Wolfrum N, Greber UF. Adenovirus signalling in entry. Cell Microbiol. 2013;15(1):53–62. https://doi.org/10.1111/cmi.12053.
Article
CAS
PubMed
Google Scholar
Enquist LW. Virology in the 21st century. J Virol. 2009;83(11):5296–308. https://doi.org/10.1128/JVI.00151-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louten J. Virus transmission and epidemiology. Essent Hum Virol. 2016. https://doi.org/10.1016/B978-0-12-800947-5.00005-3.
Article
Google Scholar
Maginnis MS. Virus-receptor interactions: the key to cellular invasion. J Mol Biol. 2018;430(17):2590–611. https://doi.org/10.1016/j.jmb.2018.06.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koonin Eugene V, Krupovic Mart, Agol Vadim I. The Baltimore classification of viruses 50 years later: how does it stand in the light of virus evolution? Microbiol Mol Biol Rev. 2021;85(3):e00053-21. https://doi.org/10.1128/MMBR.
Article
CAS
PubMed Central
Google Scholar
Broadbent AJ, Boonnak K, Subbarao K. Respiratory virus vaccines. Mucosal Immunol. 2015. https://doi.org/10.1016/B978-0-12-415847-4.00059-8.
Article
Google Scholar
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines against respiratory viruses. Front Immunol. 2019;10:1–11. https://doi.org/10.3389/fimmu.2019.00022.
Article
CAS
Google Scholar
Iyer S, Yadav R, Agarwal S, Tripathi S, Agarwal R. Bioengineering strategies for developing vaccines against respiratory viral diseases. Clin Microbiol Rev. 2022;35(1):00123–221. https://doi.org/10.1128/CMR.
Article
Google Scholar
Li ML, Shih SR, Tolbert BS, Brewer G. Enterovirus A71 vaccines. Vaccines. 2021;9(3):1–10. https://doi.org/10.3390/vaccines9030199.
Article
CAS
Google Scholar
Bhat R, Almajhdi FN. Induction of immune responses and immune evasion by Human bocavirus. Int Arch Allergy Immunol. 2021;182(8):728–35. https://doi.org/10.1159/000514688.
Article
CAS
PubMed
Google Scholar
Piret J, Boivin G. Pandemics throughout history. Front Microbiol. 2021;11: 631736. https://doi.org/10.3389/fmicb.2020.631736.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Reeves RM, Wang X, Bassat Q, Brooks WA, Cohen C, et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: a systematic analysis. Lancet Glob Heal. 2019;7(8):e1031–45. https://doi.org/10.1016/S2214-109X(19)30264-5.
Article
Google Scholar
Girard MP, Cherian T, Pervikov Y, Kieny MP. A review of vaccine research and development: human acute respiratory infections. Vaccines. 2005;23(50):5708–24. https://doi.org/10.1016/j.vaccine.2005.07.046.
Article
CAS
Google Scholar
Spencer JA, Shutt DP, Moser SK, Clegg H, Wearing HJ, Mukundan H, et al. Epidemiological parameter review and comparative dynamics of influenza, respiratory syncytial virus, rhinovirus, human coronavirus, and adenovirus. J Theor Biol. 2022;545: 111145. https://doi.org/10.1016/j.jtbi.2022.111145.
Article
CAS
PubMed
Google Scholar
Tang JWT, Lam TT, Zaraket H, Lipkin WI, Drews SJ, Hatchette TF, et al. Global epidemiology of non-influenza RNA respiratory viruses: data gaps and a growing need for surveillance. Lancet Infect Dis. 2017;17(10):e320–6. https://doi.org/10.1016/S1473-3099(17)30238-4.
Article
PubMed
PubMed Central
Google Scholar
Mennechet FJD, Paris O, Ouoba AR, Salazar Arenas S, Sirima SB, Takoudjou Dzomo GR, et al. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines. 2019;18(6):597–613. https://doi.org/10.1080/14760584.2019.1588113.
Article
CAS
PubMed
Google Scholar
Greber UF, Flatt JW. Adenovirus entry: from infection to immunity. Annu Rev Virol. 2019;6(1):177–97. https://doi.org/10.1080/14760584.2019.1588113.
Article
CAS
PubMed
Google Scholar
Binder AM, Biggs HM, Haynes AK, Chommanard C, Lu X, Erdman DD, et al. Human adenovirus surveillance—United States, 2003-2016. Morb Mortal Wkly Rep. 2017;66(39):1039–42. https://doi.org/10.15585/mmwr.mm6639a2.
Article
Google Scholar
Khanal S. The repertoire of adenovirus in human disease : the innocuous to the deadly. Biomedicines. 2018;6(1):30. https://doi.org/10.3390/biomedicines6010030.
Article
CAS
PubMed Central
Google Scholar
Ghebremedhin B. Human adenovirus: Viral pathogen with increasing importance. Eur J Microbiol Immunol. 2014;4(1):26–33. https://doi.org/10.1556/EuJMI.4.2014.1.2.
Article
CAS
Google Scholar
Stasiak AC, Stehle T. Human adenovirus binding to host cell receptors: a structural view. Med Microbiol Immunol. 2020;209(3):325–33. https://doi.org/10.1007/s00430-019-00645-2.
