Shufelt CL, Pacheco C, Tweet MS, Miller VM. Sex-specific physiology and cardiovascular disease. Adv Exp Med Biol. 2018;1065:433–54.
Article
PubMed Central
PubMed
Google Scholar
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56-528.
Article
PubMed
Google Scholar
Cleland JGF, Swedberg K, Cohen-solal A, Cosin-aguilar J, Dietz R, Mason J, et al. The Euro Heart Failure Survey of The EUROHEART Survey Programme a survey on the quality of care among patients with heart failure in Europe. Eur J Heart Fail. 2000;2:123–32.
Article
CAS
PubMed
Google Scholar
Magnussen C, Niiranen TJ, Ojeda FM, Gianfagna F, Blankenberg S, Njølstad I, et al. Sex differences and similarities in atrial fibrillation epidemiology, risk factors, and mortality in community cohorts: results from the biomarcare consortium (Biomarker for cardiovascular risk assessment in Europe). Circulation. 2017;136:1588–97.
Article
PubMed Central
PubMed
Google Scholar
Marchlinski FE, Deely MP, Zado ES. Sex-specific triggers for right ventricular outflow tract tachycardia. Am Heart J. 2000;139:1009–13.
Article
CAS
PubMed
Google Scholar
Rowin EJ, Maron MS, Wells S, Patel PP, Koethe BC, Maron BJ. Impact of sex on clinical course and survival in the contemporary treatment era for hypertrophic cardiomyopathy. J Am Heart Assoc. 2019. https://doi.org/10.1161/JAHA.119.012041.
Article
PubMed Central
PubMed
Google Scholar
Antzelevitch C, Brugada P, Brugada J, Brugada R, Rahimtoola SH, Alpert JS, et al. Brugada syndrome: from cell to bedside. Curr Probl Cardiol. 2005. https://doi.org/10.1016/j.cpcardiol.2004.04.005.
Article
PubMed Central
PubMed
Google Scholar
Cannatà A, Fabris E, Merlo M, Artico J, Gentile P, Pio Loco C, et al. Sex differences in the long-term prognosis of dilated cardiomyopathy. Can J Cardiol. 2019;36:37–44.
Article
PubMed
Google Scholar
Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, et al. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol. 2019;16:457–75. https://doi.org/10.1038/s41569-019-0179-0.
Article
PubMed
Google Scholar
Lock R, Al Asafen H, Fleischer S, Tamargo M, Zhao Y, Radisic M, et al. A framework for developing sex-specific engineered heart models. Nat Rev Mater. 2021. https://doi.org/10.1038/s41578-021-00381-1.
Article
PubMed Central
PubMed
Google Scholar
De Simone G, Devereux RB, Daniels SR, Meyer RA. Gender differences in left ventricular growth. Hypertension. 1995;26:979–83.
Article
PubMed
Google Scholar
Gebhard C, Stähli BE, Gebhard CE, Tasnady H, Zihler D, Wischnewsky MB, et al. Age- and gender-dependent left ventricular remodeling. Echocardiography. 2013;30:1143–50.
Article
PubMed
Google Scholar
Mallat Z, Fornes P, Costagliola R, Esposito B, Belmin J, Lecomte D, et al. Age and gender effects on cardiomyocyte apoptosis in the normal human heart. J Gerontol Ser A. 2001;56:M719–23. https://doi.org/10.1093/gerona/56.11.M719.
Article
CAS
Google Scholar
Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res. 1991;68:1560–8.
Article
CAS
PubMed
Google Scholar
Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26:1068–79.
Article
CAS
PubMed
Google Scholar
Legato MJ, Leghe JK. Gender and the heart. Sex-specific differences in the normal myocardial anatomy and physiology. Principles of gender-specific medicine. 2010. p. 151–61.
Chung AK, Das SR, Leonard D, Peshock RM, Kazi F, Abdullah SM, et al. Women have higher left ventricular ejection fractions than men independent of differences in left ventricular volume: the Dallas heart study. Circulation. 2006;113:1597–604.
Article
PubMed
Google Scholar
Salton CJ, Chuang ML, O’Donnell CJ, Kupka MJ, Larson MG, Kissinger KV, et al. Gender differences and normal left ventricular anatomy in an adult population free of hypertension: a cardiovascular magnetic resonance study of the Framingham Heart Study Offspring cohort. J Am Coll Cardiol. 2002;39:1055–60.
