Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Flaxman A, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129(14):1493–501.
Article
PubMed
PubMed Central
Google Scholar
Travieso A, Jeronimo-Baza A, Faria D, Shabbir A, Mejia-Renteria H, Escaned J. Invasive evaluation of coronary microvascular dysfunction. J Nucl Cardiol. 2022;29(5):2474–86. https://doi.org/10.1007/s12350-022-02997-4.
Article
PubMed
PubMed Central
Google Scholar
Kaski JC, Crea F, Gersh BJ, Camici PG. Reappraisal of ischemic heart disease. Circulation. 2018;138(14):1463–80.
Article
PubMed
Google Scholar
Rocco E, Grimaldi MC, Maino A, Cappannoli L, Pedicino D, Liuzzo G, et al. Advances and challenges in biomarkers use for coronary microvascular dysfunction: from bench to clinical practice. J Clin Med. 2022;11(7):2055. https://doi.org/10.3390/jcm11072055.
Article
PubMed
PubMed Central
Google Scholar
Cannon RR, Epstein SE. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol. 1988;61(15):1338–43.
Article
PubMed
Google Scholar
Masi S, Rizzoni D, Taddei S, Widmer RJ, Montezano AC, Luscher TF, et al. Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. Eur Heart J. 2021;42(26):2590–604.
Article
PubMed
CAS
Google Scholar
Sacks D, Baxter B, Campbell B, Carpenter JS, Cognard C, Dippel D, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 2018;13(6):612–32.
PubMed
Google Scholar
Del BM, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78(13):1352–71.
Article
Google Scholar
Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, et al. The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(9):866–75.
Article
PubMed
Google Scholar
Padro T, Manfrini O, Bugiardini R, Canty J, Cenko E, De Luca G, et al. ESC Working Group on coronary pathophysiology and microcirculation position paper on “coronary microvascular dysfunction in cardiovascular disease.” Cardiovasc Res. 2020;116(4):741–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1445–53.
Article
PubMed
Google Scholar
Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shah SJ, Lam C, Svedlund S, Saraste A, Hage C, Tan RS, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018;39(37):3439–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kelshiker MA, Seligman H, Howard JP, Rahman H, Foley M, Nowbar AN, et al. Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J. 2022;43(16):1582–93.
Article
PubMed
Google Scholar
Ma C, Su H, Li H. Global research trends on prostate diseases and erectile dysfunction: a bibliometric and visualized study. Front Oncol. 2020;10: 627891.
Article
PubMed
Google Scholar
Hao KJ, Jia X, Dai WT, Huo ZM, Zhang HQ, Liu JW, et al. Mapping intellectual structures and research hotspots of triple negative breast cancer: a bibliometric analysis. Front Oncol. 2021;11: 689553.
Article
PubMed
Google Scholar
Wang C, Jing H, Sun Z, Yao J, Zhang X, Liu T, et al. A bibliometric analysis of primary aldosteronism research from 2000 to 2020. Front Endocrinol. 2021;12: 665912.
Article
Google Scholar
Xing D, Zhao Y, Dong S, Lin J. Global research trends in stem cells for osteoarthritis: a bibliometric and visualized study. Int J Rheum Dis. 2018;21(7):1372–84.
Article
PubMed
Google Scholar
Dean J, Cruz SD, Mehta PK, Merz CN. Coronary microvascular dysfunction: sex-specific risk, diagnosis, and therapy. Nat Rev Cardiol. 2015;12(7):406–14.
Article
PubMed
Google Scholar
Tamarappoo B, Samuel TJ, Elboudwarej O, Thomson L, Aldiwani H, Wei J, et al. Left ventricular circumferential strain and coronary microvascular dysfunction: a report from the Women’s Ischemia Syndrome Evaluation Coronary Vascular Dysfunction (WISE-CVD) Project. Int J Cardiol. 2021;327:25–30.
Article
PubMed
Google Scholar
Wei J, Nelson MD, Szczepaniak EW, Smith L, Mehta PK, Thomson LE, et al. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women. Am J Physiol Heart Circ Physiol. 2016;310(1):H14–9.
