Salazar-Vega J, Ortiz-Prado E, Solis-Pazmino P, Gomez-Barreno L, Simbana-Rivera K, Henriquez-Trujillo AR, et al. Thyroid cancer in ecuador, a 16 years population-based analysis (2001–2016). BMC Cancer. 2019;19(1):294.
Article
PubMed
PubMed Central
Google Scholar
Paschou SA, Vryonidou A, Goulis DG. Thyroid nodules: Alpha guide to assessment, treatment and follow-up. Maturitas. 2017;96:1–9.
Article
PubMed
Google Scholar
Kilfoy BA, Zheng T, Holford TR, Han X, Ward MH, Sjodin A, et al. International patterns and trends in thyroid cancer incidence, 1973–2002. Cancer Causes Control. 2009;20(5):525–31.
Article
PubMed
Google Scholar
Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE, et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiol Biomarkers Prev. 2009;18(3):784–91.
Article
PubMed
PubMed Central
Google Scholar
Huk DJ, Ashtekar A, Magner A, La Perle K, Kirschner LS. Deletion of Rap1b, but not Rap1a or Epac1, reduces protein kinase a-mediated thyroid cancer. Thyroid. 2018;28(9):1153–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward EM, Sherman RL, Henley SJ, Jemal A, Siegel DA, Feuer EJ, et al. Annual report to the nation on the status of cancer, featuring cancer in men and women age 20–49 years. J Natl Cancer Inst. 2019;111(12):1279–97.
Article
PubMed
PubMed Central
Google Scholar
La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015;136(9):2187–95.
Article
PubMed
Google Scholar
Colonna M, Uhry Z, Guizard AV, Delafosse P, Schvartz C, Belot A, et al. Recent trends in incidence, geographical distribution, and survival of papillary thyroid cancer in France. Cancer Epidemiol. 2015;39(4):511–8.
Article
CAS
PubMed
Google Scholar
Lebastchi AH, Callender GG. Thyroid cancer. Curr Probl Cancer. 2014;38(2):48–74.
Article
PubMed
Google Scholar
Heiden KB, Williamson AJ, Doscas ME, Ye J, Wang Y, Liu D, et al. The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression. J Clin Endocrinol Metab. 2014;99(11):E2178–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conzo G, Avenia N, Bellastella G, Candela G, de Bellis A, Esposito K, et al. The role of surgery in the current management of differentiated thyroid cancer. Endocrine. 2014;47(2):380–8.
Article
CAS
PubMed
Google Scholar
Yoon JH, Kim EK, Kwak JY, Moon HJ. Effectiveness and limitations of core needle biopsy in the diagnosis of thyroid nodules: review of current literature. J Pathol Transl Med. 2015;49(3):230–5.
Article
PubMed
PubMed Central
Google Scholar
Lu Y, Yu Y, Zhu Z, Xu H, Ji J, Bu L, et al. Identification of a new target region by loss of heterozygosity at 5p1533 in sporadic gastric carcinomas: genotype and phenotype related. Cancer Lett. 2005;224(2):329–37.
Article
CAS
PubMed
Google Scholar
Katoh M. Molecular cloning, gene structure, and expression analyses of NKD1 and NKD2. Int J Oncol. 2001;19(5):963–9.
CAS
PubMed
Google Scholar
Wang D, Zhang S, Chen Y, Hu B, Lu C. Low expression of NKD2 is associated with enhanced cell proliferation and poor prognosis in human hepatocellular carcinoma. Hum Pathol. 2018;72:80–90.
Article
CAS
PubMed
Google Scholar
Hu T, Krezel AM, Li C, Coffey RJ. Structural studies of human Naked2: a biologically active intrinsically unstructured protein. Biochem Biophys Res Commun. 2006;350(4):911–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gotze S, Wolter M, Reifenberger G, Muller O, Sievers S. Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer. 2010;126(11):2584–93.
PubMed
Google Scholar
Dong Y, Cao B, Zhang M, Han W, Herman JG, Fuks F, et al. Epigenetic silencing of NKD2, a major component of Wnt signaling, promotes breast cancer growth. Oncotarget. 2015;6(26):22126–38.
Article
PubMed
PubMed Central
Google Scholar
Jia Y, Cao B, Yang Y, Linghu E, Zhan Q, Lu Y, et al. Silencing NKD2 by promoter region hypermethylation promotes gastric cancer invasion and metastasis by up-regulating SOX18 in human gastric cancer. Oncotarget. 2015;6(32):33470–85.