Article
PubMed
Google Scholar
Vassal-Stermann E, Effantin G, Zubieta C, Burmeister W, Iseni F, Wang H, et al. CryoEM structure of adenovirus type 3 fibre with desmoglein 2 shows an unusual mode of receptor engagement. Nat Commun. 2019;10(1):1181. https://doi.org/10.1038/s41467-019-09220-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lasswitz L, Chandra N, Arnberg N, Gerold G. Glycomics and proteomics approaches to investigate early adenovirus-host cell interactions. J Mol Biol. 2018;430(13):1863–82. https://doi.org/10.1016/j.jmb.2018.04.039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saha B, Parks RJ. Histone deacetylase inhibitor suberoylanilide hydroxamic acid suppresses human adenovirus gene expression and replication. J Virol. 2019;93(12):e00088-e119. https://doi.org/10.1128/JVI.00088-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ying B, Tollefson AE, Spencer JF, Balakrishnan L, Dewhurst S, Capella C, et al. Ganciclovir inhibits human adenovirus replication and pathogenicity in permissive immunosuppressed syrian hamsters. Antimicrob Agents Chemother. 2014;58(12):7171–81. https://doi.org/10.1128/AAC.03860-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer L, Lyoo H, van der Schaar HM, Strating JR, van Kuppeveld FJ. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections. Curr Opin Virol. 2017;24:1–8. https://doi.org/10.1016/j.coviro.2017.03.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA. 2005;102(36):12891–6. https://doi.org/10.1073/pnas.0504666102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rikhotso MC, Kabue JP, Ledwaba SE, Traoré AN, Potgieter N. Prevalence of human bocavirus in Africa and other developing countries between 2005 and 2016: a potential emerging viral pathogen for diarrhea. J Trop Med. 2018;2018:7875482. https://doi.org/10.1155/2018/7875482.
Article
PubMed
PubMed Central
Google Scholar
Schildgen O, Qiu J, Sderlund-Venermo M. Genomic features of the human bocaviruses. Future Virol. 2012;7:31–9. https://doi.org/10.2217/fvl.11.136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guido M, Tumolo MR, Verri T, Romano A, Serio F, De Giorgi M, et al. Human bocavirus: current knowledge and future challenges. World J Gastroenterol. 2016;22(39):8684–97. https://doi.org/10.3748/wjg.v22.i39.8684.
Article
PubMed
PubMed Central
Google Scholar
Kapoor A, Simmonds P, Slikas E, Li L, Bodhidatta L, Sethabutr O, et al. Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis. 2010;201(11):1633–43. https://doi.org/10.1086/652416.
Article
CAS
PubMed
Google Scholar
Gurda BL, Parent KN, Bladek H, Sinkovits RS, DiMattia MA, Rence C, et al. Human bocavirus capsid structure: insights into the structural repertoire of the parvoviridae. J Virol. 2010;84(12):5880–9. https://doi.org/10.1128/JVI.02719-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou W, Cheng F, Shen W, Engelhardt JF, Yan Z, Qiu J. Nonstructural protein N P1 of human bocavirus 1 plays a critical role in the expression of viral capsid proteins. J Virol. 2016;90(9):4658–69. https://doi.org/10.1128/JVI.02964-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu M, Liu F, Chen S, Wang M, Cheng A. Role of capsid proteins in parvoviruses infection. Virol J. 2015;12:114. https://doi.org/10.1186/s12985-015-0344-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudleenamjil E, Lin CY, Dredge D, Murray BK, Robison RA, Johnson FB. Bovine parvovirus uses clathrin-mediated endocytosis for cell entry. J Gen Virol. 2010;91(12):3032–41. https://doi.org/10.1099/vir.0.024133-0.
Article
CAS
PubMed
Google Scholar
Sun H, Sun J, Ji W, Hao C, Yan Y, Chen Z, et al. Impact of RSV coinfection on human bocavirus in children with acute respiratory infections. J Trop Pediatr. 2019;65(4):342–51. https://doi.org/10.1093/tropej/fmy057.
Article
PubMed
Google Scholar
Lin CY, Hwang D, Chiu NC, Weng LC, Liu HF, Mu JJ, et al. Increased detection of viruses in children with respiratory tract infection using PCR. Int J Environ Res Public Health. 2020;17(2):564. https://doi.org/10.3390/ijerph17020564.
Article
CAS
PubMed Central
Google Scholar
Vicente D, Cilla G, Montes M, Pérez-Yarza EG, Pérez-Trallero E. Human bocavirusa respiratory and enteric virus. Emerg Infec Dis. 2007;13(4):636–7. https://doi.org/10.3201/eid1304.061501.
Article
Google Scholar
Saunders-hastings PR, Krewski D. Reviewing the history of pandemic influenza : understanding patterns of emergence and transmission. Pathogens. 2016;5(4):66. https://doi.org/10.3390/pathogens5040066.
