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Abstract 

Background  The morbidity and mortality rates of patients with non-alcoholic fatty liver disease (NAFLD) have 
been steadily increasing in recent years. Previous studies have confirmed the important role of ferroptosis in NAFLD 
development; however, the precise mechanism through which ferroptosis influences NAFLD occurrence remains 
unclear. The present study aimed to identify and validate ferroptosis-related genes involved in NAFLD pathogenesis 
and to investigate the underlying molecular mechanisms of NAFLD.

Methods  We downloaded microarray datasets GSE72756 and GSE24807 to identify differentially expressed genes 
(DEGs) between samples from healthy individuals and patients with NAFLD. From these DEGs, we extracted ferrop-
tosis-related DEGs. GSE89632, another microarray dataset, was used to validate the expression of ferroptosis-related 
genes. A protein–protein interaction (PPI) network of ferroptosis-related genes was then constructed. The target 
genes were also subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses. Finally, competing endogenous RNA networks were constructed. We used the CIBERSORT pack-
age to evaluate the infiltration of immune cells infiltration in NAFLD.

Results  Five ferroptosis-related genes (SCP2, MUC1, DPP4, SLC1A4, and TF) were identified as promising diagnostic 
biomarkers for NAFLD. Enrichment analyses revealed that these genes are mainly involved in metabolic processes. 
NEAT1-miR-1224-5p-SCP2, NEAT1-miR-485-5p-MUC1, MALAT1-miR-485-5p-MUC1, and CNOT6-miR-145-5p-SLC1A4 
are likely to be the potential RNA regulatory pathways that affect NAFLD development. Principal component analysis 
indicated significant differences in immune cell infiltration between the two groups.

Conclusions  This study identified five ferroptosis-related genes as potential biomarkers for diagnosing NAFLD. 
The correlations between the expression of ferroptosis-related genes and immune cell infiltration might shed light 
on the study of the molecular mechanism underlying NAFLD development.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is an impor-
tant liver disease that affects approximately 24% of the 
general population [1]. In  the coming  decades, NAFLD 
might become the leading cause of end-stage liver disease 
[1]. NAFLD encompasses a range of diseases from non-
alcoholic fatty liver (NAFL) to non-alcoholic steatohep-
atitis (NASH), fibrosis, and cirrhosis [2]. An underlying 
progressive liver disease is typically observed in a subset 
of patients with NAFLD..

NAFLD is usually diagnosed by an invasive liver biopsy. 
Presently, there are no reliable biomarkers for accurately 
diagnosing and staging NAFLD, which makes it chal-
lenging to screen NAFLD cases worldwide [3]. Moreo-
ver, according to the current hypothesis, NAFLD is the 
hepatic manifestation of metabolic syndrome because of 
its bidirectional association with the components of met-
abolic syndrome [3, 4]. NAFLD patients show a high inci-
dence rate of metabolic complications; hence, NAFLD is 
considered a growing burden on the healthcare system 
[5]. Therefore, it is crucial to identify new and efficient 
NAFLD biomarkers for the prompt diagnosis and treat-
ment of this disease.

Ferroptosis is an iron-dependent form of programmed 
cell death. It is characterized by the cellular accumulation 
of lipid hydroperoxides to lethal levels [6]. The morpho-
logical effects of ferroptosis include reduced mitochon-
drial size, disappearance of mitochondrial cristae, and 
mitochondrial membrane rupture [7]. The primary 
changes in biochemical characteristics associated with 
ferroptosis are iron overload and decreased glutathione 
peroxidase 4 (GPX4) activity; these changes promote the 
production of reactive oxygen species (ROS), accelerate 
lipid peroxidation, and eventually lead to cell death [8]. 
Ferroptosis is associated with the onset and progression 
of many liver diseases such as NAFLD, alcohol-associated 
liver disease (ALD), hepatocellular carcinoma (HCC), 
and hepatitis C virus (HCV) infection [9–13]. Altera-
tions in several metabolic pathways, including decreased 
GPX4 activity, iron overload, acyl-CoA synthetase long-
chain family member 4 (ACSL4) induction, and nuclear 
factor erythroid-2-related factor 2 (Nrf2) activation, have 
been implicated in ferroptosis [14, 15]. Therefore, ferrop-
tosis inhibition could serve as a new treatment approach 
for NAFLD. It, however, remains unclear how ferroptosis 
regulates NAFLD.

