Bui T, Thompson C. Cancer’s sweet tooth. Cancer Cell. 2006;9(6):419–20.
Article
PubMed
CAS
Google Scholar
Fantin V, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–34.
Article
PubMed
CAS
Google Scholar
Dey P, Kimmelman A, DePinho R. Metabolic codependencies in the tumor microenvironment. Cancer Discov. 2021;11(5):1067–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Raggi C, Taddei M, Rae C, Braconi C, Marra F. Metabolic reprogramming in cholangiocarcinoma. J Hepatol. 2022;77(3):849–64.
Article
PubMed
CAS
Google Scholar
Wang C, Dong Z, Hao Y, et al. Coordination polymer-coated CaCO reinforces radiotherapy by reprogramming the immunosuppressive metabolic microenvironment. Adv Mater. 2022;34(3): e2106520.
Article
PubMed
Google Scholar
Bononi G, Masoni S, Di Bussolo V, Tuccinardi T, Granchi C, Minutolo F. Historical perspective of tumor glycolysis: a century with Otto Warburg. Semin Cancer Biol. 2022;86:325–33.
Article
PubMed
CAS
Google Scholar
Icard P, Shulman S, Farhat D, Steyaert J, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updates. 2018;38:1–11.
Article
Google Scholar
Poff A, Koutnik A, Egan K, Sahebjam S, D’Agostino D, Kumar N. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma. Semin Cancer Biol. 2019;56:135–48.
Article
PubMed
CAS
Google Scholar
Faubert B, Li K, Cai L, et al. Lactate metabolism in human lung tumors. Cell. 2017;171(2):358-71.e9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cao L, Wu J, Qu X, et al. Glycometabolic rearrangements–aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. J Exp Clin Cancer Res. 2020;39(1):267.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reinfeld B, Rathmell W, Kim T, Rathmell J. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cell Mol Immunol. 2022;19(1):46–58.
Article
PubMed
CAS
Google Scholar
Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol. 2018;53(6):667–82.
Article
PubMed
CAS
Google Scholar
Brooks G. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–85.
Article
PubMed
CAS
Google Scholar
Becker L, O’Connell J, Vo A, et al. Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 2020;31(9): 107701.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee S, McIntyre D, Honess D, et al. Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br J Cancer. 2018;119(5):622–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Colegio O, Chu N, Szabo A, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513(7519):559–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao F, Tang Y, Liu W, et al. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv Mater. 2019;31(51):e1904639.
Article
PubMed
Google Scholar
Hui S, Ghergurovich J, Morscher R, et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017;551(7678):115–8.
Article
PubMed
PubMed Central
Google Scholar
Watson M, Vignali P, Mullett S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;591(7851):645–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doherty J, Cleveland J. Targeting lactate metabolism for cancer therapeutics. J Clin Investig. 2013;123(9):3685–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baumann F, Leukel P, Doerfelt A, et al. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol. 2009;11(4):368–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022;40(2):201-18.e9.
Article
PubMed
CAS
Google Scholar
Multhoff G, Vaupel P. Lactate-avid regulatory T cells: metabolic plasticity controls immunosuppression in tumour microenvironment. Signal Transduct Target Ther. 2021;6(1):171.
Article
PubMed
PubMed Central
CAS
Google Scholar
Decking S, Bruss C, Babl N, et al. LDHB overexpression can partially overcome T cell inhibition by lactic acid. Int J Mol Sci. 2022;23(11):5970.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mendler A, Hu B, Prinz P, Kreutz M, Gottfried E, Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer. 2012;131(3):633–40.
Article
PubMed
CAS
Google Scholar
Brand A, Singer K, Koehl G, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657–71.
Article
PubMed
CAS
Google Scholar
Scott K, Cleveland J. Lactate wreaks havoc on tumor-infiltrating T and NK cells. Cell Metab. 2016;24(5):649–50.
Article
PubMed
CAS
Google Scholar
Zhou H, Yan X-Y, Yu W, et al. Lactic acid in macrophage polarization: the significant role in inflammation and cancer. Int Rev Immunol. 2022;41(1):4–18.
Article
PubMed
CAS
Google Scholar
Zhang L, Li S. Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer. Exp Cell Res. 2020;388(2): 111846.
Article
PubMed
CAS
Google Scholar
Song J, Lee K, Park S, et al. Lactic acid upregulates VEGF expression in macrophages and facilitates choroidal neovascularization. Invest Ophthalmol Vis Sci. 2018;59(8):3747–54.
Article
PubMed
CAS
Google Scholar
Alber J, Föller M. Lactic acid induces fibroblast growth factor 23 (FGF23) production in UMR106 osteoblast-like cells. Mol Cell Biochem. 2022;477(2):363–70.
Article
PubMed
CAS
Google Scholar
Brown T, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 2020;206: 107451.