Article
PubMed
Google Scholar
Sorimachi H, Kurosawa K, Yoshida K, Obokata M, Noguchi T, Naka M, et al. Sex differences in left ventricular afterload and diastolic function are independent from the aortic size. PLoS ONE. 2019;14: e0214907.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hayward CS, Kalnins WV, Kelly RP. Gender-related differences in left ventricular chamber function. Cardiovasc Res. 2001;49:340–50.
Article
CAS
PubMed
Google Scholar
Merz CNB, Moriel M, Rozanski A, Klein J, Berman DS. Gender-related differences in exercise ventricular function among healthy subjects and patients. Am Heart J. 1996;131:704–9.
Article
CAS
PubMed
Google Scholar
Hanley PC, Zinsmeister AR, Clements IP, Bove AA, Brown ML, Gibbons RJ. Gender-related differences in cardiac response to supine exercise assessed by radionuclide angiography. J Am Coll Cardiol. 1989;13:624–9.
Article
CAS
PubMed
Google Scholar
Burke JH, Goldberger JJ, Ehlert FA, Kruse JT, Parker MA, Kadish AH. Gender differences in heart rate before and after autonomic blockade: evidence against an intrinsic gender effect. Am J Med. 1996;100:537–43.
Article
CAS
PubMed
Google Scholar
Rabkin SW, Cheng XBJ, Thompson DJS. Detailed analysis of the impact of age on the QT interval. J Geriatr Cardiol. 2016;13:740–8.
PubMed Central
PubMed
Google Scholar
Bidoggia H, Maciel JP, Capalozza N, Mosca S, Blaksley EJ, Valverde E, et al. Sex-dependent electrocardiographic pattern of cardiac repolarization. Am Heart J. 2000;140:430–6.
Article
CAS
PubMed
Google Scholar
Fleisher LA, Dipietro JA, Johnson TRB, Pincus S. Complementary and non-coincident increases in heart rate variability and irregularity during fetal development. Clin Sci. 1997;92:345–9.
Article
CAS
Google Scholar
Stramba-Badiale M, Spagnolo D, Bosi G, Schwartz PJ, On behalf of the Misnes Investigators. Are gender differences in QTc present at birth? Am J Cardiol. 1995;75:1277–8.
Article
CAS
PubMed
Google Scholar
Surawicz B, Parikh SR. Prevalence of male and female patterns of early ventricular repolarization in the normal ECG of males and females from childhood to old age. J Am Coll Cardiol. 2002;40:1870–6.
Article
PubMed
Google Scholar
Rautaharju P, Zhou SH, Wong S, Calhoun HP, Berenson GS, Prineas R, et al. Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol. 1992;8:690–5.
CAS
PubMed
Google Scholar
Huang J-H, Lin Y-Q, Pan N-H, Chen Y-J. Aging modulates dispersion of ventricular repolarization in the very old of the geriatric population. Heart Vessels. 2010;25:500–8.
Article
CAS
PubMed
Google Scholar
Tran H, White CM, Chow MS, Kluger J. An evaluation of the impact of gender and age on QT dispersion in healthy subjects. Ann Noninvasive Electrocardiol. 2001;6:129–33.
Article
CAS
PubMed
Google Scholar
Ramaekers D, Ector H, Aubert AE, Rubens A, Van De Werf F. Heart rate variability and heart rate in healthy volunteers: Is the female autonomic nervous system cardioprotective? Eur Heart J. 1998;19:1334–41.
Article
CAS
PubMed
Google Scholar
Stramba-Badiale M, Locati EH, Martinelli A, Courville J, Schwartz PJ. Gender and the relationship between ventricular repolarization and cardiac cycle length during 24-h Holter recordings. Eur Heart J. 1997;18:1000–6.
Article
CAS
PubMed
Google Scholar
Magnano AR, Holleran S, Ramakrishnan R, Reiffel JA, Bloomfield DM. Autonomic nervous system influences on QT interval in normal subjects. J Am Coll Cardiol. 2002;39:1820–6.
Article
PubMed
Google Scholar
Zhang Y, Ouyang P, Post WS, Dalal D, Vaidya D, Blasco-Colmenares E, et al. Sex-steroid hormones and electrocardiographic qt-interval duration: findings from the third national health and nutrition examination survey and the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2011;174:403–11.
