
Wu et al. 
European Journal of Medical Research          (2022) 27:158  
https://doi.org/10.1186/s40001-022-00746-4

REVIEW

The role of Sirtuin 1 in the pathophysiology 
of polycystic ovary syndrome
Mali Wu1†, Jie Zhang1†, Ran Gu1†, Fangfang Dai1, Dongyong Yang1, Yajing Zheng1, Wei Tan1, Yifan Jia2, 
Bingshu Li1* and Yanxiang Cheng1* 

Abstract 

Polycystic ovarian syndrome (PCOS) is the most common multifactor heterogeneous endocrine and metabolic 
disease in women of childbearing age. PCOS is a group of clinical syndromes characterized by reproductive disorders, 
metabolic disorders, and mental health problems that seriously impact the physical and mental health of patients. 
At present, new studies suggest that human evolution leads to the body changes and the surrounding environment 
mismatch adaptation, but the understanding of the disease is still insufficient, the pathogenesis is still unclear. Sirtuin 
1 (SIRT1), a member of the Sirtuin family, is expressed in various cells and plays a crucial role in cell energy conver-
sion and physiological metabolism. Pathophysiological processes such as cell proliferation and apoptosis, autophagy, 
metabolism, inflammation, antioxidant stress and insulin resistance play a crucial role. Moreover, SIRT1 participates in 
the pathophysiological processes of oxidative stress, autophagy, ovulation disturbance and insulin resistance, which 
may be a vital link in the occurrence of PCOS. Hence, the study of the role of SIRT1 in the pathogenesis of PCOS and 
related complications will contribute to a more thorough understanding of the pathogenesis of PCOS and supply a 
basis for the treatment of patients.
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Introduction
Polycystic ovary syndrome (PCOS) is an endocrine and 
metabolic disease characterized by hyperandrogenemia, 
ovulation disorder and ovarian polycystic transforma-
tion. Approximately 10–20% of women worldwide suf-
fer from this disease, affecting their quality of life [1–3]. 
Patients with PCOS showed chronic inflammation and 
oxidative stress. Its metabolic damage is complex, includ-
ing insulin resistance (IR) and compensatory hyperinsu-
linemia, which have major effects on muscle and adipose 
tissue, and are closely connected with other metabolic 
diseases such as inherent β-cell dysfunction, type 2 

diabetes mellitus (T2DM), gestational diabetes mellitus, 
increased risk factors for cardiovascular disease (hyper-
tension, hyperlipidemia, etc.), obesity and metabolic 
syndrome (METS) [4–7]. Nevertheless, existing studies 
ignore the growing acceptance of evolutionary perspec-
tives, the role of lifestyle and diet, the role of androgens 
in the origin of PCOS development, the influence of the 
microbiome, and the reversibility (Fig.  1) of metabolic, 
biochemical, and endocrine factors of PCOS following 
lifestyle and other interventions. To some extent, the 
diagnosis and treatment of the disease are limited, and 
the prevention and treatment effect is not good.

Sirtuins, a family of nicotinamide adenine dinucleo-
tide + (NAD +)-dependent deacetylases, are the key met-
abolic receptors of homeostasis in the human body [8]. 
Silencing information regulator 2-related denzyme 1 (Sir-
tuin 1, SIRT1) can regulate cell metabolism, senescence, 
and antioxidant stress by deacetylating transcription 
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factors, coregulatory factors, and histones, to inhibit cell 
apoptosis, oxidative stress, and inflammation [9–11]. The 
decrease in SIRT1 activity or the inhibition of its related 
pathway is a common pathological process in nonalco-
holic fatty liver, cardiovascular disease, and other meta-
bolic and inflammatory diseases. Previous studies have 
shown that activating SIRT1 can benefit the treatment of 
many diseases as a new target [8].

Are SIRT1 and related pathway molecules involved 
in the pathogenesis of PCOS? What is the specific role 
of SIRT1 in endocrine, reproductive and metabolic dis-
orders in patients with PCOS? Can the symptoms of 
PCOS patients be improved by regulating SIRT1 and its 
pathway molecules? In recent years, extensive research 
has been devoted to exploring the function of SIRT1 in 
PCOS, providing new inspiration for the treatment of 
disease in the future, and offering a scientific basis for 
clinical application.