Article
PubMed
PubMed Central
Google Scholar
Cao B, Yang W, Jin Y, Zhang M, He T, Zhan Q, et al. Silencing NKD2 by promoter region hypermethylation promotes esophageal cancer progression by activating wnt signaling. J Thorac Oncol. 2016;11(11):1912–26.
Article
PubMed
Google Scholar
Tabatabai R, Linhares Y, Bolos D, Mita M, Mita A. Targeting the wnt pathway in cancer: a review of novel therapeutics. Target Oncol. 2017;12(5):623–41.
Article
PubMed
Google Scholar
Li XX, Zhou JD, Zhang TJ, Yang L, Wen XM, Ma JC, et al. Epigenetic dysregulation of NKD2 is a valuable predictor assessing treatment outcome in acute myeloid leukemia. J Cancer. 2017;8(3):460–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao S, Kurenbekova L, Gao Y, Roos A, Creighton CJ, Rao P, et al. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma. Oncogene. 2015;34(39):5069–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang YX, Liu L, Zeng QX, Fan TY, Jiang JD, Deng HB, et al. Synthesis and Identification of novel berberine derivatives as potent inhibitors against TNF-alpha-induced NF-kappaB activation. Molecules. 2017;22(8):1257.
Article
PubMed Central
Google Scholar
Roman BR, Morris LG, Davies L. The thyroid cancer epidemic, 2017 perspective. Curr Opin Endocrinol Diabetes Obes. 2017;24(5):332–6.
Article
PubMed
PubMed Central
Google Scholar
Tang H, Dou Y, Meng Y, Lu Q, Liang L, Luo Y. LINC00538 promotes the progression of colon cancer through inhibiting NKD2 expression. J BUON. 2020;25(6):2657–64.
PubMed
Google Scholar
Wang Y, Dong T, Wang P, Li S, Wu G, Zhou J, et al. LINC00922 regulates epithelial-mesenchymal transition, invasive and migratory capacities in breast cancer through promoting NKD2 methylation. Cell Signal. 2021;77: 109808.
Article
CAS
PubMed
Google Scholar
Li Z, Li Y, Wang N, Yang L, Zhao W, Zeng X. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells. Biochem Biophys Res Commun. 2016;471(4):479–85.
Article
CAS
PubMed
Google Scholar
Zhang D, Tang J, Kong D, Cui Q, Wang K, Gong Y, et al. Impact of gender and age on the prognosis of differentiated thyroid carcinoma: a retrospective analysis based on SEER. Horm Cancer. 2018;9(5):361–70.
Article
CAS
PubMed
Google Scholar
Wei W, Zheng L, Gao Y, He M, Yang F. Expression and prognostic significance of NKD2 in ovarian cancer. Jpn J Clin Oncol. 2021;51(3):459–68.
Article
PubMed
Google Scholar
Wu YF, Wang CY, Tang WC, Lee YC, Ta HDK, Lin LC, et al. Expression profile and prognostic value of wnt signaling pathway molecules in colorectal cancer. Biomedicines. 2021;9(10):1331.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan AQ, Ahmed EI, Elareer N, Fathima H, Prabhu KS, Siveen KS, et al. Curcumin-mediated apoptotic cell death in papillary thyroid cancer and cancer stem-like cells through targeting of the JAK/STAT3 signaling pathway. Int J Mol Sci. 2020;21(2):438.
Article
CAS
PubMed Central
Google Scholar
Bian P, Hu W, Liu C, Li L. Resveratrol potentiates the anti-tumor effects of rapamycin in papillary thyroid cancer: PI3K/AKT/mTOR pathway involved. Arch Biochem Biophys. 2020;689: 108461.
Article
CAS
PubMed
Google Scholar
Du Y, Zhu J, Chu BF, Yang YP, Zhang SL. MiR-548c-3p suppressed the progression of papillary thyroid carcinoma via inhibition of the HIF1alpha-mediated VEGF signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(15):6570–8.
CAS
PubMed
Google Scholar
Peyret V, Nazar M, Martin M, Quintar AA, Fernandez EA, Geysels RC, et al. Functional toll-like receptor 4 overexpression in papillary thyroid cancer by MAPK/ERK-induced ETS1 transcriptional activity. Mol Cancer Res. 2018;16(5):833–45.
Article
CAS
PubMed
Google Scholar
Lu ZW, Wen D, Wei WJ, Han LT, Xiang J, Wang YL, et al. Silencing of PPM1D inhibits cell proliferation and invasion through the p38 MAPK and p53 signaling pathway in papillary thyroid carcinoma. Oncol Rep. 2020;43(3):783–94.
CAS
PubMed
PubMed Central
Google Scholar