Article
PubMed Central
PubMed
Google Scholar
Charbit B, Christin-Maître S, Démolis JL, Soustre E, Young J, Funck-Brentano C. Effects of testosterone on ventricular repolarization in hypogonadic men. Am J Cardiol. 2009;103:887–90.
Article
CAS
PubMed
Google Scholar
Bidoggia H, Maciel JP, Capalozza N, Mosca S, Blaksley EJ, Valverde E, et al. Sex differences on the electrocardiographic pattern of cardiac repolarization: possible role of testosterone. Am Heart J. 2000;140:678–83.
Article
CAS
PubMed
Google Scholar
De Leo V, La Marca A, Agricola E, Morgante G, Mondillo S, Setacci C. Resting ECG is modified after oophorectomy and regresses with estrogen replacement therapy in premenopausal women. Maturitas. 2000;36:43–7.
Article
PubMed
Google Scholar
Saba S, Link MS, Homoud MK, Wang PJ, Estes NAM. Effect of low estrogen states in healthy women on dispersion of ventricular repolarization. Am J Cardiol. 2001;87:354–6.
Article
CAS
PubMed
Google Scholar
Larsen JA, Tung RH, Sadananda R, Goldberger JJ, Horvath G, Parker MA, et al. Effects of hormone replacement therapy on QT interval. Am J Cardiol. 1998;82:993–5.
Article
CAS
PubMed
Google Scholar
Altunkeser BB, Ozdemir K, Içli A, Celik C, Akyürek C, Gök H. Effects of long-term hormone replacement therapy on QT and corrected QT dispersion during resting and peak exercise electrocardiography in post-menopausal women. Jpn Heart J. 2002;43:1–7.
Article
CAS
PubMed
Google Scholar
Kadish AH, Greenland P, Limacher MC, Frishman WH, Daugherty SA, Schwartz JB. Estrogen and progestin use and the QT interval in postmenopausal women. Ann Noninvasive Electrocardiol. 2004;9:366–74.
Article
PubMed Central
PubMed
Google Scholar
Seth R, Moss AJ, McNitt S, Zareba W, Andrews ML, Qi M, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007;49:1092–8.
Article
PubMed
Google Scholar
McKinley PS, King AR, Shapiro PA, Slavov I, Fang Y, Chen IS, et al. The impact of menstrual cycle phase on cardiac autonomic regulation. Psychophysiology. 2009;46:904–11.
Article
PubMed Central
PubMed
Google Scholar
Endres S, Mayuga KA, De Cristofaro A, Taneja T, Goldberger JJ, Kadish AH. Menstrual cycle and ST height. Ann Noninvasive Electrocardiol. 2004;9:121–6.
Article
PubMed Central
PubMed
Google Scholar
Nakagawa M, Ooie T, Takahashi N, Taniguchi Y, Anan F, Yonemochi H, et al. Influence of menstrual cycle on QT interval dynamics. PACE Pacing Clin Electrophysiol. 2006;29:607–13.
Article
PubMed
Google Scholar
Khan S, Prakash J, Rashid Ullah Beg M, Kumar M, Hussain G, Dixit R, et al. To study the effect of different phases of menstrual cycle on ECG & blood pressure in healthy young adult females. J Med Sci Clin Res. 2016;4:10406–14.
Google Scholar
Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.
Article
CAS
PubMed
Google Scholar
Curl CL, Wendt IR, Kotsanas G. Effects of gender on intracellular [Ca2+] in rat cardiac myocytes. Pflugers Arch Eur J Physiol. 2001;441:709–16.
Article
CAS
Google Scholar
Farrell SR, Ross JL, Howlett SE. Sex differences in mechanisms of cardiac excitation-contraction coupling in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2010;299:H36-45.
Article
CAS
PubMed
Google Scholar
Grandy SA, Howlett SE. Cardiac excitation-contraction coupling is altered in myocytes from aged male mice but not in cells from aged female mice. Am J Physiol Heart Circ Physiol. 2006;291:H2362–70.
Article
CAS
PubMed
Google Scholar
Howlett SE. Age-associated changes in excitation-contraction coupling are more prominent in ventricular myocytes from male rats than in myocytes from female rats. Am J Physiol Heart Circ Physiol. 2010. https://doi.org/10.1152/ajpheart.00214.2009.
Article
PubMed
Google Scholar
Leblanc N, Chartier D, Gosselin H, Rouleau JL. Age and gender differences in excitation–contraction coupling of the rat ventricle. J Physiol. 1998;511:533–48.