Article
PubMed Central
Google Scholar
Houser K, Subbarao K. Minireview influenza vaccines : challenges and solutions minireview. Cell Host Microbe. 2015;17(3):295–300. https://doi.org/10.1016/j.chom.2015.02.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flerlage T, Boyd DF, Meliopoulos V, Thomas PG. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol. 2021;19(7):425–41. https://doi.org/10.1038/s41579-021-00542-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Webster RG, Govorkova EA. Continuing challenges in influenza. Ann N Y Acad Sci. 2015;1323(1):115–39. https://doi.org/10.1111/nyas.12462.
Article
CAS
Google Scholar
Sellers SA, Hagan RS, Hayden FG, Fischer WA. The hidden burden of influenza : a review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses. 2017;11(5):372–93. https://doi.org/10.1111/irv.12470.
Article
PubMed
PubMed Central
Google Scholar
Chung H, Crowcroft NS, Karnauchow T, Katz K, Ko DT, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018;378(4):345–53. https://doi.org/10.1056/NEJMoa1702090.
Article
PubMed
Google Scholar
Nie S, Roth RB, Stiles J, Mikhlina A, Lu X, Tang Y, et al. Evaluation of Alere i Influenza A & B for rapid detection of influenza. J Clin Microbiol. 2014;52(9):3339–44. https://doi.org/10.1128/JCM.01132-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rudenko L, Yeolekar L, Kiseleva I, Isakova-sivak I. Development and approval of live attenuated influenza vaccines based on Russian master donor viruses: process challenges and success stories. Vaccine. 2016;34(45):5436–41. https://doi.org/10.1016/j.vaccine.2016.08.018.
Article
PubMed
PubMed Central
Google Scholar
Capua I, Marangon S. The avian influenza epidemic in Italy, 1999–2000: a review. Avian Pathol. 2000;29(4):289–94. https://doi.org/10.1080/03079450050118403.
Article
CAS
PubMed
Google Scholar
Su S, Bi Y, Wong G, Gray GC, Gao GF, Li S. Epidemiology, evolution, and recent outbreaks of avian influenza virus in China. J Virol. 2015;89(17):8671–6. https://doi.org/10.1128/JVI.01034-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peiris JSM, De Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 2007;20(2):243–67. https://doi.org/10.1128/CMR.00037-06.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, Wen Y. Spatiotemporal distributions and dynamics of human infections with the A H7N9 avian influenza virus. Comput Math Methods Med. 2019. https://doi.org/10.1155/2019/9248246.
Article
PubMed
PubMed Central
Google Scholar
De Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJD, Chau TNB, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12(10):1203–7. https://doi.org/10.1038/nm1477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver I, Roberts J, Brown CS, Byrne AMP, Mellon D, Hansen RDE, et al. Rapid communication A case of avian influenza A ( H5N1) in England, January 2022 Virological investigations The case was re-sampled with nose and throat swabs. Eurosurveillance. 2022;27(5):2200061. https://doi.org/10.2807/1560-7917.ES.2022.27.5.2200061.
Article
CAS
PubMed Central
Google Scholar
Concepts C. Update on Avian Influenza A (H5N1) virus infection in humans. Pediatr Infect Dis J. 2008;27(6):577. https://doi.org/10.1038/emi.2012.24.
Article
Google Scholar
de Jong MD, Van CB, Qui PT, Hien VM, Thanh TT, Hue NB, et al. Fatal Avian Influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med. 2005;352(7):686–91. https://doi.org/10.1056/NEJMoa044307.
Article
PubMed
Google Scholar
World Health Organization. Interim guidelines for avian influenza case management. Geneva: World Health Organization; 2007. p. 1–29.
Google Scholar
Lehmkuhl HD. Respiratory syncytial virus infection. Handbook Zoonoses, Second Ed Sect B Viral Zoonoses. Boca Raton: CRC Press; 1994.
Google Scholar
Kodama F, Nace DA, Jump RLP. Respiratory syncytial virus and other noninfluenza respiratory viruses in older adults. Infect Dis Clin North Am. 2017;31(4):767–90. https://doi.org/10.1016/j.idc.2017.07.006.
Article
PubMed
PubMed Central
Google Scholar
Law BJ, Carbonell-Estrany X, Simoes EAF. An update on respiratory syncytial virus epidemiology: a developed country perspective. Respir Med. 2002. https://doi.org/10.1053/rmed.2002.1294.
Article
PubMed
Google Scholar
Bohmwald K, Espinoza JA, Rey-Jurado E, Gómez RS, González PA, Bueno SM, et al. Human respiratory syncytial virus: infection and pathology. Semin Respir Crit Care Med. 2016;37(4):522–37. https://doi.org/10.1055/s-0036-1584799.
Article
PubMed
PubMed Central
Google Scholar
Thornhill EM, Verhoeven D. Respiratory syncytial virus’s non-structural proteins: masters of interference. Front Cell Infect Microbiol. 2020;10:1–9. https://doi.org/10.3389/fcimb.2020.00225.
Article
CAS
Google Scholar
Pangesti KNA, Abd El Ghany M, Walsh MG, Kesson AM, Hill-Cawthorne GA. Molecular epidemiology of respiratory syncytial virus. Rev Med Virol. 2018;28(2):1–11. https://doi.org/10.1002/rmv.1968.
Article
Google Scholar
Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev. 2017;30(1):277–319. https://doi.org/10.1128/CMR.00010-16.
