 significantly up- and 
147 down-regulated lncRNAs; 472 DEMs, including 308 
significantly up- and 164 down-regulated mRNAs were 
screened. Hierarchical clustering was conducted to eval-
uate the altered lncRNAs and mRNAs expression pattern 
among samples (Fig. 1).

GO and KEGG analyses
GO and KEGG pathway enrichment analyses were per-
formed to determine the functions of the identified 
DEMs. GO analysis revealed that a total of 1117 GO 

terms were regulated by the up-regulated mRNAs, while 
the down-regulated mRNAs were enriched in 376 GO 
terms. The top 30 GO terms by the up- and down-reg-
ulated mRNAs were displayed in Fig. 2. The up GO-net 
and down GO-net were shown in Fig. 3. Pathway analysis 
demonstrated that 128 and 66 pathways were regulated 
by the up-regulated and down-regulated mRNAs, respec-
tively. The top 30 significant pathways were shown in 
Fig. 4.

PPI network
After removing isolated genes, the PPI network of sig-
nificantly up- and down- regulated genes was delineated 
using the STRING database. As shown in Fig. 5, the PPI 
network contained 284 nodes and 1269 edges. Genes 
with a high degree of connectivity in the PPI network 
may be potential targets for disease [20]. Genes in the top 
10 for the highest degree of connectivity were displayed 
in Table  1, suggesting that these genes may play crucial 
roles in the origin and development of HF.

Construction of lncRNA‑mRNA WGCNA
The lncRNA-mRNA co-expression network was estab-
lished to investigate the association between DELs and 
DEMs. Via WGCNA package in R, we constructed a 
Cluster Dendrogram (Fig.  6a), then two weighted co-
expression sub-networks were identified. The lncRNA-
mRNA weighted co-expression network was constructed 
based on the genes with the top 30 connectivity degrees 
in two modules and P-value < 0.01. Among these, 24 

Fig. 1  Hierarchical cluster analysis of differentially expressed lncRNAs and mRNAs. a Hierarchical cluster analysis of 254 differentially expressed 
lncRNAs. b Hierarchical cluster analysis of 472 differentially expressed mRNAs. Hierarchical cluster analysis showed that the differentially expressed 
genes ultimately clustered into two major branches, including up-regulated genes (labeled in red) and down-regulated genes (labeled in green)
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Fig. 2  GO analysis of differentially expressed genes. a The top 30 GOs of the up- regulated genes. b The top 30 GOs of the down-regulated genes. 
The different colors from green to red represent the P value. The different sizes of the shapes represent the gene count

Fig. 3  Go-net analysis of DE mRNAs. a Go-net of the up-regulated genes. b Go-net of the down-regulated genes. Yellow nodes: nodes with 
P-value < 0.05 and Benjamini corrected P-value < 0.05. The color of node is more deep, the functional difference is more significant
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lncRNAs and 40 mRNAs were involved in the two 
modules (Fig.  6b and c). The lncRNAs in the blue and 
turquoise modules were displayed in Tables  2 and 3, 
respectively.

GO and KEGG analyses of the blue and turquoise modules
Furthermore, we performed GO and KEGG pathway 
annotations for the blue and turquoise modules. GO 
analysis revealed a total of 365 and 245 enriched terms 
in the blue and the turquoise modules, respectively. The 
top 30 terms are presented in Fig. 7a and c. KEGG analy-
sis revealed that 67 and 48 pathways were enriched in the 
two modules, respectively. The top 30 pathways are pre-
sented in Fig. 7b and d.

Discussion
Hepatic fibrosis, a reversible lesion, is a common pro-
gresses for acute or chronic liver diseases to liver cir-
rhosis, which is irreversible [21–24]. Therefore, it is 
crucial to explore the comprehensive mechanisms of HF 
to reverse its progress promptly. Over the past several 
years, as novel regulators in the cellular and biological 

processes, lncRNAs have attracted much close attention 
[25–27]. However, as previously mentioned, the number 
of meaningful key lncRNAs identified in HF tissues is still 
not sufficient.