Structure and function of SIRT1
Sirtuins 1–7 are widespread and conserved class of 
NAD + -dependent histone deacetylases in mammals 
[12]. According to different subcellular localizations, they 
can be divided into four categories: SIRT1, SIRT2 and 
SIRT3 belong to class I, SIRT4 belongs to class II, SIRT5 
belongs to class III, and SIRT6 and SIRT7 belong to class 
IV, which can act on different substrates [13]. They can 

be involved in cell proliferation, metabolism, transcrip-
tion, apoptosis and cell signal transduction [14, 15].

Human SIRT1 expressed in the nucleus and encoded 
by the SIRT1 gene is located on chromosome 10q21.3, 
functioning in the deacetylation of the histone and non-
histone lysine groups of known transcription factors 
(FOXO, MyoD, p53, PGC-1a) [16]. SIRT1 connects tran-
scriptional regulation with intracellular energetics, coor-
dinates different cellular functions, and goes far beyond 
simple histone deacetylation [17]. The dysfunction will 
bring about tissue-specific degenerative changes, which 
are the pathological basis of many diseases, includ-
ing cancer, cardiovascular disease, type 2 diabetes, and 
many other diseases [18, 19]. SIRT1-mediated deacetyla-
tion activates liver kinase B1 (LKB1) signals in the cyto-
plasm and can further add fatty acid oxidation in the liver 
[20]. SIRT1 is also involved in the balance of cholesterol 
metabolism in the liver. The process balance disorder 
may lead to intrahepatic fat accumulation [19–21]. SIRT1 
can mediate the expression of tumor-related genes, such 
as apoptosis protein inhibitor (IAP), through nuclear 
factor kappa B (NF-kB) to participate in tumorigenesis 
[22]. SIRT1 can modulate mitochondrial function, glu-
cose metabolism, and lipids by activating peroxisome 
proliferator-activated receptor-gamma coactivator (PGC-
1a) gene transcription and regulating peroxisome pro-
liferator-activated receptor (PPAR), nuclear respiratory 
factor (NRF) and mitochondrial transcription Factor A 

Fig. 1 Role of SIRT1 in the pathophysiology of polycystic ovary syndrome
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(TFAM), which are closely related to the occurrence of 
metabolic syndromes, such as insulin resistance [23].

The relationship of SIRT1 and PCOS 
The occurrence of PCOS involves in multiple pathways 
and lacks common clues, causing different symptoms in 
patients. Patients with PCOS may be in a state of low-
grade inflammation and oxidative stress, often accompa-
nied by clinical manifestations of endocrine, reproductive 
and metabolic disorders, such as menstrual disorder, 
hyperandrogenemia, infertility, obesity, insulin resist-
ance, ovarian changes, hirsutism, acne and more [24, 25]. 
However, the existing evidence shows that there is a sig-
nificant relationship between PCOS and Sirtuin 1 genetic 
polymorphism [26]. For the past few years, emerging 
studies have focused on the role of SIRT1 in the patho-
physiological process of PCOS.

SIRT1 and oxidative stress
Oxidative stress is the imbalance between oxidants and 
antioxidants and the production of excessive reactive 
oxygen species (ROS) [27]. An increasing number of 
studies have shown that active oxygen will be overpro-
duced, the level of biomarkers of circulating oxidative 
stress will increase, and the antioxidant capacity will 
gradually decrease in patients with PCOS [28–30]. In 
addition, PCOS patients also have mitochondrial dys-
function, Redox potential imbalance and increased oxi-
dative stress levels are observed in cumulus cells [31]. 
Currently, SIRT1 has been found to be able to protect 
against PCOS by reducing the expression of oxidative 
stress markers and methylglyoxal (MG), which is closely 
related to glycosylation stress, and improving mitochon-
drial disorders [32].