Article
CAS
PubMed
Google Scholar
Roglić S. Respiratory syncytial virus infection in children. Paediatr Croat Suppl. 2018;62:236–41. https://doi.org/10.1097/01.inf.0000053880.92496.db.
Article
Google Scholar
Madhi SA, Polack FP, Piedra PA, Munoz FM, Trenholme AA, Simões EAF, et al. Respiratory syncytial virus vaccination during pregnancy and effects in infants. N Engl J Med. 2020;383(5):426–39. https://doi.org/10.1056/NEJMoa1908380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rivera CA, Gómez RS, Díaz RA, Céspedes PF, Espinoza JA, González PA, et al. Novel therapies and vaccines against the human respiratory syncytial virus. Expert Opin Investig Drugs. 2015;24(12):1613–30. https://doi.org/10.1056/NEJMoa1908380.
Article
CAS
PubMed
Google Scholar
Henrickson KJ. Parainfluenza viruses. Clin Microbiol Rev. 2003;16(2):242–64. https://doi.org/10.1128/CMR.16.2.242-64.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pawełczyk M, Kowalski ML. The Role of human parainfluenza virus infections in the immunopathology of the respiratory tract. Curr Allergy Asthma Rep. 2017;17(3):16. https://doi.org/10.1007/s11882-017-0685-2.
Article
PubMed
PubMed Central
Google Scholar
Almajhdi FN. Hemagglutinin-neuraminidase gene sequence-based reclassification of human parainfluenza virus 3 variants. Intervirology. 2015;58(1):35–40. https://doi.org/10.1159/000369208.
Article
CAS
PubMed
Google Scholar
Lau SKP, Li KSM, Chau KY, So LY, Lee RA, Lau YL, et al. Clinical and molecular epidemiology of human parainfluenza virus 4 infections in Hong Kong: Subtype 4B as common as subtype 4A. J Clin Microbiol. 2009;47(5):1549–52. https://doi.org/10.1128/JCM.00047-09.
Article
PubMed
PubMed Central
Google Scholar
Oda K, Nishimura H, Watanabe O, Kubo T, Shindo S. A case report on parainfluenza virus type 4a infection in a 1-year-old boy with biphasic fever. J Thorac Dis. 2018;10:S2305–8. https://doi.org/10.21037/jtd.2018.05.159.
Article
PubMed
PubMed Central
Google Scholar
Branche AR, Falsey AR. Parainfluenza Virus Infection. Semin Respir Crit Care Med. 2016;37(4):538–54. https://doi.org/10.1055/s-0036-1584798.
Article
PubMed
PubMed Central
Google Scholar
Hoogen VGBG, de Jong JC, Groen J, Kuiken T, de GrootR Fouchier R A, Osterhaus AD. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6):719–24. https://doi.org/10.1038/89098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams J, Shafagati N. Human metapneumovirus-what we know now. F1000Res. 2018;7:1–11. https://doi.org/10.12688/f1000research.12625.1.
Article
CAS
Google Scholar
Vidaur L, Totorika I, Montes M, Vicente D, Rello J, et al. Human metapneumovirus as cause of severe community-acquired pneumonia in adults : insights from a ten-year molecular and epidemiological analysis. Ann Intensive Care. 2019;9:86. https://doi.org/10.1186/s13613-019-0559-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheemarla NR, Guerrero-plata A. Immune response to human metapneumovirus infection: what we have learned from the mouse model. Pathogens. 2015. https://doi.org/10.3390/pathogens4030682.
Article
PubMed
PubMed Central
Google Scholar
Uche IK, Guerrero-Plata A. Interferon-mediated response to human metapneumovirus infection. Viruses. 2018;10(9):13–5. https://doi.org/10.3390/v10090505.
Article
CAS
Google Scholar
Vinci A, Lee PJ, Krilov LR. Human metapneumovirus infection. Pediatr Rev. 2018;39(12):623–4. https://doi.org/10.1542/pir.2017-0213.
Article
PubMed
Google Scholar
Il Kim J, Park S, Lee I, Park KS, Kwak EJ, Moon M, et al. Genome-wide analysis of human metapneumovirus evolution. PLoS ONE. 2016;11(4):e0152962. https://doi.org/10.1371/journal.pone.0152962.
Article
CAS
Google Scholar
Walsh EE, Peterson DR, Falsey AR. Human metapneumovirus infections in adults. Arch Intern Med. 2008;168(22):2489–96. https://doi.org/10.1001/archinte.168.22.2489.
Article
PubMed
PubMed Central
Google Scholar
Esposito S, Mastrolia MV. Metapneumovirus infections and respiratory complications. Semin Respir Crit Care Med. 2016;37(4):512–21. https://doi.org/10.1055/s-0036-1584800.
Article
PubMed
PubMed Central
Google Scholar
Haas LEM, Thijsen SFT, Van EL, Heemstra KA. Human metapneumovirus in adults. Viruses. 2013;5(1):87–110. https://doi.org/10.3390/v5010087.