In this study, we screened 254 DELs, which consisted 
of 107 up- and 147 down-regulated lncRNAs. Mean-
while, 472 DEMs were examined, which consisted of 308 
up- and 164 down-regulated mRNAs. Furthermore, to 
investigate the functions of HF-related genes, we anno-
tated these genes into GO and KEGG pathway analysis, 
we found that the DE genes were remarkably enriched in 
the GO terms involving TGF-β signaling pathway, ECM-
receptor interaction, PPAR signaling pathway, etc. It is 
well known that activated hepatic stellate cells (HSCs) are 
famous for their role in liver fibrosis. Several studies have 
shown TGF-β plays a critical role in HSCs activation, 
and the TGF-β signaling pathway could be a potential 
therapeutic target for HF [28–30]. This classic signaling 
pathway is activated by TGF-β binding to its receptors 
located on the cell membrane. The downstream proteins, 
namely Smad2 and Smad3, are activated by phosphoryla-
tion, which further promotes the transcription of genes 

Fig. 4  KEGG analysis of differentially expressed genes. a The top 30 pathways of the up-regulated genes. b The top 30 pathways of the 
down-regulated genes. The different colors from green to red represent the P value. The different sizes of the shapes represent the gene count
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encoding ECM components, then accelerates the devel-
opment of liver fibrosis [31]. Similarly, KEGG analysis 
revealed that the DE genes were mainly enriched in the 
metabolic process, which were closely related to previous 
studies. For example, our previous studies indicated that 
dysregulations of cytochrome P450, sphingolipid, glucose 
and water electrolyte, fatty acid, amino acid and energy 
metabolism might be involved in the pathogenesis of HF 
in rats [32, 33].

The WGCNA is a bioinformatics technology for 
describing the correlation patterns among genes across 
microarray samples. It is a powerful systems analysis 
technology that focuses on the coherent function of gene 
network modules, which aims at identifying higher-order 

Fig. 5  PPI network of DE genes constructed using Cytoscape software. The red nodes represent up-regulated genes, and the green nodes 
represent down-regulated genes. The edges represent the relationships between genes. The degree of one gene means the number of its 
interactions with other genes. The bigger one node indicates the higher connectivity degree. The higher connectivity degree stands for the more 
important role in the PPI network

Table 1  Genes with  top 10 highest connectivity degree 
in PPI

Gene Node-degree FC P-value Trend

Ptprc 56 1.84 0.0295 Up

Ctss 55 1.53 0.0005 Down

Itgb2 49 1.57 0.0151 Up

Adgre1 47 2.14 0.0169 Down

Tyrobp 45 3.13 0.0159 Up

Cd68 44 1.65 0.0404 Down

Itgam 42 1.57 0.0039 Up

Fcer1g 37 1.51 0.0403 Up

Itgax 37 1.57 0.0409 Up

Ms4a6d 37 1.64 0.0288 Up
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Fig. 6  Cluster dendrogram and lncRNA-mRNA co-expression sub-networks. a Cluster dendrogram. Gene dendrogram showing the co-expression 
modules defined by the WGCNA labeled by colors. b Blue mode. c Turquoise module. Arrow nodes represented lncRNAs, roundness nodes 
represented mRNAs, red and green color represented up-regulated down-regulated, respectively



Page 8 of 11Wu et al. Eur J Med Res           (2020) 25:43 

relationships among gene products [34]. WGCNA analy-
sis of lncRNAs and mRNAs has been successfully utilized 
to screen functionally enriched modules involved in com-
plex diseases [35–37]. Via WGCNA, two lncRNA-mRNA 
weighted co-expression sub-networks were identified, 
which included 24 key lncRNAs and 40 mRNAs.