In the study, we analyzed two NAFLD liver tissue-
derived microarray datasets from the Gene Expression 
Omnibus (GEO) database and obtained differentially 
expressed genes (DEGs). From these DEGs, we selected 
ferroptosis-related genes (FRGs). The expression of 
these FRGs was further validated in another microarray 
dataset. Finally, five genes, namely SCP2, MUC1, DPP4, 

SLC1A4, and TF, were screened as target genes. Com-
peting endogenous RNA (ceRNA) networks were con-
structed to determine the specific regulatory effects of 
noncoding RNAs on the FRGs in NAFLD. The ratios of 
immune cell infiltration in NAFLD and normal tissues 
were calculated using the CIBERSORT package. We also 
evaluated the correlations between the expression of 
FRGs and infiltration ratios of various immune cells. This 
in-depth research investigated the mechanism of NAFLD 
development at the transcriptome level and identified 
potential biomarkers for NAFLD diagnosis.

Materials and methods
Search strategy
We searched for NAFLD-associated gene expression 
microarrays in the GEO database (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). The screening criteria were as follows: 
(1) the biological type was restricted to Homo sapiens, 
(2) liver tissues were obtained exclusively from patients 
with NAFLD or NASH, (3) the number of samples in 
each dataset exceeded five, (4) complete information of 
the samples was available, and (5) each sample was ana-
lyzed only once without replication. Finally, GSE72756 
and GSE24807 datasets were selected as the test datasets 
and included 5 NAFLD samples and 12 NASH samples, 
respectively (Additional file 1: Table S1). The GSE89632 
dataset was used as the validation dataset and included 
39 NAFLD samples (20 simple steatosis samples and 
19 NASH samples) and 24 healthy samples. A list of all 
FRGs (259 genes) was collected from the FerrDb data-
base (http://​www.​zhoun​an.​org/​ferrdb/).

Microarray data
GSE72756 includes the expression data for 5 normal and 
5 NAFLD liver samples. GSE24807 contains the expres-
sion data for 5 normal and 12 NASH liver samples. The 
microarray platforms and a series of matrix files down-
loaded from the GEO database were saved as TXT files.

Identification of FRGs
R software (version 4.1.3) was used to process the two 
raw datasets. The microarray platforms and the series 
of matrix files were converted into annotation packages 
(https://​bioco​nduct​or.​org/​biocL​ite.R). The microarray 
datasets were quantile-normalized by the limma package 
of R software [16] and saved as a TXT file. We used the 
linear model and the empirical Bayes test from the limma 
package to filter the expression profile data and to screen 
DEGs. The screening criteria for DEGs were as follows: 
log2 (fold change) > 1 and p-value < 0.05. A volcano plot 
and a heatmap were constructed using R software to bet-
ter visualize DEGs. The volcano plot was created using 
the “ggplot2” package [17]. The heatmap was drawn using 

https://www.ncbi.nlm.nih.gov/geo/
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the heatmap package [18]. To identify FRGs, we created a 
Venn map using the Venn tool (http://​bioin​forma​tics.​psb.​
ugent.​be/​webto​ols/​Venn/), and the overlapping DEGs 
were retained for further analysis.

Validation of the FRGs
We verified the expression of the FRGs in the GSE89632 
dataset. To assess the sensitivity and specificity of the 
selected FRGs for NAFLD diagnosis, the visualization 
tool Hiplot(https://​hiplot.​com.​cn) was used to generate a 
receiver operating characteristic (ROC) curve. We evalu-
ated the performance of each model by calculating the 
area under the ROC curve (AUC) value; an AUC value 
of > 0.6 was considered statistically significant.

Construction of a protein–protein interaction network
The STRING online tool (https://​string-​db.​org/) was 
used to construct a protein–protein interaction (PPI) 
network of the obtained DEGs [19]. The PPI network of 
the DEGs was constructed based on the confidence score 
of 0.4. Next, the STRING analysis data and the FRGs 
were plotted using the Cytoscape software (version 3.7.2) 
for better visualization.