Article
PubMed
Google Scholar
Thomson LE, Wei J, Agarwal M, Haft-Baradaran A, Shufelt C, Mehta PK, et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction. A National Heart, Lung, and Blood Institute-sponsored study from the Women’s Ischemia Syndrome Evaluation. Circ Cardiovasc Imaging. 2015;8(4):e002481. https://doi.org/10.1161/CIRCIMAGING.114.002481.
Article
PubMed
Google Scholar
Lazzeroni D, Rimoldi O, Camici PG. From left ventricular hypertrophy to dysfunction and failure. Circ J. 2016;80(3):555–64.
Article
PubMed
Google Scholar
Camici PG, Tschope C, Di Carli MF, Rimoldi O, Van Linthout S. Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc Res. 2020;116(4):806–16.
Article
PubMed
CAS
Google Scholar
Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F, et al. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006;47(5):1043–8.
Article
PubMed
Google Scholar
Niccoli G, Scalone G, Lerman A, Crea F. Coronary microvascular obstruction in acute myocardial infarction. Eur Heart J. 2016;37(13):1024–33.
Article
PubMed
Google Scholar
De Vita A, Manfredonia L, Lamendola P, Villano A, Ravenna SE, Bisignani A, et al. Coronary microvascular dysfunction in patients with acute coronary syndrome and no obstructive coronary artery disease. Clin Res Cardiol. 2019;108(12):1364–70.
Article
PubMed
Google Scholar
Milo M, Nerla R, Tarzia P, Infusino F, Battipaglia I, Sestito A, et al. Coronary microvascular dysfunction after elective percutaneous coronary intervention: correlation with exercise stress test results. Int J Cardiol. 2013;168(1):121–5.
Article
PubMed
Google Scholar
De Vita A, Milo M, Sestito A, Lamendola P, Lanza GA, Crea F. Association of coronary microvascular dysfunction with restenosis of left anterior descending coronary artery disease treated by percutaneous intervention. Int J Cardiol. 2016;219:322–5.
Article
PubMed
Google Scholar
Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.
Article
PubMed
CAS
Google Scholar
Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Crea F, Camici PG, Bairey MC. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101–11.
Article
PubMed
Google Scholar
Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, et al. International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018;250:16–20.
Article
PubMed
Google Scholar
Ma D, Yang B, Guan B, Song L, Liu Q, Fan Y, et al. A bibliometric analysis of pyroptosis from 2001 to 2021. Front Immunol. 2021;12: 731933.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liang YD, Li Y, Zhao J, Wang XY, Zhu HZ, Chen XH. Study of acupuncture for low back pain in recent 20 years: a bibliometric analysis via CiteSpace. J Pain Res. 2017;10:951–64.
Article
PubMed
PubMed Central
Google Scholar
Vancheri F, Longo G, Vancheri S, Henein M. Coronary microvascular dysfunction. J Clin Med. 2020;9(9):2880. https://doi.org/10.3390/jcm9092880.
Article
PubMed
PubMed Central
Google Scholar
Pries AR, Reglin B. Coronary microcirculatory pathophysiology: can we afford it to remain a black box? Eur Heart J. 2017;38(7):478–88.
PubMed
CAS
Google Scholar
Rahman H, Ryan M, Lumley M, Modi B, McConkey H, Ellis H, et al. Coronary microvascular dysfunction is associated with myocardial ischemia and abnormal coronary perfusion during exercise. Circulation. 2019;140(22):1805–16.
Article
PubMed
PubMed Central
Google Scholar
Bairey MC, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017;135(11):1075–92.
Article
Google Scholar
Zeng H, Chen JX. Sirtuin 3, endothelial metabolic reprogramming, and heart failure with preserved ejection fraction. J Cardiovasc Pharmacol. 2019;74(4):315–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ford TJ, Corcoran D, Padmanabhan S, Aman A, Rocchiccioli P, Good R, et al. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur Heart J. 2020;41(34):3239–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dora KA, Borysova L, Ye X, Powell C, Beleznai TZ, Stanley CP, et al. Human coronary microvascular contractile dysfunction associates with viable synthetic smooth muscle cells. Cardiovasc Res. 2022;118(8):1978–92.