Article
CAS
PubMed Central
PubMed
Google Scholar
Parks RJ, Ray G, Bienvenu LA, Rose RA, Howlett SE. Sex differences in SR Ca2+ release in murine ventricular myocytes are regulated by the cAMP/PKA pathway. J Mol Cell Cardiol. 2014;75:162–73.
Article
CAS
PubMed
Google Scholar
Mason SA, MacLeod KT. Cardiac action potential duration and calcium regulation in males and females. Biochem Biophys Res Commun. 2009;388:565–70.
Article
CAS
PubMed
Google Scholar
Chen J, Petranka J, Yamamura K, London RE, Steenbergen C, Murphy E. Gender differences in sarcoplasmic reticulum calcium loading after isoproterenol. Am J Physiol Heart Circ Physiol. 2003;285:H2657–62.
Article
CAS
PubMed
Google Scholar
Chu SH, Sutherland K, Beck J, Kowalski J, Goldspink P, Schwertz D. Sex differences in expression of calcium-handling proteins and beta-adrenergic receptors in rat heart ventricle. Life Sci. 2005;76:2735–49.
Article
CAS
PubMed
Google Scholar
Wu Y, Anderson ME. Reduced repolarization reserve in ventricular myocytes from female mice. Cardiovasc Res. 2002;53:763–9.
Article
CAS
PubMed
Google Scholar
James AF, Arberry LA, Hancox JC. Gender-related differences in ventricular myocyte repolarization in the guinea pig. Basic Res Cardiol. 2004;99:183–92.
Article
CAS
PubMed
Google Scholar
Zhu Y, Ai X, Oster RA, Bers DM, Pogwizd SM. Sex differences in repolarization and slow delayed rectifier potassium current and their regulation by sympathetic stimulation in rabbits. Pflugers Arch Eur J Physiol. 2013;465:805–18.
Article
CAS
Google Scholar
Trépanier-Boulay V, St-Michel C, Tremblay A, Fiset C. Gender-based differences in cardiac repolarization in mouse ventricle. Circ Res. 2001;89:437–44.
Article
PubMed
Google Scholar
Brouillette J, Lupien MA, St-Michel C, Fiset C. Characterization of ventricular repolarization in male and female guinea pigs. J Mol Cell Cardiol. 2007;42:357–66.
Article
CAS
PubMed
Google Scholar
Pham TV, Sosunov EA, Gainullin RZ, Danilo P, Rosen MR. Impact of sex and gonadal steroids on prolongation of ventricular repolarization and arrhythmias induced by Ik-blocking drugs. Circulation. 2001;103:2207–12.
Article
CAS
PubMed
Google Scholar
Xiao L, Zhang L, Han W, Wang Z, Nattel S. Sex-based transmural differences in cardiac repolarization and ionic-current properties in canine left ventricles. Am J Physiol Heart Circ Physiol. 2006;291:H570–80.
Article
CAS
PubMed
Google Scholar
Barajas-Martinez H, Haufe V, Chamberland C, Roy MJB, Fecteau MH, Cordeiro JM, et al. Larger dispersion of INa in female dog ventricle as a mechanism for gender-specific incidence of cardiac arrhythmias. Cardiovasc Res. 2009;81:82–9.
Article
CAS
PubMed
Google Scholar
Sims C, Reisenweber S, Viswanathan PC, Choi BR, Walker WH, Salama G. Sex, age, and regional differences in L-type calcium current are important determinants of arrhythmia phenotype in rabbit hearts with drug-induced long QT type 2. Circ Res. 2008;102:e86-100.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu XK, Katchman A, Drici MD, Ebert SN, Ducic I, Morad M, et al. Gender difference in the cycle length-dependent QT and potassium currents in rabbits. J Pharmacol Exp Ther. 1998;285:672–9.
CAS
PubMed
Google Scholar
Wei SK, Mccurley JM, Hanlon SU, Haigney MCP. Gender differences in Na/Ca exchanger current and β-adrenergic responsiveness in heart failure in pig myocytes. Ann N Y Acad Sci. 2007. https://doi.org/10.1196/annals.1387.026.
Article
PubMed
Google Scholar
Tsai WC, Chen YC, Kao YH, Lu YY, Chen SA, Chen YJ. Distinctive sodium and calcium regulation associated with sex differences in atrial electrophysiology of rabbits. Int J Cardiol. 2013;168:4658–66.