Functional enrichment analysis of the FRGs
We conducted Gene Ontology (GO) enrichment analy-
ses of the FRGs by using packages such as “ggplot2” 
and “cluster profile”. The three criteria for the enriched 
GO terms included:  biological process  (BP), cellular 
component (CC), and molecular function (MF). Kyoto 
Encyclopedia of Gene and Genomes (KEGG) pathway 
enrichment analysis was conducted using an online plat-
form (http://​www.​bioin​forma​tics.​com.​cn/) that analyzes 
and visualizes data [20].

Construction of ceRNA networks
We predicted interactions between ferroptosis-related 
mRNAs and miRNAs by using five online miRNA 
databases: miRWalk, TargetScan, DIANA, PITA, and 
miRanda. As target miRNAs, we identified miRNAs pre-
dicted in at least three of these five databases. Based on 
the selection of miRNAs, we also predicted lncRNAs and 
circRNAs that interact with these miRNAs by using Star-
Base (version 3.0; http://​starb​ase.​sysu.​edu.​cn/​index.​php). 
The OmicShare tools (https://​www.​omics​hare.​com/​tools/​
Home) were used to visualize the ceRNA networks [21].

Immune cell infiltration analysis
The abundance and difference in immune cell infiltra-
tion were assessed between NAFLD and healthy liver 
tissues. We used the CIBERSORT algorithm to analyze 
the infiltration of 22 types of immune cells [22]. A cor-
relation heatmap was drawn using the “corrplot” package 

[23] to demonstrate the association between the 22 types 
of immune cells. The results of principal component 
analysis (PCA) were plotted using the “ggplot2” package 
[17] to determine the differences between NAFLD sam-
ples and normal samples. The Wilcoxon test was used to 
identify significantly differential immune cell infiltration 
in the model and control groups. The R packages “viop-
lot”, “ggplot2”, and “glment” [24] were used to show dif-
ferences in the level of immune cell infiltration in the two 
groups. Finally, we conducted Spearman’s rank correla-
tion analysis in R software to determine the association 
between the FRGs and the immune cells infiltration level.

Results
Identification and analysis of the DEGs
We selected GSE72756 and GSE24807 datasets to ana-
lyze and identify the DEGs. Figure  1 shows the sche-
matic flowchart of the analysis. A total of 170 DEGs were 
identified, which include 133 upregulated DEGs and 37 
downregulated DEGs (Additional file  2: Table  S2). The 
volcano plot and heatmap are shown in Fig.2a, b. Based 
on the Venn diagram, the following genes were identified 
to be associated with ferroptosis: cysteine dioxygenase 
1 (CDO1), dipeptidyl peptidase-4 (DPP4), solute carrier 
family 1 member 4 (SLC1A4), mucin 1 (MUC1), sterol 
carrier protein 2 (SCP2), and tissue factor (TF) (Fig. 2c). 
We then generated PPI correlation networks associated 
with these FRGs to clarify their transcriptomic char-
acteristics (Fig.  2d). Among the identified FRGs, CDO1 
showed no PPI with the other DEGs.

Confirmation of the expression and diagnostic value 
of the FRGs using the GSE89632 dataset
Because the original dataset from the GEO database 
might have been processed by the original authors, which 
may be unknown, we used an independent external data-
set to further validate and confirm the relevance of our 
results. We tested the expression levels of our screened 
target genes by using the GSE89632 dataset. Consistent 
with the predicted results, significant differences were 
observed in the expression levels of the above-men-
tioned five FRGs (DPP4, MUC1, SCP2, SLC1A4, and TF.) 
between NAFLD patients and healthy subjects (Fig. 3a–
e). However, the expression of CDO1 did not differ 
significantly between the two groups (Fig. 3f ). To deter-
mine the most significant FRGs for diagnosing NAFLD, 
we further performed ROC curve analysis by using the 
GSE89632 dataset. As shown in Fig.  3g, SLC1A4 and 
MUC1 (AUC = 0.719 and 0.744, respectively) had a 
credible diagnostic value for NAFLD. DPP4, SCP2, and 
TF(AUC = 0.688, 0.650, 0.681, respectively) showed a tol-
erable ability to distinguish NAFLD samples from normal 
samples.