Article
PubMed
CAS
Google Scholar
Erdogan D, Yildirim I, Ciftci O, Ozer I, Caliskan M, Gullu H, et al. Effects of normal blood pressure, prehypertension, and hypertension on coronary microvascular function. Circulation. 2007;115(5):593–9.
Article
PubMed
Google Scholar
Sorop O, Olver TD, van de Wouw J, Heinonen I, van Duin RW, Duncker DJ, et al. The microcirculation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res. 2017;113(9):1035–45.
Article
PubMed
CAS
Google Scholar
Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003;41(8):1387–93.
Article
PubMed
Google Scholar
Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, et al. Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol. 2017;69(2):131–43.
Article
PubMed
CAS
Google Scholar
Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012;33(22):2771–2782b.
Article
PubMed
PubMed Central
Google Scholar
Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC State-of-the-Art review. J Am Coll Cardiol. 2018;72(21):2625–41.
Article
PubMed
PubMed Central
Google Scholar
Bechsgaard DF, Prescott E. Coronary microvascular dysfunction: a practical approach to diagnosis and management. Curr Atheroscler Rep. 2021;23(9):54.
Article
PubMed
Google Scholar
Schroder J, Michelsen MM, Mygind ND, Suhrs HE, Bove KB, Bechsgaard DF, et al. Coronary flow velocity reserve predicts adverse prognosis in women with angina and no obstructive coronary artery disease: results from the iPOWER study. Eur Heart J. 2021;42(3):228–39.
Article
PubMed
CAS
Google Scholar
Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging. Circ Cardiovasc Imaging. 2017;10(8):e006427. https://doi.org/10.1161/CIRCIMAGING.117.006427.
Article
PubMed
PubMed Central
Google Scholar
Kellman P, Hansen MS, Nielles-Vallespin S, Nickander J, Themudo R, Ugander M, et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J Cardiovasc Magn Reson. 2017;19(1):43.
Article
PubMed
PubMed Central
Google Scholar
Aribas E, Roeters VLJ, Elias-Smale SE, Piek JJ, Roos M, Ahmadizar F, et al. Prevalence of microvascular angina among patients with stable symptoms in the absence of obstructive coronary artery disease: a systematic review. Cardiovasc Res. 2022;118(3):763–71.
Article
PubMed
CAS
Google Scholar
Sinha A, Rahman H, Webb A, Shah AM, Perera D. Untangling the pathophysiologic link between coronary microvascular dysfunction and heart failure with preserved ejection fraction. Eur Heart J. 2021;42(43):4431–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Obokata M, Reddy Y, Melenovsky V, Kane GC, Olson TP, Jarolim P, et al. Myocardial injury and cardiac reserve in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2018;72(1):29–40.
Article
PubMed
PubMed Central
Google Scholar
Guclu A, Happe C, Eren S, Korkmaz IH, Niessen HW, Klein P, et al. Left ventricular outflow tract gradient is associated with reduced capillary density in hypertrophic cardiomyopathy irrespective of genotype. Eur J Clin Invest. 2015;45(12):1252–9.
Article
PubMed
Google Scholar
Timmer SA, Knaapen P. Coronary microvascular function, myocardial metabolism, and energetics in hypertrophic cardiomyopathy: insights from positron emission tomography. Eur Heart J Cardiovasc Imaging. 2013;14(2):95–101.
Article
PubMed
Google Scholar
Aguiar RS, Rocha LL, Fiarresga A, Ferreira RC, Mota CM. Coronary microvascular dysfunction in hypertrophic cardiomyopathy: pathophysiology, assessment, and clinical impact. Microcirculation. 2021;28(1): e12656.
Google Scholar
Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349(11):1027–35.
Article
PubMed
CAS
Google Scholar
Fan X, Yang G, Kowitz J, Akin I, Zhou X, El-Battrawy I. Takotsubo syndrome: translational implications and pathomechanisms. Int J Mol Sci. 2022;23(4):1951. https://doi.org/10.3390/ijms23041951.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rivero F, Cuesta J, Garcia-Guimaraes M, Bastante T, Alvarado T, Antuna P, et al. Time-related microcirculatory dysfunction in patients with Takotsubo cardiomyopathy. JAMA Cardiol. 2017;2(6):699–700.