Article
PubMed
Google Scholar
Chen G, Yang X, Alber S, Shusterman V, Salama G. Regional genomic regulation of cardiac sodium-calcium exchanger by oestrogen. J Physiol. 2011;589:1061–80.
Article
CAS
PubMed Central
PubMed
Google Scholar
Verkerk AO, Wilders R, Veldkamp MW, de Geringel W, Kirkels JH, Tan HL. Gender disparities in cardiac cellular electrophysiology and arrhythmia susceptibility in human failing ventricular myocytes. Int Heart J. 2005;46:1105–18.
Article
CAS
PubMed
Google Scholar
Gaborit N, Varro A, Le Bouter S, Szuts V, Escande D, Nattel S, et al. Gender-related differences in ion-channel and transporter subunit expression in non-diseased human hearts. J Mol Cell Cardiol. 2010;49:639–46.
Article
CAS
PubMed
Google Scholar
Xiang Y, Kobilka BK. Myocyte adrenoceptor signaling pathways. Science (80-). 2003. https://doi.org/10.1126/science.1079206.
Article
PubMed Central
PubMed
Google Scholar
Vizgirda VM, Wahler GM, Sondgeroth KL, Ziolo MT, Schwertz DW. Mechanisms of sex differences in rat cardiac myocyte response to β-adrenergic stimulation. Am J Physiol Heart Circ Physiol. 2002. https://doi.org/10.1152/ajpheart.2002.282.1.H256.
Article
PubMed
Google Scholar
Schwertz DW, Vizgirda V, Solaro RJ, Piano MR, Ryjewski C. Sexual dimorphism in rat left atrial function and response to adrenergic stimulation. Mol Cell Biochem. 1999;200:143–53.
Article
CAS
PubMed
Google Scholar
Hoeker GS, Hood AR, Katra RP, Poelzing S, Pogwizd SM. Sex differences in β-adrenergic responsiveness of action potentials and intracellular calcium handling in isolated rabbit hearts. PLoS ONE. 2014;9: e111411.
Article
PubMed Central
PubMed
Google Scholar
Mosselman S, Polman J, Dijkema R. ERβ: Identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996;392:49–53.
Article
CAS
PubMed
Google Scholar
Mahmoodzadeh S, Dworatzek E. The role of 17β-estradiol and estrogen receptors in regulation of Ca2+ channels and mitochondrial function in Cardio myocytes. Front Endocrinol. 2019. https://doi.org/10.3389/fendo.2019.00310.
Article
Google Scholar
Golden KL, Marsh JD, Jiang Y, Moulden J. Acute actions of testosterone on contractile function of isolated rat ventricular myocytes. Eur J Endocrinol. 2005;152:479–83.
Article
CAS
PubMed
Google Scholar
Abi-Gerges N, Philp K, Pollard C, Wakefield I, Hammond TG, Valentin JP, et al. Sex differences in ventricular repolarization: from cardiac electrophysiology to Torsades de Pointes. Fundam Clin Pharmacol. 2004;18:139–51.
Article
CAS
PubMed
Google Scholar
Er F, Michels G, Brandt MC, Khan I, Haase H, Eicks M, et al. Impact of testosterone on cardiac L-type calcium channels and Ca2+ sparks: acute actions antagonize chronic effects. Cell Calcium. 2007;41:467–77.
Article
CAS
PubMed
Google Scholar
Bai CX, Kurokawa J, Tamagawa M, Nakaya H, Furukawa T. Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation. 2005;112:1701–10.
Article
CAS
PubMed
Google Scholar
Golden KL, Marsh JD, Jiang Y. Testosterone regulates mRNA levels of calcium regulatory proteins in cardiac myocytes. Horm Metab Res. 2004;36:197–202.
Article
CAS
PubMed
Google Scholar
Nakamura H, Kurokawa J, Bai C-X, Asada K, Xu J, Oren RV, et al. Progesterone regulates cardiac repolarization through a nongenomic pathway. Circulation. 2007;116:2913–22.
Article
CAS
PubMed
Google Scholar
Cheng J, Ma X, Zhang J, Su D. Diverse modulating effects of estradiol and progesterone on the monophasic action potential duration in Langendorff-perfused female rabbit hearts. Fundam Clin Pharmacol. 2012;26:219–26.