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://hiplot.com.cn
https://string-db.org/
http://www.bioinformatics.com.cn/
http://starbase.sysu.edu.cn/index.php
https://www.omicshare.com/tools/Home
https://www.omicshare.com/tools/Home
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Pathways enrichment analysis of the FRGs
The GO enrichment analysis revealed the following 
most GO significant enrichment terms: (1) BP: regu-
lation of intracellular cholesterol and lipid transport, 
organic acid biosynthetic and catabolic process, regu-
lation of cell adhesion mediated by integrin, fatty acid 
beta-oxidation using acyl-CoA oxidase, and regulation 
of iron ion transport; (2) CC: apical plasma membrane, 
endocytic vesicle, and apical part of the cell; and (3) 
MF: fatty acid binding, cholesterol-binding, ferric iron 
binding, transferrin receptor binding, and acidic amino 
acid transmembrane transporter activity (Fig. 4a, Addi-
tional file  3: Table  S3). The KEGG pathway enrich-
ment analysis revealed that the FRGs were particularly 
enriched in metabolic processes such as biosynthesis of 
unsaturated fatty acids, fatty acid metabolism, primary 
bile acid biosynthesis, and peroxisome and HIF-1 sign-
aling pathway (Fig. 4b, Additional file 4: Table S4).

Construction of ceRNA networks
We predicted the target miRNAs of the five FRGs by 
using five online miRNA databases and determined 11 
target miRNAs and 12 mRNA–miRNA pairs (Addi-
tional file  1, Additional file  5: Table  S5). Subsequently, 
we predicted circRNA and lncRNA mediated effects on 
the selected miRNAs by using the online database Star-
base 3.0. We selected circRNAs and lncRNAs associated 
with the largest number of database samples and the 
highest scores based on the CLIP-seq data and clipExp-
Num (Additional file  6: Tables S6 and Additional file  7: 
Table  S7). Finally, we constructed two ceRNA networks 
and obtained 42 lncRNA–miRNA pairs and 41 circRNA–
miRNA pairs related to the five target genes (Fig. 5a, b).

Immune cell infiltration analysis
The composition of the 22 types of immune cells in each 
sample was quantified using the CIBERSORT algorithm 

Fig. 1  Study flowchart

Fig. 2  DEGs volcano map and heat map between NAFLD group and control group. a DEGs volcano plot. The blue plots represent downregulated 
genes, the red plots represent upregulated genes, and the grey plots represent nonsignificant genes. b DEGs heat map, blue dots represent 
downregulated genes, while red dots represent upregulated genes. c Ferroptosis-related genes. d PPI network. Blue represents the DGEs 
that are not associated with ferroptosis. The red indicates the upregulated FRGs and the green indicates the downregulated. The line indicates 
the interaction between two proteins

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Six ferroptosis-related genes expression and diagnostic performance in GSE89632. a–f The expression of six ferroptosis-related genes 
in NAFLD samples and healthy samples. g Diagnosis efficiency ROC curve of the feature genes of six ferroptosis-related genes in NAFLD and normal 
samples
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(Fig.  6a, b). The results showed that M2 macrophages, 
CD4+ memory resting T cells, activated mast cells, 
memory B cells, and activated NK cells were the main 
immune infiltrating cells. The correlation of the 22 types 
of immune cells is shown in Fig.  6c. M2 macrophages 
showed a positive correlation with monocytes, activated 
mast cells, and CD8+ T cells. CD8+ T cells were posi-
tively correlated with activated NK-cell. PCA of NAFLD 
patients and healthy subjects showed no intersection of 
the two clusters, thus indicating a significant difference 
in the level of immune cell infiltration between the two 
groups (Fig. 6d, Additional file 8: Table S8).

We then conducted a cellular and molecular level 
analysis to further elucidate the relationship between the 
FRGs and the immune profile of the NAFLD group. The 
analysis revealed a higher fraction of immune cell infil-
tration in the NAFLD group, including infiltration of 
immune cells such as M1 macrophages and neutrophils 
and expression of the immune checkpoint markers such 
as CD86 and PDCD1 (Fig.  7a, b). We then investigated 
the relationship between the expression levels of the five 

FRGs with the infiltrating levels of M1 macrophages and 
neutrophils. Because multiple tests were conducted, we 
applied the Bonferroni correction for multiple test [25]. 
We tested the correlation between the FRGs and two 
types of immune cells. Therefore, the significance level 
of P = 0.05 was divided by 2, resulting in a significance 
level of P = 0.025 after correction for multiple testing. 
As shown in Fig.  7c–e M1 macrophage activation was 
negatively correlated with MUC1 and SLC1A4, and neu-
trophil activation was negatively correlated with SLC1A4 
(R < − 0.40, p < 0.025).