Although several LncRNAs that could affect hepatic 
fibrosis were already reported including lnc LFAR1 [15], 

p21 [38], MALAT1 [39], MEG3 [40] and so on. However, 
the functional characterization of the 24 key lncRNAs is 
still in its infancy. To infer potential function of LncR-
NAs, according to ceRNA theory, we studied the related 
to mRNAs, whose functions have been annotated. For 
example, lnc Gm38888, NONMMUT006555, NONM-
MUT074618 were screened out and could interact with 
Col6a1 in the blue module. It is worth noting that Col6a1, 
the main component of HF identified in our study, is a 
type VI collagen gene which has been widely reported 
to be closely associated with HF. Accumulation of type 
VI collagen may lead to the distorted architecture and 
functional damage to the liver in HF [41, 42]. Moreover, 
KEGG analysis showed that Col6a1 is enriched in ECM-
receptor interaction, which has been reported to play a 
key role in HF, as discussed above.

For the turquoise module, lnc Gm39636, Gm26618, 
NONMMUT015498, etc., which interact with Itga8. In 
particular, Itga8 is a specific cell surface marker of meso-
thelial cell (MC)-derived HSCs and MCs. Itga8+ (MCs) is 
the maintain phenotype of hepatoblasts in liver develop-
ment and myofibroblasts increase the expression of Itga8 
during liver injury [43]. Recently research suggested that 
MCs played important roles in liver development, fibro-
sis, and regeneration [44]. KEGG analysis showed Itga8 
is enriched in the pathways of ECM-receptor interaction, 
FA and PI3K-Akt signaling pathway, which have been 
demonstrated to be closely related with HF.

Conclusion
In summary, HF was a complicated process with some 
lncRNAs, mRNAs involved, which were the key genes in 
contributing to pathogenesis of HF. This study revealed 
crucial information on the molecular mechanisms of HF 
and laid a foundation for subsequent gene validation and 
functional studies, which could contribute to the devel-
opment of novel diagnostic markers and provide new 
therapeutic targets for the clinical treatment of HF. How-
ever, there were still some limitations in this study. Firstly, 
the key genes need to be verified in liver tissue specimens 
of liver fibrosis by RT-PCR. Secondly, further experi-
ments are required to validate their effects and mecha-
nisms in HF. The last but not least, the homology of the 
key genes needs to be validated for using as potential bio-
markers and therapeutic targets in clinical applications.

Table 2  lncRNAs in blue module

lncRNA Trend P value FC Strand Location

Gm38888 Up 0.01188 1.73 + chr6

NONMMUT006555 Up 0.03700 3.22 – chr10

NONMMUT074618 Up 0.00774 1.83 + chrx

NONMMUT010397 Up 0.00094 1.72 + chr11

NONMMUT030757 Up 0.01216 1.78 – chr17

Gm29966 Down 0.01487 1.58 + chr18

Gm42333 Down 0.03374 2.34 – chr4

Gm34394 Down 0.02833 1.60 + chr15

NONMMUT044605 Down 0.02778 1.55 + chr3

NONMMUT057586 Down 0.01466 1.68 – chr6

NONMMUT040889 Down 0.02319 1.72 – chr2

NONMMUT024380 Down 0.04125 2.05 + chr15

NONMMUT036431 Down 0.02754 1.56 – chr2

NONMMUT068814 Down 0.02868 1.76 – chr9

NONMMUT019428 Down 0.00494 2.29 + chr13

Table 3  lncRNAs in turquoise module

lncRNA Trend P value FC Strand Location

Gm39636 Up 0.00008 4.54 – chr1

Gm26618 Up 0.01691 2.03 – chrx

NONMMUT015498 Up 0.03700 3.22 – chr10

NONMMUT06347 Up 0.00919 2.01 – chr7

NONMMUT014661 Up 0.02384 1.57 + chr12

NONMMUT046769 Up 0.01214 1.56 + chr4

NONMMUT055477 Down 0.02489 1.58 – chr5

NONMMUT024930 Down 0.03686 2.56 + chr15

NONMMUT025285 Down 0.00742 1.99 – chr16
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