Article
PubMed
PubMed Central
Google Scholar
Elesber A, Lerman A, Bybee KA, Murphy JG, Barsness G, Singh M, et al. Myocardial perfusion in apical ballooning syndrome correlate of myocardial injury. Am Heart J. 2006;152(3):469.e9-13.
Article
Google Scholar
Rigo F, Sicari R, Citro R, Ossena G, Buja P, Picano E. Diffuse, marked, reversible impairment in coronary microcirculation in stress cardiomyopathy: a Doppler transthoracic echo study. Ann Med. 2009;41(6):462–70.
Article
PubMed
Google Scholar
Oikonomou E, Mourouzis K, Vogiatzi G, Siasos G, Deftereos S, Papaioannou S, et al. Coronary microcirculation and the no-reflow phenomenon. Curr Pharm Des. 2018;24(25):2934–42.
Article
PubMed
CAS
Google Scholar
Piaserico S, Osto E, Famoso G, Zanetti I, Gregori D, Poretto A, et al. Treatment with tumor necrosis factor inhibitors restores coronary microvascular function in young patients with severe psoriasis. Atherosclerosis. 2016;251:25–30.
Article
PubMed
CAS
Google Scholar
Kakuta K, Dohi K, Sato Y, Yamanaka T, Kawamura M, Ogura T, et al. Chronic inflammatory disease is an independent risk factor for coronary flow velocity reserve impairment unrelated to the processes of coronary artery calcium deposition. J Am Soc Echocardiogr. 2016;29(2):173–80.
Article
PubMed
Google Scholar
Montisci R, Vacca A, Garau P, Colonna P, Ruscazio M, Passiu G, et al. Detection of early impairment of coronary flow reserve in patients with systemic sclerosis. Ann Rheum Dis. 2003;62(9):890–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vita T, Murphy DJ, Osborne MT, Bajaj NS, Keraliya A, Jacob S, et al. Association between nonalcoholic fatty liver disease at CT and coronary microvascular dysfunction at myocardial perfusion PET/CT. Radiology. 2019;291(2):330–7.
Article
PubMed
Google Scholar
Gdowski MA, Murthy VL, Doering M, Monroy-Gonzalez AG, Slart R, Brown DL. Association of isolated coronary microvascular dysfunction with mortality and major adverse cardiac events: a systematic review and meta-analysis of aggregate data. J Am Heart Assoc. 2020;9(9): e014954.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brainin P, Frestad D, Prescott E. The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: a systematic review and meta-analysis. Int J Cardiol. 2018;254:1–9.
Article
PubMed
Google Scholar
Rahman H, Demir OM, Ryan M, McConkey H, Scannell C, Ellis H, et al. Optimal use of vasodilators for diagnosis of microvascular angina in the cardiac catheterization laboratory. Circ Cardiovasc Interv. 2020;13(6): e009019.
Article
PubMed
PubMed Central
Google Scholar
Aggarwal S, Xie F, High R, Pavlides G, Porter TR. Prevalence and predictive value of microvascular flow abnormalities after successful contemporary percutaneous coronary intervention in acute ST-segment elevation myocardial infarction. J Am Soc Echocardiogr. 2018;31(6):674–82.
Article
PubMed
Google Scholar
Bolognese L, Carrabba N, Parodi G, Santoro GM, Buonamici P, Cerisano G, et al. Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation. 2004;109(9):1121–6.
Article
PubMed
Google Scholar
Fearon WF, Low AF, Yong AS, McGeoch R, Berry C, Shah MG, et al. Prognostic value of the index of microcirculatory resistance measured after primary percutaneous coronary intervention. Circulation. 2013;127(24):2436–41.
Article
PubMed
PubMed Central
Google Scholar
Choi KH, Dai N, Li Y, Kim J, Shin D, Lee SH, et al. Functional coronary angiography-derived index of microcirculatory resistance in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2021;14(15):1670–84.
Article
PubMed
Google Scholar
Fukunaga M, Fujii K, Kawasaki D, Sawada H, Miki K, Tamaru H, et al. Thermodilution-derived coronary blood flow pattern immediately after coronary intervention as a predictor of microcirculatory damage and midterm clinical outcomes in patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv. 2014;7(2):149–55.