P53, forkhead box O (FOXO) and nuclear factor NF-
kappa B (NF-κB) are the core targets of SIRT1-mediated 
redox state alteration [33]. P53, a transcription factor, 
can activate antioxidant defense-related genes, such as 
superoxide dismutase 2 (SOD2) and glutathione peroxi-
dase (GPX1). FOX03a induces an antioxidant response 
by upregulating catalase [34, 35]. SIRT1 can also stabi-
lize antioxidation by upregulating nuclear factor eryth-
roid 2 (NRF2) by deacetylating nuclear Factor E2-related 
Factor 2 and promoting the expression of SOD, catalase 
(CAT) and glutathione (GSH) [36]. Advanced glycation 
end-products (AGEs) have been shown to bind to the 
multiligand receptor for advanced glycation end prod-
ucts (RAGE) to activate important intracellular signaling 
pathways and induce the production of oxidative stress-
related factors and proinflammatory cytokines [37]. 
Increasing ROS levels and the inflammatory response 
aggravate endocrine and metabolic disorders in PCOS 
[38]. In a PCOS mouse model, MG accumulation can 

lead to the imbalance of SIRT1, decreasing the expres-
sion of protective factors related to mitochondria (PGC1 
α, MtTFA, TOMM20) [39]. In contrast, the balance of 
SIRT1 was confirmed to have a protective effect on mito-
chondria and further protect cells from oxidative stress.

SIRT1 and autophagy
Autophagy is a type of cell death recently identified in 
PCOS ovarian cells, characterized by the phagocytosis 
of cytoplasmic material into two-membranous vesicles 
(autophagosomes) and subsequent degradation in lys-
osomes [40]. Excessive autophagy is the self-destruction 
of cells when they are subjected to oxidative damage, 
which can be manifested by mitochondrial dysfunction 
or structural changes [41, 42]. The degree of autophagy 
in PCOS patients, rat ovarian tissue and PCOS cell model 
was significantly increased. For example, Chuyue Zhang 
et  al. found that high migration framework 1(HMGB1) 
can induce increased autophagy in granulosa cells of 
PCOS patients, thus aggravating insulin resistance [43]. 
Other indicators of significant change are mitochondrial 
membrane potential, mtDNA content, and decreased 
protein level of the autophagy substrate p62; however, 
the number of autophagosomes and the levels of the 
autophagy markers Beclin1 and LC3B-II increased [44, 
45].

SIRT1 can regulate the deacetylation of LC3, an impor-
tant autophagy mediator, suggesting that SIRT1 plays an 
important role in the regulation of autophagy [46]. Previ-
ous studies have also demonstrated that SIRT1–FOXO1 
plays a critical role in the regulation of autophagy [47]. 
Giovanna Di Emidio et  al. found that SIRT1 expres-
sion and adenosine monophosphate-activated protein 
kinase (AMPK) activation were significantly enhanced 
in the ovary in the established dehydroepiandrosterone 
(DHEA)-induced PCOS mouse model, suggesting that 
SIRT1 may regulate PCOS ovarian autophagy through 
activation of AMPK [48]. In addition, activation of SIRT1 
inhibits PTEN-induced putative kinase 1 in granulosa 
cells (GCs) of PCOS patients, thereby protecting mito-
chondria from damage, reducing the level of ovarian 
autophagy, and improving oxidative stress [48]. In con-
clusion, when activated by external factors, SIRT1 can 
prevent autophagy and mitochondrial damage by inhib-
iting autophagy-related molecules, thus promoting the 
body’s antioxidant effect and protecting mitochondria 
and cells from the adverse effects of oxidative stress.

SIRT1 and ovulation disorders
Ovulation disorders account for approximately 30% of 
infertility, and are usually characterized by irregular men-
struation (less menstruation) or no menstruation (amen-
orrhea) [49]. In the reproductive system, Xian Qin et  al. 
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found that ovarian reserve was positively correlated with 
an increase in SIRT1 expression in mice, suggesting that 
SIRT1 can delay ovarian aging [50]. Other experiments 
have proven that SIRT1 can inhibit FOXO1 acetylation to 
promote the decomposition of the Fox01–ATG7 complex, 
reduce the autophagic death of GCs under oxidative stimu-
lation, and delay the senescence of oocytes [51, 52]. Like-
wise, in a rat model, SIRT1 activation can not only suppress 
the expression of androgen receptor and decrease the level 
of androgen but also keep down p66Shc expression, thus 
maintaining TGF-β, α-SMA and CTGF expression and 
reforming the structural fibrosis of the ovary [53]. On all 
accounts, SIRT1 has great potential in ameliorating ovula-
tion disorders in PCOS, and more in-depth research on its 
mechanism is needed.