Article
PubMed
PubMed Central
Google Scholar
Zhang D, Feng Z, Zhao M, Wang H, Wang L, Yang S, et al. Clinical evaluation of a single-tube multiple rt-PCR assay for the detection of 13 common virus types/subtypes associated with acute respiratory infection. PLoS ONE. 2016;11(4):1–10. https://doi.org/10.1371/journal.pone.0152702.
Article
CAS
Google Scholar
Malhotra B, Swamy MA, Reddy PVJ, Kumar N, Tiwari JK. Evaluation of custom multiplex real-Time RT-PCR in comparison to fast-Track diagnostics respiratory 21 pathogens kit for detection of multiple respiratory viruses. Virol J. 2016;13(1):1–7. https://doi.org/10.1186/s12985-016-0549-8.
Article
CAS
Google Scholar
Parsania M, Poopak B, Pouriayevali MH, Haghighi S, Amirkhani A, Nateghian A. Detection of human metapneumovirus and respiratory syncytial virus by real-time polymerase chain reaction among hospitalized young children in Iran. Jundishapur J Microbiol. 2016;9(3):7–11. https://doi.org/10.5812/jjm.32974.
Article
Google Scholar
Wyde PR, Chetty SN, Jewell AM, Boivin G, Piedra PA. Comparison of the inhibition of human metapneumovirus and respiratory syncytial virus by ribavirin and immune serum globulin in vitro. Antiviral Res. 2003;60:51–9. https://doi.org/10.1016/s0166-3542(03)00153-0.
Article
CAS
PubMed
Google Scholar
Hamelin MÈ, Prince GA, Boivin G. Effect of ribavirin and glucocorticoid treatment in a mouse model of human metapneumovirus infection. Antimicrob Agents Chemother. 2006;50(2):774–7. https://doi.org/10.1128/AAC.50.2.774-77.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Márquez-Escobar VA. Current developments and prospects on human metapneumovirus vaccines. Expert Rev Vaccines. 2017;16(5):419–31. https://doi.org/10.1080/14760584.2017.1283223.
Article
CAS
PubMed
Google Scholar
Kujawski SA, Midgley CM, Rha B, Lively JY, Nix WA, Curns AT. Enterovirus D68–Associated Acute Respiratory Illness—New Vaccine Surveillance Network, United States, July–October, 2017 and 2018. Morb Mortal Wykly Rep. 2019;68(12):29–32. https://doi.org/10.15585/mmwr.mm6812a1.
Article
Google Scholar
Knoester M, Schölvinck EH, Poelman R, Smit S, Vermont CL, Niesters HGM, et al. Upsurge of enterovirus D68, the Netherlands. Emerg Infect Dis. 2016;23(1):140–3. https://doi.org/10.3201/eid2301.161313.
Article
Google Scholar
Wang G, Zhuge J, Huang W, Nolan SM, Gilrane VL, Yin C, et al. Enterovirus D68 subclade B3 strain circulating and causing an outbreak in the United States in 2016. Sci Rep. 2017;7(1):1–8. https://doi.org/10.1038/s41598-017-01349-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Messacar K, Asturias EJ, Hixon AM, Van Leer-Buter C, Niesters HGM, Tyler KL, et al. Enterovirus D68 and acute flaccid myelitis—evaluating the evidence for causality. Lancet Infect Dis. 2018;18(8):e239–47. https://doi.org/10.1016/S1473-3099(18)30094-X.
Article
PubMed
PubMed Central
Google Scholar
Milhano N, Borge KS, Bragstad K, Dudman SG. Management strategies of enterovirus D68 outbreaks: current perspectives. Virus Adapt Treat. 2018;10:1–7. https://doi.org/10.2147/VAAT.S140376.
Article
Google Scholar
Wang ZY, Zhong T, Wang Y, Song FM, Yu XF, Xing LP, et al. Human enterovirus 68 interferes with the host cell cycle to facilitate viral production. Front Cell Infect Microbiol. 2017;7:29. https://doi.org/10.3389/fcimb.2017.00029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eshaghi A, Duvvuri VR, Isabel S, Banh P, Li A, Peci A, et al. Global distribution and evolutionary history of enterovirus D68, with emphasis on the 2014 outbreak in. Front Microbiol. 2017;8:1–11. https://doi.org/10.3389/fmicb.2017.00257.
Article
Google Scholar
Devasthanam AS. Mechanisms underlying the inhibition of interferon signaling by viruses. Virulence. 2014;5(2):270–7. https://doi.org/10.4161/viru.27902.
Article
PubMed
PubMed Central
Google Scholar
Visser LJ, Langereis MA, Rabouw HH, Wahedi M, Muntjewerff EM, et al. Essential role of enterovirus 2A protease in counteracting stress granule formation and the induction of type I interferon. J Virol. 2019;93(10):1–17. https://doi.org/10.1128/JVI.00222-19.
Article
Google Scholar
Van der Linden L, Wolthers KC, van Kuppeveld FJM. Replication and inhibitors of enteroviruses and parechoviruses. Viruses. 2015;7(8):4529–62. https://doi.org/10.3390/v7082832.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng H, Wang J, Li B, Guo L, Li H, Song J, et al. A novel neutralizing antibody specific to the DE loop of VP1 can inhibit EV-D68 infection in mice. J Immunol. 2018;201(9):2557–69. https://doi.org/10.4049/jimmunol.1800655.