Article
PubMed
CAS
Google Scholar
Gao Y, Zhou H, Liu G, Wu J, Yuan Y, Shang A. Tumor microenvironment: lactic acid promotes tumor development. J Immunol Res. 2022;2022:3119375.
Article
PubMed
PubMed Central
Google Scholar
Chang J, Lee Y, Huang R. The impact of the Cancer Genome Atlas on lung cancer. Transl Res. 2015;166(6):568–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilkerson MD, Yin X, Walter V, et al. Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PLoS ONE. 2012;7(5):e36530.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tibshirani R, Bien J, Friedman J, et al. Strong rules for discarding predictors in lasso-type problems. J R Stat Soc Ser B Stat Methodol. 2012;74(2):245–66.
Article
Google Scholar
McEligot A, Poynor V, Sharma R, Panangadan A. Logistic LASSO regression for dietary intakes and breast cancer. Nutrients. 2020;12(9):2652.
Article
PubMed Central
CAS
Google Scholar
Limagne E, Nuttin L, Thibaudin M, et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell. 2022;40(2):136-52.e12.
Article
PubMed
CAS
Google Scholar
Jung H, Kim HS, Kim JY, et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat Commun. 2019;10(1):4278.
Article
PubMed
PubMed Central
Google Scholar
Hwang S, Kwon AY, Jeong JY, et al. Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep. 2020;10(1):643.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goldmann T, Marwitz S, Nitschkowski D, et al. PD-L1 amplification is associated with an immune cell rich phenotype in squamous cell cancer of the lung. Cancer Immunol Immunother. 2021;70(9):2577–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mitchell KA, Zingone A, Toulabi L, Boeckelman J, Ryan BM. Comparative transcriptome profiling reveals coding and noncoding RNA differences in NSCLC from African Americans and European Americans. Clin Cancer Res. 2017;23(23):7412–25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miao D, Margolis CA, Vokes NI, Liu D, Taylor-Weiner A, Wankowicz SM, Adeegbe D, Keliher D, Schilling B, Tracy A, Manos M, et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet. 2018;50(9):1271–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.
Article
PubMed
PubMed Central
Google Scholar
Mayakonda A, Lin D, Assenov Y, Plass C, Koeffler H. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu J, Zhang H, Li L, et al. A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: a population-based analysis. Cancer Commun (Lond, Engl). 2020;40(7):301–12.
Article
Google Scholar
Kawada J, Takeuchi S, Imai H, et al. Immune cell infiltration landscapes in pediatric acute myocarditis analyzed by CIBERSORT. J Cardiol. 2021;77(2):174–8.
Article
PubMed
Google Scholar
Bejarano L, Jordāo M, Joyce J. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021;11(4):933–59.
Article
PubMed
CAS
Google Scholar
Meurette O, Mehlen P. Notch signaling in the tumor microenvironment. Cancer Cell. 2018;34(4):536–48.
Article
PubMed
CAS
Google Scholar
Marin E, Bouchet-Delbos L, Renoult O, et al. Human tolerogenic dendritic cells regulate immune responses through lactate synthesis. Cell Metab. 2019;30(6):1075-90.e8.
Article
PubMed
CAS
Google Scholar
San-Millan I, Sparagna GC, Chapman HL, et al. Chronic lactate exposure decreases mitochondrial function by inhibition of fatty acid uptake and cardiolipin alterations in neonatal rat cardiomyocytes. Front Nutr. 2022;9: 809485.
Article
PubMed
PubMed Central
Google Scholar
Morland C, Andersson K, Haugen Ø, et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun. 2017;8:15557.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pelizzari G, Basile D, Zago S, et al. Lactate dehydrogenase (LDH) response to first-line treatment predicts survival in metastatic breast cancer: first clues for a cost-effective and dynamic biomarker. Cancers. 2019;11(9):1243.
Article
PubMed Central
CAS
Google Scholar
Wulaningsih W, Holmberg L, Garmo H, et al. Serum lactate dehydrogenase and survival following cancer diagnosis. Br J Cancer. 2015;113(9):1389–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.
Article
PubMed
Google Scholar
Agarwal S, Simonds W, Marx S. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3. Mol Cancer. 2008;7:65.
Article
PubMed
PubMed Central
Google Scholar
Sivaprakasam S, Bhutia Y, Yang S, Ganapathy V. Short-chain fatty acid transporters: role in colonic homeostasis. Compr Physiol. 2017;8(1):299–314.
Article
PubMed
PubMed Central
Google Scholar
Cordell PA, Futers TS, Grant PJ, Pease RJ. The Human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytosolic and mitochondrial forms of glyoxalase II. J Biol Chem. 2004;279(27):28653–61.
Article
PubMed
CAS
Google Scholar
Qin X, Li C, Guo T, et al. Upregulation of DARS2 by HBV promotes hepatocarcinogenesis through the miR-30e-5p/MAPK/NFAT5 pathway. J Exp Clin Cancer Res. 2017;36(1):148.
Article
PubMed
PubMed Central
Google Scholar