SIRT1 and insulin resistance (IR)
Worldwide, 1 in 6 to 20 women of reproductive age (5 to 
20%) who exhibit hyperandrogenemia in PCOS are affected 
by insulin resistance (IR) or hyperinsulinemia [54]. IR is 
a pathological metabolic state in which the ability of the 
body to use glucose decreases to compensate and maintain 
normal blood sugar levels and increase insulin secretion, 
resulting in hyperinsulinemia. SIRT1 positively regulates 
insulin secretion in pancreatic β-cells [55]. Moreover, 
increased expression of SIRT1 improved insulin sensitivity, 
especially under insulin-resistant conditions [56].

Studies have shown that the levels of AMPK (the key 
regulator of the mitochondrial response to energy depri-
vation) and SIRT1 in the ovaries of PCOS rats are signifi-
cantly lower than the levels of AMPK of the control group, 
and they are in an obvious IR state, which is the same as 
in PCOS mice [57–59]. However, when the expression of 
AMPK and SIRT1 is significantly increased, it can reduce 
blood sugar and protect microvascular endothelial cells 
from glucose toxicity [57–60]. In other studies, a potent 
small molecule activator of SIRT1 reduced blood glucose 
and improved insulin sensitivity in mice with diet-induced 
obesity [61]. AMPK and Sirtuins are present in all eukary-
otic cells and may have coexisted during evolution [62, 63]. 
AMPK enhances SIRT1 expression by regulating nicotina-
mide activity, and SIRT1 also activates AMPK [64, 65]. In 
conclusion, the AMPK–SIRT1 pathway may be the molec-
ular mechanism of IR in PCOS and may serve as a thera-
peutic target for developing potential therapies to improve 
the metabolism and reproductive function of PCOS.

Overview of the role of SIRT1 in the treatment 
of PCOS
Multiple lines of evidence now suggest that in the mod-
ern world, there are maladaptive reactions in humans to 
rapidly changing nutritional, physiological, psychological 
and cultural environments, which lead to pathological 

responses to IR, hyperandrogens, enhanced energy stor-
age and ovulation [66, 67]. SIRT1 is conserved through-
out evolutionary history, as a cellular metabolic energy 
sensor, right back to the beginning of eukaryotic organ-
isms. Sirtuins constitute a family of metabolic sensor 
proteins that translate changes in NAD+levels into adap-
tive responses and play an important regulatory role in 
lipid glucose metabolism and mitochondrial activity 
[68]. SIRT1 is an NAD-dependent histone deacetylase 
that is activated when there are low cellular energy levels 
that result in an elevated NAD + to NADH ratio, which 
occurs between meals and during fasting and leads to 
the activation of multiple catabolic pathways, inhibition 
of anabolic pathways (with activation of AMP kinase and 
inhibition of mTOR), and activation of cellular processes, 
such as autophagy (as discussed in Sect.  3.2). Previous 
research established that the treatment strategy of acti-
vating SIRT1 can be applied to the treatment and life 
management of patients with PCOS to further improve 
symptoms. To date, the application of SIRT1 in PCOS 
treatment is in the exploratory stage, which basically 
includes the following aspects: 1. Lifestyle and dietary 
intervention; 2. Supplement of dietary polyphenols; and 
3. Pharmaceutical management.

Lifestyle and dietary intervention in the management 
of PCOS
The activation of SIRT1 and the subsequent cellular 
changes are, therefore, dependent on nutritional energy 
intake and activity levels, which highlights the central 
role of lifestyle factors, such as diet and exercise in the 
pathogenesis of PCOS (as elaborated on in the 2018 
International Guidelines) [69]. Data from several studies 
suggest that regular exercise and a whole food diet can 
regulate SIRT1 activity and have effects on weight loss 
and metabolic and clinical biomarkers [70]. Appropri-
ate sun exposure can promote the synthesis of vitamin 
D, improve metabolic parameters, and increase SIRT1 
activity [71, 72]. A number of other ways of activating 
SIRT1 by changing diet and lifestyle have been investi-
gated, including increased intake of docosahexaenoic 
acid (DHA), polyphenols, extra virgin olive oil, and mod-
erate cold stimulation [73–76]. Some of these factors are 
potentially important components of a healthy lifestyle 
and need further clinical investigation.