Article
CAS
PubMed
Google Scholar
Brittain-Long R, Nord S, Olofsson S, Westin J, Anderson LM, Lindh M. Multiplex real-time PCR for detection of respiratory tract infections. J Clin Virol. 2008;41(1):53–6. https://doi.org/10.1016/j.jcv.2007.10.029.
Article
CAS
PubMed
Google Scholar
Price WH. the isolation of a new virus associated with respiratory clinical disease in humans. Proc Natl Acad Sci. 1956;42(12):892–6. https://doi.org/10.1073/pnas.42.12.892.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gern JE, Joseph B, Galagan DM, Boreherding WR, Dick EC. Rhinovirus inhibits antigen-specific T cell proliferation through an intercellular adhesion molecule-1-dependent mechanism. J Infect Dis. 1996;174(6):1143–50. https://doi.org/10.1093/infdis/174.6.1143.
Article
CAS
PubMed
Google Scholar
Malcolm E, Arruda E, Hayden FG, Kaiser L. Clinical features of patients with acute respiratory illness and rhinovirus in their bronchoalveolar lavages. J Clin Virol. 2001;21(1):9–16. https://doi.org/10.1016/s1386-6532(00)00180-3.
Article
CAS
PubMed
Google Scholar
Jacobs SE, Lamson DM, George S, Walsh J. Human rhinoviruses. Clin Mircobiol Rev. 2013;26(1):135–62. https://doi.org/10.1128/CMR.00077-12.
Article
CAS
Google Scholar
Monto AS, Sullivan KM. Acute respiratory illness in the community. Frequency of illness and the agents involved. Epidemiol Infect. 1993;110(1):145–60. https://doi.org/10.1017/s0950268800050779.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fendrick AM, Monto AS, Nightengale B, Sarnes M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch Intern Med. 2003;163(4):487–94. https://doi.org/10.1001/archinte.163.4.487.
Article
PubMed
Google Scholar
Heikkinen T, Järvinen A. The Common Cold. Lancet. 2003;361(9351):51–9. https://doi.org/10.1016/S0140-6736(03)12162-9.
Article
PubMed
PubMed Central
Google Scholar
Hewat EA. The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. EMBO J. 2000;19(23):6317–25. https://doi.org/10.1093/emboj/19.23.6317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson NH, Kolatkar PR, Oliveira MA, Cheng RH, Greve JM, McClelland A, et al. Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci USA. 1993;90(2):507–11. https://doi.org/10.1073/pnas.90.2.507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, et al. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci USA. 1994;91(5):1839–42. https://doi.org/10.1073/pnas.91.5.1839.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Rathe JA, Fraser-liggett CM, et al. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science. 2014;324(5923):55–9. https://doi.org/10.1126/science.1165557.
Article
CAS
Google Scholar
Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci USA. 2015;112(17):5485–90. https://doi.org/10.1073/pnas.1421178112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing L, Casasnovas JM, Cheng RH. Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. J Virol. 2003;77(11):6101–7. https://doi.org/10.1128/JVI.77.11.6101-6107.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirchberger S, Majdic O, Stöckl J. Modulation of the immune system by human rhinoviruses. Int Arch Allergy Immunol. 2006;142(1):1–10. https://doi.org/10.1159/000095993.
Article
PubMed
Google Scholar
Papadopoulos NG, Stanciu LA, Papi A, Holgate ST, Johnston SL. Rhinovirus-induced alterations on peripheral blood mononuclear cell phenotype and costimulatory molecule expression in normal and atopic asthmatic subjects. Clin Exp Allergy. 2002;32(4):537–42. https://doi.org/10.1046/j.0954-7894.2002.01313.x.
Article
CAS
PubMed
Google Scholar
Midulla F, Nicolai A, Ferrara M, Gentile F, Pierangeli A, Bonci E, et al. Recurrent wheezing 36 months after bronchiolitis is associated with rhinovirus infections and blood eosinophilia. Acta Paediatr Int J Paediatr. 2014;103(10):1094–9. https://doi.org/10.1111/apa.12720.
Article
Google Scholar
Cold C, Stott EJ. Some improved techniques for the study of rhinoviruses using HeLa cells. Arch Gesamte Virusforsch. 1968;244:236–44. https://doi.org/10.1007/BF01241896.
Article
Google Scholar
Lee S, Nguyen MT, Currier MG, Jenkins JB, Strobert EA, Kajon AE, et al. A polyvalent inactivated rhinovirus vaccine is broadly immunogenic in rhesus macaques. Nat Commun. 2016;7:12838. https://doi.org/10.1038/ncomms12838.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials. M Bio. 2015;6(6):1–10. https://doi.org/10.1128/mBio.01697-15.
Article
CAS
Google Scholar
Maier HJ, Bickerton E, Britton P. Coronaviruses: methods and protocols Coronaviruses. Methods Mol Biol. 2015;1282(1):1–282. https://doi.org/10.1007/978-1-4939-2438-7.
Article
Google Scholar
To KKW, Hung IFN, Chan JFW, Yuen K. Keynote lecture from SARS coronavirus to novel animal and human coronaviruses. J Thorac Dis. 2013;5:S-103-8. https://doi.org/10.3920/978-90-8686-790-5.