Discussion
NAFLD is the most common chronic liver disease world-
wide. Ferroptosis plays a critical role in the occurrence 
and progression of NAFLD through the regulation of iron 
homeostasis and lipid metabolism in the liver. Hence, the 
identification of new effective NAFLD biomarkers could 
enable prompt diagnosis timely and treatment of this 
disease.

Fig. 4  GO and KEGG pathway enrichment of five ferroptosis-related genes. a GO analysis. BP biological process, CC cellular component, MF 
molecular function. b KEGG pathway enrichment analysis. Count indicates the level of enrichment. Different colors represent the p-value
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In the present study, we attempted to identify fer-
roptosis-related biomarkers in NAFLD and exam-
ined the role of immune cell infiltration in NAFLD 

pathogenesis. Six FRGs were identified using two liver 
tissue microarray datasets (GSE72756 and GSE24807) 
from the GEO database and the FerrDb database. Of 

Fig. 5  The Sankey diagram describes five ferroptosis-related genes in the ceRNA network. a lncRNA–miRNA–mRNA network, b circRNA–miRNA–
mRNA network
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Fig. 6  The situation of immune infiltration in liver tissues. a The histogram displays the relative percentage of immune cells in each sample, 
with different colors representing different immune cells. b The heatmap represents the expression levels of immune cells in each sample. Red 
indicates higher immune infiltration expression, while green indicates lower expression. c Correlation of the 22 immune cells. Red: positive 
correlation; blue: negative correlation. d Two groups of samples were analyzed using PCA: blue points indicate NAFLD samples and red points 
indicate normal samples
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these, five FRGs (SCP2, MUC1, DPP4, SLC1A4, and 
TF) were finally identified after confirmation using the 
GSE89632 dataset. The pathway enrichment analysis 
revealed that these genes were primarily involved in 
metabolic processes. The most enriched GO categories 

were regulation of intracellular cholesterol and lipid 
transport, regulation of intracellular cholesterol and 
lipid transport, organic acid biosynthetic and catabolic 
process, fatty acid beta-oxidation using acyl-CoA oxi-
dase, cholesterol-binding, fatty acid-binding, and acidic 

Fig. 7  Immune infiltration in NAFLD and normal controls. a Violin diagram of the proportion of 22 types of immune cells. b Box plots of immune 
checkpoints in the two groups. *P < 0.05, **P < 0.01, ***P < 0.001. c–e The correlation between ferroptosis-related DEGs and immune cells
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amino acid transmembrane transporter activity. The 
KEGG pathway enrichment analyses showed that the 
main functions of these genes were the biosynthesis 
and metabolism of fatty acids, primary bile acid biosyn-
thesis, protein digestion and absorption, peroxisome, 
and regulation of the HIF-1 signaling pathway and the 
PPAR signaling pathway.

Among the five selected FRGs, SCP2 and DPP4 are fer-
roptosis driver genes, MUC1 is a ferroptosis suppressor 
gene, SLC1A4 is a ferroptosis marker gene, and TF is a 
ferroptosis driver and marker gene [26]. We focused on 
two genes: SCP2 related to lipid metabolism and MUC1 
with the highest diagnostic specificity. The lipid transport 
protein SCP2 can combine with fatty acids and fatty acyl-
COA to regulate fatty acid metabolism in the liver [27, 
28]. It is also a key regulator of cholesterol metabolism in 
the liver and plays a beneficial role in NAFLD. In contrast 
to the protective effect of SCP2 on NAFLD, a previous 
study showed that SCP2 can promote the accumulation 
of low-density lipoprotein cholesterol (LDL-C), thereby 
promoting the development of atherosclerosis and hyper-
lipidemia [29]. Previous studies have indicated that SCP2 
can suppress ferroptosis inhibitors (GPX4 and cav1) and 
activate ferroptosis promoters (PRKAA1 and PRKAA2) 
[30]. MUC1 is a large O-type glycoprotein essential for 
maintaining the function of the epithelial cell surface 
[31]. It is composed of two subunits: the MUC1 N-ter-
minal subunit (MUC1-n) and the carcinogenic MUC1 
C-terminal subunit (MUC1-c) that form a heterogene-
ous complex on the cell membrane [32]. Many MUC1-c 
subunits can be detected in the mitochondria and nuclei 
of cancer cells. Several studies have shown that MUC1 
plays a key regulatory role in tumor invasion, metasta-
sis, angiogenesis, and inflammation [33–36]. MUC1 can 
also induce apoptosis and necrosis by inhibiting ROS 
accumulation [37]. Hasegawa et  al. demonstrated that 
targeting MUC1-c with ferroptosis inhibitors induces 
ROS-mediated death [38].