The role of dietary polyphenols in the management 
of PCOS
Polyphenols undergo intensive biotransformation by the 
gastrointestinal microbiota, and less than 5% of ingested 
polyphenols are estimated to reach the circulation intact 
[77]. A large number of microbial polyphenol metabo-
lites can be detected in plasma compared with extremely 
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low levels of the parent compounds. Despite their low 
bioavailability, numerous studies have reported signifi-
cant biological effects related to dietary polyphenols in 
women with PCOS. These effects include resveratrol, 
quercetin and curcumin. The anti-inflammatory and oxi-
dative stress effects of polyphenols can effectively reduce 
the incidence of chronic diseases, such as obesity, diabe-
tes and cardiovascular diseases in the population. Supple-
menting natural compounds through diet or other means 
can effectively reduce the adverse effects of related dis-
eases [19]. A large number of experiments have proven 
that bioactive substances such as polyphenols can play a 
protective role by regulating SIRT1 expression and activ-
ity in  vivo, which is a potential way to treat or prevent 
metabolism-related diseases [78, 79]. The activation of 
SIRT1 to improve symptoms in PCOS patients not only 
provides a new target for treatment but also further vali-
dates the pathogenesis of PCOS.

Resveratrol
Resveratrol can remove ROS, inhibit cyclooxygenase 
(COX), and activate anti-inflammatory and antioxidant 
stress pathways through SIRT1 [80]. In a rat control 
experiment, resveratrol (20  mg/kg/d) decreased body 
weight and ovarian weight, reduced the levels of testos-
terone, luteinizing hormone (LH), LH/follicle stimulat-
ing hormone (FSH), tumor necrosis factor (TNF)-α and 
tissue antiMüllerian hormone (AMH), and affected the 
maintenance of follicular formation [81]. Another set of 
rat models of PCOS induced by high androgens (dehy-
droepiandrosterone and dihydrotestosterone) found that 
resveratrol significantly reduced ovarian oxidative stress 
levels, inhibited phosphorylation of p66Shc, inhibited 
fibrotic factor activation, and improved ovarian mor-
phology [53].In clinical trials of women with PCOS, 
resveratrol has been shown to improve ovarian vol-
ume, high-quality oocyte rate, high-quality embryo rate, 
androgen and gonadotropin concentrations, angiogenic 
factor levels, and endoplasmic reticulum stress levels in 
PCOS patients [82].In two randomized controlled tri-
als of patients with nonalcoholic fatty liver disease and 
obesity, resveratrol combined with a low-calorie diet or 
exercise significantly reduced body weight and improved 
serum levels of total cholesterol (TC), high density lipo-
protein cholesterol (HDL-C), very low density lipopro-
tein cholesterol (VLDL-C), urea, creatinine, and albumin 
compared with diet control or exercise alone. PCOS is 
suggested to be able to be used in weight management 
and treatment of metabolic disorders [83, 84].

Quercetin
Quercetin may exert anti-inflammatory, antiapoptotic, 
antioxidant and anticancer effects mainly through the 

