Skip to main content

Table 1 Treatment-related information of nobiletin

From: A review on recent advances on nobiletin in central and peripheral nervous system diseases

Dose and route of administration

Time

Model

Effects

References

10, 50 or 100 µM

/

Cell-derived AD model

BACE1 inhibitory

[76]

10 – 50 mg/kg (i.p.)

7 d

AD model mice

Soluble Aβ1–40

learning and memory impairment ↓

[40]

0, 10, 50, 30 or 100 µM

72 h

Cell-derived AD model (SK-N-SH cells)

Neprilysin activity ↑

[10]

3, 10 or 30 µM

24 h

Cell-derived AD or normal neurons model

Neprilysin mRNA ↑

1–42

[27]

10 mg/kg (i.p.)

4 m

AD model mice

Guanidine-soluble Aβ1–40 and Aβ1–42

[45]

1, 10, 25 or 50 µM

1 h

Cell-derived AD or normal neurons model

Oxidative stress ↓

Interleukin-1 ↓

Tumour necrosis factor-α↓

Nitric oxide (NO)↓

Prostaglandin E2↓

Cyclooxygenase-2↓

c-Jun N-terminal kinase and p38 ↓

[75]

25, 50 or 75 mg/kg (p.o.)

90 d

AD model mice

Apoptosis↓

IL-1β↓, TNF-α↓, and IL-18 levels ↓

HMGB-1↓, NLRP3↓, ASC↓

Cleaved Caspase-1↓, GSDMD-N ↓

[8]

30 mg/kg (p.o.)

4 w

Aβ 1–42 injection mice model

AchE activity↑

Bax and cleaved caspase-3 ↓

Bcl-2 and Bcl-2/Bax ↑

[30]

50 mg/kg

11 d

AD model mice

ChAT ↑

[23]

30 or 100 μM

18 h

PC12D cells and hippocampal neurons

ChAT ↑, AchE ↑

Cholinergic neurodegeneration ↓

[41]

30 μM

5 h

PC12D cells

CRE-mediated transcriptional Activity ↑

ERK phosphorylation level ↑

[11]

25 mg/kg

7 d

AD Model mice

CRE-mediated transcriptional activity ↑

[24]

10 μM

/

PC12 cells

CRE-dependent transcriptional activity ↑

Erk phosphorylation ↑

[58]

10 or 50 mg/kg

7 d

AD Model mice

CREB phosphorylation ↑

Learning ability ↑

[38]

100 μM

8 h

PC12D cells

Neurite outgrowth ↑

Improve impaired memory ↑

CRE-dependent transcription ↑

[39]

10 or 50 mg/kg (i.p.)

7 d

AD model mice

PKA/ERK/CREB signalling ↑

learning impairment ↓

[2]

100 μM

15 min

PC12D cells

protein kinase A phosphorylation ↑

GluR1 receptor phosphorylation ↑

[37]

10 or 25 mg/kg (i.p.)

3 d

AD model mice

phosphorylated ‑Akt ↑

CREB ↑, BDNF ↑

Bax ↓

[5]

25 or 50 mg/kg (i.p.)

7 d

Stroke model mice

Calcium/calmodulin-dependent protein kinase II ↑

Microtubule-associated protein 2 ↑

Glutamate receptor 1 ↑

[67]

1 μM

48 h

Cell hypoxia model

Astrocytes activation↓

Nrf2 nuclear translocation ↑

HO-1 expression ↑

GFAP ↓

ROS and MDA ↓

Mitochondrial dysfunction ↓

[60]

10 or 25 mg/kg(i.p.)

3 d

Stroke model rat

Brain oedema ↓

Infarct volume ↓

p-Akt↑, CREB↑, BDNF↑, Bcl-2 ↑

Claudin-5 ↑

[78]

15 mg/kg (i.p.)

1 d

Stroke model rat

Infarct volume ↓

Brain oedema ↓

Neutrophil invasion ↓

Apoptotic ↓

[71]

10 or 25 mg/kg(i.p.)

3 d

Stroke model rat

Neurological deficits ↓

Brain oedema ↓

Infarct volume ↓

Nrf2 ↑, HO-1↑, SOD1↑, GSH ↑

NF-κB ↓, MMP-9↓, MDA ↓

[77]

100 or 200 mg/kg (p.o.)

9 d

Stroke model rat

TNF-a↓, IL-1β↓, IL-6↓, NO ↓

TLR4↓, NF-κB ↓

[80]

1, 10, 20 or 50 µM

24 h

Stroke cell model

Endoplasmic reticulum (ER) stress(ERS) -induced apoptosis ↓

Dehydrogenase ↓

Cellular viability ↑

PI3K/AKT pathway ↑

[36]

0,10,50 or 100 µM

24 h

LPS-stimulated BV-2 microglia

TNF-a, IL-1β ↓

NF-kB ↓,

ERK ↓, p38 ↓, JNK phosphorylation ↓

[9]

25 or 100 μg/ml

24 h

LPS-stimulated microglia

NO↓, iNOS↓, NF-κB↓, MAPK phosphorylation ↓

[19]

3–10 μM

24 h

BV‐2 cells

IL‐1β↓

[17]

40 μM

20 h

LPS-stimulated BV-2 microglia

NO ↓, TNF-a ↓, IL‐1β↓, IL-6 ↓

[1]

100 mg/kg (p.o)

10 d

LPS intrahippocampal challenge

Memory deficit ↓

COX-2 ↓, IL-1β ↓, TNF-α ↓, and iNOS↓

[48]

100 or 200 mg/kg (p.o.)

6 w

LPS-induced neuroinflammation

iNOS↓, IL-6 ↓,

JAK2↓, TNF↓, IL-1↓, and NF-κB↓

STAT3 phosphorylation ↓

[63]

6.25, 12.5, 25 or 50 μg/ml

24 h

LPS-stimulated BV-2 microglia

NO↓, iNOS↓, IL-6↓, JAK2↓, TNFα↓, IL-1β↓, and NF-κB ↓

[57]

10, 20 or 40 μM

24 h

H2O2-induced oxidative stress in astrocytes

Ose-regulated protein(GRP) 78 ↑, Cell death ↓

Endoplasmic reticulum (ER) stress lead ↓

[21]

30, 50, 100 or 200 μM

10 min

Glutamate-stimulated neurons

Calcium overload ↓

ROS ↓

Mitochondrial depolarization ↑

[31]

1, 10 or 30 µM

5 min

Neurons

ROS↓, apoptotic signalling↓,

ATP production ↑,

Neuronal viability↑,

Nrf2↓, HO-1↓

[3]

10 mg/kg (i.p.)

9 d

Cisplatin-induced nerve injury

Peroxide↓, apoptotic↓

[25]

50 µM

96 h

Sodium arsenate-induced neural progenitor cells toxic

Neuronal degeneration ↓,

Oedema ↓, caspase-3↓

BDNF ↑, G6PD activity ↑

Antioxidant ↑, Antiapoptotic ↑ Neuroprotective effects ↑

[42]