Article
PubMed
Google Scholar
Canu M, Khouri C, Marliere S, Vautrin E, Piliero N, Ormezzano O, et al. Prognostic significance of severe coronary microvascular dysfunction post-PCI in patients with STEMI: a systematic review and meta-analysis. PLoS ONE. 2022;17(5): e0268330.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bajaj NS, Osborne MT, Gupta A, Tavakkoli A, Bravo PE, Vita T, et al. Coronary microvascular dysfunction and cardiovascular risk in obese patients. J Am Coll Cardiol. 2018;72(7):707–17.
Article
PubMed
PubMed Central
Google Scholar
Zhou W, Bajaj N, Gupta A, Sun YP, Divakaran S, Bibbo C, et al. Coronary microvascular dysfunction, left ventricular remodeling, and clinical outcomes in aortic stenosis. J Nucl Cardiol. 2021;28(2):579–88.
Article
PubMed
Google Scholar
Bajaj NS, Singh A, Zhou W, Gupta A, Fujikura K, Byrne C, et al. Coronary microvascular dysfunction, left ventricular remodeling, and clinical outcomes in patients with chronic kidney impairment. Circulation. 2020;141(1):21–33.
Article
PubMed
Google Scholar
Shah SA, Echols JT, Sun C, Wolf MJ, Epstein FH. Accelerated fatty acid composition MRI of epicardial adipose tissue: development and application to eplerenone treatment in a mouse model of obesity-induced coronary microvascular disease. Magn Reson Med. 2022;88(4):1734-47. https://doi.org/10.1002/mrm.29348.
Article
PubMed
PubMed Central
CAS
Google Scholar
Neglia D, Fommei E, Varela-Carver A, Mancini M, Ghione S, Lombardi M, et al. Perindopril and indapamide reverse coronary microvascular remodelling and improve flow in arterial hypertension. J Hypertens. 2011;29(2):364–72.
Article
PubMed
CAS
Google Scholar
Luo WH, Guo Y, Huang JW, Zhang PD. Do statins have a positive impact on patients with coronary microvascular dysfunction on long-term clinical outcome? A large retrospective cohort study. Biomed Res Int. 2019;2019:4069097.
Article
PubMed
PubMed Central
Google Scholar
Yong J, Tian J, Yang X, Xing H, He Y, Song X. Effects of oral drugs on coronary microvascular function in patients without significant stenosis of epicardial coronary arteries: a systematic review and meta-analysis of coronary flow reserve. Front Cardiovasc Med. 2020;7: 580419.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kofler T, Hess S, Moccetti F, Pepine CJ, Attinger A, Wolfrum M, et al. Efficacy of ranolazine for treatment of coronary microvascular dysfunction—a systematic review and meta-analysis of randomized trials. CJC Open. 2021;3(1):101–8.
Article
PubMed
Google Scholar
Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–77.
Article
PubMed
Google Scholar
Zheng Z, Yu Z, Xu B, Zhou Y, Xing Y, Li Q, et al. Pretreatment with Shenmai injection protects against coronary microvascular dysfunction. Evid Based Complement Alternat Med. 2022;2022:8630480.
Article
PubMed
PubMed Central
Google Scholar
Bai Y, Zhang M, Peng S, Wang Y, Gu Y, Fang Q, et al. Efficacy of shexiang tongxin dropping pills in a swine model of coronary slow flow. Front Physiol. 2022;13: 913399.
Article
PubMed
PubMed Central
Google Scholar
Prasad M, Corban MT, Henry TD, Dietz AB, Lerman LO, Lerman A. Promise of autologous CD34+ stem/progenitor cell therapy for treatment of cardiovascular disease. Cardiovasc Res. 2020;116(8):1424–33.
Article
PubMed
CAS
Google Scholar
Herring N, Tapoulal N, Kalla M, Ye X, Borysova L, Lee R, et al. Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction. Eur Heart J. 2019;40(24):1920–9.
Article
PubMed
PubMed Central
CAS
Google Scholar