Yangchunxie et  al. confirmed that DPP4 (also known 
as CD26) plays a role in ferroptosis regulation and found 
that the loss of TP53 prevented the nuclear accumulation 
of DPP4 in colorectal cancer cells, thereby facilitating the 
plasma membrane-related DPP4-dependent lipid peroxi-
dation and ultimately leading to ferroptosis [39]. These 
data support DPP4 as the driving factor of ferroptosis. 
TF is an extremely important factor in regulating iron 
trafficking and metabolism. The increased expression 
of TF is suggested to induce ferroptosis [40]. SLC1A4 
is one of the members of solute carrier family 1, and it 
can promote ferroptosis [41]. It should be noted that 
most of these aforementioned genes have been identified 
in tumors; however, there is a general lack of evidence 
regarding their role in NAFLD.

In the present study, two ceRNA networks were con-
structed to determine the regulatory mechanisms of 
these five FRGs by predicting their miRNA targets as well 
as the lncRNAs and circRNAs targeted by these miR-
NAs. According to  the ceRNA hypothesis, we searched 
literature related to NAFLD in the PubMed database 
and selected 3 reported miRNAs, 2 lncRNAs, and 1 cir-
cRNA for further investigation. Based on our findings, 
we suggest that MALAT1-miR-485-5p-MUC1, NEAT1-
miR-1224-5p-SCP2, and NEAT1-miR-485-5p-MUC1 
might be the regulatory pathways for the pathogenesis 
and progression of NAFLD. MALAT1 and NEAT1 are 
important lncRNAs, and recent studies have reported 
that their expression is upregulated in the liver tissues 
of NAFLD patients. MALAT1 knockdown reversed free 
fatty acid -induced lipid accumulation in hepatocytes; 
moreover, MALAT1 promoted the progression of liver 
fibrosis [42]. NEAT1 was previously identified as an 
oncogene that promotes tumor cell proliferation [43]. 
Several recent studies have shown that NEAT1 partici-
pates in NAFLD progression by promoting lipid deposi-
tion in the liver [44]. The regulatory relationship between 
NEAT1 and ferroptosis has been reported in recent lit-
erature. Zhang et  al. discovered that NEAT1 overex-
pression enhances both extracellular and intracellular 
ferroptosis, thereby increasing the anti-tumor activity 
of erastin [45]. miR-1224-5p promotes hepatic lipogen-
esis by inhibiting AMPKα1 expression [46]. miR-1224-5p 
inhibitors deserve further investigation as a potential 
therapeutic tool for treating NAFLD. miR-485-5p is asso-
ciated with inflammation and immune responses, and it 
upregulates MUC1 to promote liver cancer progression 
[47]. MALAT1 and NEAT1 target miRNAs in NAFLD to 
regulate ferroptosis; this aspect requires further investi-
gation. Regarding circRNAs, although circ_CNOT6 has 
not been reported in NAFLD, it is likely to play a criti-
cal role in other metabolic diseases such as diabetes [48]. 
Therefore, we hypothesized that circ_CNOT6-miR-145-
5p-SLC1A4 might be involved in NAFLD development. 
Further prospective cohort studies are required to con-
firm our hypothesis.