Article
Google Scholar
Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2014;12:244. https://doi.org/10.3390/v12020244.
Article
CAS
Google Scholar
Lim Y, Ng Y, Tam J, Liu D. Human coronaviruses: a review of virus-host interactions. Diseases. 2016;4(4):26. https://doi.org/10.3390/diseases4030026.
Article
CAS
PubMed Central
Google Scholar
Zhu Z, Lian X, Su X, Wu W, Marraro GA. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res. 2020;21:224. https://doi.org/10.1186/s12931-020-01479-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. https://doi.org/10.1016/S0140-6736(20)30251-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fouchier RAM, Hartwig NG, Bestebroer TM, Niemeyer B, De JJC, Simon JH, et al. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci USA. 2004;101(16):6212–6. https://doi.org/10.1073/pnas.0400762101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fielding BC. Human coronavirus NL63: a clinically important virus? Future Microbiol. 2011;6:3–9. https://doi.org/10.2217/fmb.10.166.
Article
Google Scholar
Woo PCY, Lau SKP, Chu C, Chan K, Tsoi H, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884–95. https://doi.org/10.1128/JVI.79.2.884-895.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyrrell DAJ, Almeida DJ, Cunningham CH, Dowdle WR, Hofstad MS, McIntosh K, et al. Coronaviridae. Intervirology. 1975;5:76–82. https://doi.org/10.1159/000149883.
Article
CAS
PubMed
Google Scholar
Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005;287:1–30. https://doi.org/10.1007/3-540-26765-4_1.
Article
CAS
PubMed
Google Scholar
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92. https://doi.org/10.1007/3-540-26765-4_1.
Article
CAS
PubMed
Google Scholar
Groneberg DA, Hilgenfeld R, Zabel P. Molecular mechanisms of severe acute respiratory syndrome (SARS). Respir Res. 2005;6:1–16. https://doi.org/10.1186/1465-9921-6-8.
Article
CAS
Google Scholar
Dare RK, Talbot TR. Health care-acquired viral respiratory diseases. Infect Dis Clin North Am. 2016;30(4):1053–70. https://doi.org/10.1016/j.idc.2010.11.010.
Article
PubMed
PubMed Central
Google Scholar
Hui DSC, Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect Dis Clin North Am. 2019;33(4):869–89. https://doi.org/10.1016/j.idc.2019.07.001.
Article
PubMed
PubMed Central
Google Scholar
Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300(5624):1394–9. https://doi.org/10.1126/science.1085952.
Article
CAS
PubMed
Google Scholar
Hu B, Ge X, Wang LF, Shi Z. Bat origin of human coronaviruses coronaviruses: emerging and re-emerging pathogens in humans and animals Susanna Lau Positive-strand RNA viruses. Virol J. 2015;12(1):1–10. https://doi.org/10.1186/s12985-015-0422-1.
Article
CAS
Google Scholar
Yount B, Roberts RS, Sims AC, Deming D, Frieman MB, Sparks J, et al. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol. 2005;79(23):14909–22. https://doi.org/10.1128/JVI.79.23.14909-14922.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marra MA, Jones SJM, Astell CR, Holt RA, Brooks WA, Butterfield YSN, et al. The genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–405. https://doi.org/10.1126/science.1085953.
Article
CAS
PubMed
Google Scholar
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, et al. Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor. Cell Host Microbe. 2020;28(4):586–601. https://doi.org/10.1016/j.chom.2020.08.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV-A target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226–36. https://doi.org/10.1038/nrmicro2090.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Jiang S. Vaccine design for severe acute respiratory syndrome coronavirus. Viral Immunol. 2005;18(2):327–32. https://doi.org/10.1089/vim.2005.18.327.
Article
CAS
PubMed
Google Scholar
Pervushin K, Tan E, Parthasarathy K, Lin X, Jiang FL, Yu D, et al. Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog. 2009;5(7): e1000511. https://doi.org/10.1371/journal.ppat.1000511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cong Y, Kriegenburg F, De Haan CAM, Reggiori F. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers. Sci Rep. 2017;7(1):1–10. https://doi.org/10.1038/s41598-017-06062-w.
Article
CAS
Google Scholar
Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression. Virus Res. 2015;202:89–100. https://doi.org/10.1016/j.virusres.2014.11.019.
Article
CAS
PubMed
Google Scholar
Bwire GM, Majigo MV, Njiro BJ, Mawazo A. Detection profile of SARS-CoV-2 using RT-PCR in different types of clinical specimens: a systematic review and meta-analysis. J Med Virol. 2021;93(2):719–25. https://doi.org/10.1002/jmv.26349.
Article
CAS
PubMed
Google Scholar
Lin JT, Zhang JS, Su N, Xu JG, Wang N, Chen JT, et al. Safety and immunogenicity from a Phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther. 2007;12(7):1107–13.
Article
CAS
PubMed
Google Scholar
Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:1–10. https://doi.org/10.1186/1743-422X-2-69.
Article
CAS
Google Scholar
Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Heal. 2020;25(3):278–80. https://doi.org/10.1111/tmi.13383.