SIRT1/AMPK axis and can enhance oocyte and embryo 
quality in the ovary [85, 86]. For the past few years, tests 
on the therapeutic effects of quercetin on PCOS and 
ovarian cancer have been carried out. In a letrozole-
induced rat PCOS model, the expression of AMPK and 
RT-1 in ovarian tissue was upregulated in the querce-
tin (100 mg/kg) treatment group, and the PCOS-related 
estrus cycle, lipid profile, serum testosterone, estradiol 
and progesterone levels, and IR disorders were improved. 
The changes in adiponectin, adiponectin and resistin in 
adipose tissue induced by PCOS were also reversed to 
a certain extent [85]. After quercetin treatment, the fol-
lowing changes occurred in the rats with PCOS induced 
by dihydrotestosterone: the activity of progesterone, 
metabolic enzymes and antioxidant enzymes was sig-
nificantly increased, and DHEA-induced morphological 
changes related to polycystic ovaries were alleviated [87]. 
Quercetin also significantly decreased the expression of 
testosterone (T), estradiol (E(2)), LH, Bax, IL-1β, IL-6 
and TNF-α, increased the expression of FSH and Bcl-2, 
and inhibited the expression of AR. By affecting the bind-
ing of androgen receptor (AR) to specific sequences of 
(C-type natriuretic peptide) CNP and (natriuretic pep-
tide receptor 2) NPR2 gene promotors, the expression 
of CNP/NPR2 genes and proteins is regulated to restore 
oocyte maturation and ovulation [88]. Controlled tri-
als in overweight or obese PCOS patients have shown 
that quercetin can significantly reduce serum testoster-
one, luteinizing hormone, and serum inhibin levels and 
expression and improve insulin resistance [89]. Querce-
tin can also enhance the expression of adiponectin recep-
tor transcripts in PCOS patients and effectively improve 
adiponectin-mediated insulin resistance and hormone 
metabolism disorder [90, 91].

Curcumin
Other substances that enhance SIRT1 activity include 
curcumin [19], which is one of the main polyphenol com-
pounds in turmeric, with antioxidant, anti-inflammatory, 
anticancer, antiarthritis, antiasthma, antimicrobial, anti-
viral and antifungal properties and has potential benefits 
for the treatment of female reproductive diseases [92].
Previous studies focused on the therapeutic potential and 
mechanism of curcumin on PCOS by constructing cur-
cumin nanoparticles: The use of curcumin (Cur) coated 
with arginine (Arg) and N-acetylhistidine (Nache)-mod-
ified chitosan (ARG-Cs-Nache/Cur) nanoparticles (NPs) 
in estradiol valerate (EV)-induced PCOS rats reversed 
multiple symptoms of PCOS [93]. Curcumin nanocap-
sules can improve insulin resistance and lipid profiles 
in conjunction with metformin in PCOS patients [94]. 
Other related studies have also shown that curcumin 
can improve the metabolic disorders of PCOS patients, 
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which is beneficial to their weight control and reduces 
serum inflammatory markers [95, 96] and may be a safe 
and effective supplement for improving PCOS-associated 
hyperandrogenemia and hyperglycemia [97].

Current studies indeed show that the antioxidant and 
anti-inflammatory effects of dietary polyphenols can be 
applied to the treatment of metabolic and inflammatory 
diseases, such as PCOS, and most of the substances can 
be ingested through food, which further demonstrates 
the important role of diet in disease management [19]. 
However, the mechanism of action of dietary polyphe-
nols is still not thoroughly studied: whether it plays a role 
mainly through the activation of the SIRT1 pathway, the 
dose/dosage form required for its application in disease 
treatment and auxiliary programs, and safety still needs 
much clinical trial data.

Pharmaceutical management of PCOS
Metformin can significantly improve insulin resistance 
and contribute to weight loss in PCOS patients [98]. In 
some studies, the mechanism of metformin alone or in 
combination with bioactive substances and other drugs 
to improve symptoms of patients has been further clari-
fied: In rat experiments, it was found that the SIRT1 and 
AMPK immune reactivity were significantly increased 
and showed an increasing trend after metformin alone 
or in combination with resveratrol and exenatide, and 
the ovarian morphology and related metabolic indicators 
were significantly improved in PCOS rats. These results 
suggest that activation of SIRT1 may be an important 
pathway for metformin, exenatide, tayin-35 and other 
drugs and bioactive substances to treat PCOS patients 
[57–100]. However, the regulatory pathways and molec-
ular mechanisms of SIRT1 activation by these pathways 
have not been fully studied. In the absence of a bridge 
between SIRT1 and the activator, increased SIRT1 activ-
ity can only be determined by downstream signals. 
Exploring the direct-action target of SIRT1 by molecular 
biology or histology research, and the development of 
high bioavailability, high specificity and clear SIRT1 tar-
get activator is the direction of future research.