The primary cause of NAFLD is metabolic dysfunc-
tion. Immune cell-mediated inflammatory processes also 
contribute to NAFLD. The liver immune cell landscape 
directly affects the severity of NAFLD. A study conducted 
by the German Cancer Research Center showed the accu-
mulation of a large number of CD8/PD-1 double-positive 
abnormal T cells in the liver of NASH patients. PD-1/L1 
inhibitors can activate these T cells; however, treatment 
with PD-1/L1 inhibitors not only kill the tumor cells but 
also aggravates liver tissue damage [49]. Previous studies 
have confirmed that immunotherapy has no survival ben-
efit for liver cancer patients with NAFLD.
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To better understand immune cell infiltration, we used 
the CIBERSORT algorithm to evaluate immune cell 
infiltration in NAFLD tissues. We found that increased 
infiltration of M1 macrophages and neutrophil was asso-
ciated with NAFLD occurrence and development. We 
also found that the M1 macrophage activation was nega-
tively correlated with MUC1 and SLC1A4 and neutrophil 
activation was negatively correlated with SLC1A4.

According to previous studies, the beneficial effects 
of neutrophils during infections are opposite to those 
in noninfectious diseases. Neutrophils usually produce 
neutrophil extracellular traps, proteases, cytokines, and 
ROS to induce adverse effects on the infectious agent [50, 
51]. Several studies have reported significantly increased 
neutrophil infiltration in the liver of patients with NASH 
[52, 53]. Neutrophils are involved in the early stages of 
NASH development. However, their role in the advanced 
stage of NASH remains unclear [54]. In an in vivo study, 
Zhao et  al. confirmed that methionine-choline-defi-
cient and high-fat (MCDHF) diet-induced liver injury 
was significantly reduced by an intraperitoneal injec-
tion of deoxyribonuclease I [53]. Blood  monocytes  are 
recruited to hepatic sinusoids and differentiate into mac-
rophages, thereby increasing the macrophage pool of the 
liver [55]. Recent studies have shown that monocyte-
derived macrophages exhibit more apparent inflamma-
tory characteristics in NASH and can promote injury by 
limiting liver lipid storage in the liver [56]. Monocyte-
derived macrophages in mouse livers are located in the 
tissue fibrosis area near desmin-positive hepatic stellate 
cells, thus indicating their contribution to liver fibrosis 
[57]. These studies and our present analysis support the 
concept that immune cell infiltration is an important fac-
tor in NAFLD pathogenesis. Future studies should focus 
on the correlation between FGRs and M1 macrophages 
and neutrophils.

In the present study, we identified DEGs associated 
with ferroptosis in NAFLD. Our findings also suggest a 
certain correlation between FRGs and immune cell infil-
tration in NAFLD. Furthermore, we identified NAFLD-
related miRNAs, lncRNAs, and circRNAs. However, 
because this was a strictly bioinformatics analysis, in 
future studies, we will focus on the expression patterns 
and functions of these genes to understand the precise 
molecular mechanism of ferroptosis in NAFLD devel-
opment. First, we will quantify the expression of these 
genes at the transcriptional and translational levels 
and confirm their interactions through immunohisto-
chemical and immunofluorescence assays. Second, we 
will determine the specific mechanisms of ferroptosis 
in lipid accumulation, hepatocyte injury, and immune 
responses by using cellular models. Third, we will col-
lect more liver tissue samples from NAFLD patients 

for conducting large-scale research. Our research will 
focus on identifying more effective ferroptosis-specific 
biomarkers and developing ferroptosis modulators with 
improved properties for alleviating NAFLD.

The present study has several limitations. First, we 
did not perform an additional in  vivo experiment to 
validate whether the selected FRGs regulate ferroptosis 
in NAFLD. Second, we are aware of FRGs only from the 
FerrDb database, and only a few studies have examined 
the role of ferroptosis in NAFLD. Third, we did not 
evaluate the different stages of NAFLD. To overcome 
these limitations, prospective clinical trials should be 
designed to elucidate the mechanisms of action of the 
five FRGs in different stages of NAFLD.

Conclusions
In summary, based on our bioinformatics analysis, we 
identified five FRGs (SCP2, MUC1, DPP4, SLC1A4, 
and TF) that could predict NAFLD development and 
explored the potential pathway of liver tissue dam-
age in NAFLD. We also provided new insights into the 
molecular mechanisms of NAFLD pathogenesis. Fur-
ther research is required to confirm our preliminary 
evidence and to validate these FRGs as proposed bio-
markers for NAFLD diagnosis in clinical practice.
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