Article
CAS
Google Scholar
Worldometer. Coronavirus. https://www.worldometers.info/coronavirus/.
Elflien J. Cumulative cases of COVID-19 worldwide from Jan.22 2020 to Nov.22. https://www.statista.com/statistics/1103040/cumulative-coronavirus-covid19-cases-number-worldwide-by-day/.
Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021;21(10):626–36. https://doi.org/10.1038/s41577-021-00592-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chauhan S. Comprehensive review of coronavirus disease 2019 (COVID-19). Biomed J. 2020;43(4):334–40. https://doi.org/10.1016/j.bj.2020.05.023.
Article
PubMed
PubMed Central
Google Scholar
Bhatt T, Kumar V, Pande S, Malik R, Khamparia A, Gupta D. A Review on COVID-19. Stud Comput Intell. 2021;924:25–42.
Article
Google Scholar
Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27(2):1–4. https://doi.org/10.1093/jtm/taaa021.
Article
Google Scholar
Gandhi RT, Lynch JB, del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020;383(18):1757–66. https://doi.org/10.1056/NEJMcp2009249.
Article
CAS
PubMed
Google Scholar
Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020;382(24):2302–15. https://doi.org/10.1056/NEJMoa2006100.
Article
CAS
PubMed
Google Scholar
Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269–70. https://doi.org/10.1038/s41577-020-0308-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahalingam S, Meanger J, Foster PS, Lidbury BA. The viral manipulation of the host cellular and immune environments to enhance propagation and survival: a focus on RNA viruses. J Leukoc Biol. 2002;72(3):429–39. https://doi.org/10.1189/jlb.72.3.429.
Article
CAS
PubMed
Google Scholar
Gandikota C, Mohammed F, Gandhi L, Maisnam D, Mattam U, Rathore D, et al. Mitochondrial import of dengue virus NS3 protease and the cleavage of GrpEL1, a cochaperone of mitochondrial Hsp70. J Virol. 2020;94(17):1–15. https://doi.org/10.1128/JVI.01178-20.
Article
Google Scholar
Weston S, Frieman MB, States U. Respiratory viruses. Encycl Microbil. 2020. https://doi.org/10.1016/B978-0-12-801238-3.66161-5.
Article
Google Scholar
Ganaie SS, Qiu J. Recent advances in replication and infection of human parvovirus B19. Front Cell Infect Microbiol. 2018;8:1–12.
Article
Google Scholar
Boncristiani HF, Criado MF, Drruda E. Respiratory viruses. Encycl Microbiol. 2009. https://doi.org/10.1016/B978-012373944-5.00314-X.
Article
Google Scholar
Chan PKS, To WK, Ng KC, Lam RKY, Ng TK, Chan RCW, et al. Laboratory diagnosis of SARS. Emerg Infect Dis. 2004;10(5):825–31. https://doi.org/10.3201/eid1005.030682.
Article
PubMed
PubMed Central
Google Scholar
Kumar D. Corona virus: a review of COVID-19. Eurasian J Med Oncol. 2020;4(2):8–25. https://doi.org/10.14744/ejmo.2020.51418.
Article
Google Scholar
Mathew BJ, Vyas AK, Khare P, Gupta S, Nema RK, Nema S, et al. Laboratory diagnosis of COVID-19: current status and challenges. Iran J Microbiol. 2021;13(1):1–7. https://doi.org/10.18502/ijm.v13i1.5485.
Article
PubMed
PubMed Central
Google Scholar
Fang Y, Pang P. Senivity of chest CT for COVID.19: comparasion to RT.PCR. Radiology. 2020;296:15–7. https://doi.org/10.1148/radiol.2020200432.
Article
Google Scholar
Yamey G, Schäferhoff M, Hatchett R, Pate M, Zhao F, McDade KK. Ensuring global access to COVID-19 vaccines. Lancet. 2020;395(10234):1405–6. https://doi.org/10.1016/s0140-6736(20)30763-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516–27. https://doi.org/10.1038/s41586-020-2798-3.
Article
CAS
PubMed
Google Scholar
Su S, Du L, Jiang S. Learning from the past: development of safe and effective COVID-19 vaccines. Nat Rev Microbiol. 2021;19(3):211–9. https://doi.org/10.1038/s41579-020-00462-y.
Article
CAS
PubMed
Google Scholar
Bennett L, Waterer G. Control measures for human respiratory viral infection. Semin Respir Crit Care Med. 2016;37(4):631–9. https://doi.org/10.1055/s-0036-1584792.
Article
PubMed
PubMed Central
Google Scholar
Güner R, Hasanoğlu İ, Aktaş F. Covid-19: prevention and control measures in community. Turk J Med Sci. 2020;50(SI-1):571–7. https://doi.org/10.3906/sag-2004-146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seto WH, Conly JM, Pessoa-Silva CL, Malik M, Eremin S. Infection prevention and control measures for acute respiratory infections in healthcare settings: an update. East Mediterr Heal J. 2013;19(Suppl):S39-47.
Article
Google Scholar
Nori A, Williams MA. Pandemic preparedness: risk management and infection control for all respiratory infection outbreaks. Aust Fam Physician. 2009;38(11):891–5.
PubMed
Google Scholar