In addition to the more in-depth study of the above 
drugs, new therapeutic drugs are being developed. Exam-
ples include glucagon-like peptide-1 receptor (GLP-1) 
agonists and sodium–glucose cotransporter 2 (SGLT-2) 
inhibitors [101]. Liraglupeptide (Lira) is a glucagon-like 
peptide-1 receptor agonist (GLP-1) that improves insu-
lin sensitivity, reduces the risk of cardiovascular disease 
(CVD), leads to weight loss, and improves nonalco-
holic fatty liver disease [102–104]. Lira has been shown 
to induce the expression of adenosine monophosphate 
activated protein kinase-α (AMPK-α) and SIRT-1 pro-
teins and promote brown adipocyte differentiation and 

anti-inflammatory effects, thereby improving insulin 
sensitivity, reducing inflammation, and inducing adap-
tive thermogenesis [105]. In addition, sodium–glucose 
cotransporter 2 (SGLT-2) inhibitors, such as licogliflozin 
increase insulin sensitivity and ameliorate hyperinsuline-
mia and hyperandrogenemia in women with PCOS [106–
108]. Unfortunately, there is currently a lack of studies 
on the interaction between SGLT2 inhibitors and SIRT1, 
which is also a new direction for future research.

Conclusions
As a key hub of steady-state cellular energy metabo-
lism in the human body, SIRT1 is not only related to the 
occurrence of cardiovascular and cerebrovascular dis-
eases, such as fatty liver, but also is closely related to the 
occurrence and development of PCOS. In addition to the 
current relatively recognized pathogenesis of PCOS, oxi-
dative stress/autophagy/hyperandrogenia/insulin resist-
ance, this paper also considers the correlation between 
the generation of PCOS and the ancient evolutionary 
theory to further explore new views on the diet and life-
style of the modern world and new treatment methods.

SIRT1 may protect PCOS patients, mainly through 
oxidative stress, inhibition of granular cell autophagy, 
improvement of mitochondrial dysfunction, abnormal 
improvement of ovulation disorders (enhanced quality 
of oocyte and embryo), improvement of the hormone 
metabolism disorder (lower testosterone levels), and 
a certain degree in improvement of its complications: 
obesity and lipid metabolic disorder. However, the cur-
rent research direction of SIRT1 and PCOS exists only 
in the aspects of antioxidant stress, ovulation disorders, 
autophagy abnormalities, insulin resistance, etc., and 
many aspects remain to be explored. In addition, the cur-
rent research level is relatively superficial, and it is only 
speculative based on the experimental results of existing 
studies, such as the clear treatment mechanism of SIRT1 
and AMPK pathways in insulin resistance. The relation-
ship between the SIRT1 expression level and the nutri-
tional status of the human body and cells, the interaction 
mechanism between SIRT1 and new drug therapy, and 
the balance mechanism of its inhibition and promotion 
of autophagy need to be further studied and determined.

SIRT1-related PCOS treatment strategies are mainly 
to promote the activity of SIRT1 to exert the protective 
effects of antioxidant stress and anti-inflammatory path-
ways on PCOS patients. Specific plans include adjust-
ment of diet and living habits, rational intake of bioactive 
substances and the use of drugs. However, the specific 
mechanism of enhancing SIRT1 activity in each scheme 
is still unclear, and there is a lack of clear molecular con-
nection between dietary polyphenols and SIRT1 activity.
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In the future, bioinformatics tools can be used to pre-
dict and verify molecular interactions and improve the 
drug action network. Specific dosage forms/dosages of 
dietary polyphenols in treatment regimens still need to 
include extensive data from animal and clinical trials, 
such as whether there is a difference in efficacy when 
nanotechnology is applied to drugs, such as quercetin. 
If natural compounds are used as treatment options, 
there is a lack of long-term observation and research 
on long-term patients’ pregnancy and fetal safety. Fur-
ther exploration of treatment plans will improve the 
understanding of SIRT1 and PCOS diseases, for exam-
ple, the correlation between melatonin and biological 
rhythm, the correlation between circadian rhythm and 
PCOS, and whether these correlations affect autophagy 
in PCOS patients and further affect the disease phe-
notype. A fuller and more comprehensive understand-
ing can help us search for SIRT1 modulators with high 
bioavailability and specificity and provide new efficient 
targets for the treatment and management of endocrine 
and metabolic diseases, such as PCOS.
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