Article
CAS
PubMed
Google Scholar
Berger F, Borchard U, Hafner D, Pütz I, Weis TM. Effects of 17β-estradiol on action potentials and ionic currents in male rat ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol. 1997;356:788–96.
Article
CAS
PubMed
Google Scholar
Ullrich ND, Krust A, Collins P, MacLeod KT. Genomic deletion of estrogen receptors ERα and ERβ does not alter estrogen-mediated inhibition of Ca2+ influx and contraction in murine cardiomyocytes. Am J Physiol Heart Circ Physiol. 2008;294:H2421–7.
Article
CAS
PubMed
Google Scholar
Tanabe S, Hata T, Hiraoka M. Effects of estrogen on action potential and membrane currents in guinea pig ventricular myocytes. Am J Physiol Circ Physiol. 1999;277:H826–33. https://doi.org/10.1152/ajpheart.1999.277.2.H826.
Article
CAS
Google Scholar
Jiang C, Poole-Wilson PA, Sarrel PM, Mochizuki S, Collins P, MacLeod KT. Effect of 17β-oestradiol on contraction, Ca2+ current and intracellular free Ca2+ in guinea-pig isolated cardiac myocytes. Br J Pharmacol. 1992;106:739–45.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kurokawa J, Tamagawa M, Harada N, Honda SI, Bai CX, Nakaya H, et al. Acute effects of oestrogen on the guinea pig and human IKr channels and drug-induced prolongation of cardiac repolarization. J Physiol. 2008;586:2961–73.
Article
CAS
PubMed Central
PubMed
Google Scholar
Saito T, Ciobotaru A, Bopassa JC, Toro L, Stefani E, Eghbali M. Estrogen contributes to gender differences in mouse ventricular repolarization. Circ Res. 2009;105:343–52.
Article
CAS
PubMed Central
PubMed
Google Scholar
Drici MD, Burklow TR, Haridasse V, Glazer RI, Woosley RL. Sex hormones prolong the QT interval and downregulate potassium channel expression in the rabbit heart. Circulation. 1996;94:1471–4.
Article
CAS
PubMed
Google Scholar
Yang HY, Firth JM, Francis AJ, Alvarez-Laviada A, MacLeod KT. Effect of ovariectomy on intracellular ca2+ regulation in Guinea pig cardiomyocytes. Am J Physiol Heart Circ Physiol. 2017;313:H1031–43.
Article
PubMed Central
PubMed
Google Scholar
Kurokawa J, Kodama M, Clancy CE, Furukawa T. Sex hormonal regulation of cardiac ion channels in drug-induced QT syndromes. Pharmacol Ther. 2016;168:23–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vicencio JM, Ibarra C, Estrada M, Chiong M, Soto D, Parra V, et al. Testosterone induces an intracellular calcium increase by a nongenomic mechanism in cultured rat cardiac myocytes. Endocrinology. 2006;147:1386–95.
Article
CAS
PubMed
Google Scholar
Curl CL, Delbridge LMD, Canny BJ, Wendt IR. Testosterone modulates cardiomyocyte Ca2+ handling and contractile function. Physiol Res. 2009;58:293–7.
Article
CAS
PubMed
Google Scholar
Golden KL, Marsh JD, Jiang Y. Castration reduces mRNA levels for calcium regulatory proteins in rat heart. Endocrine. 2002;19:339–44.
Article
CAS
PubMed
Google Scholar
Sebag IA, Gillis MA, Calderone A, Kasneci A, Meilleur M, Haddad R, et al. Sex hormone control of left ventricular structure/function: mechanistic insights using echocardiography, expression, and DNA methylation analyses in adult mice. Am J Physiol Heart Circ Physiol. 2011;301:H1706–15.
Article
CAS
PubMed
Google Scholar
Tsang S, Wong SSC, Wu S, Kravtsov GM, Wong TM. Testosterone-augmented contractile responses to α1- and β1-adrenoceptor stimulation are associated with increased activities of RyR, SERCA, and NCX in the heart. Am J Physiol Cell Physiol. 2009;296:C766–82.
Article
CAS
PubMed
Google Scholar
Fares E, Parks RJ, MacDonald JK, Egar JMS, Howlett SE. Ovariectomy enhances SR Ca 2+ release and increases Ca 2+ spark amplitudes in isolated ventricular myocytes. J Mol Cell Cardiol. 2012;52:32–42.
Article
CAS
PubMed
Google Scholar
Fares E, Pyle WG, Ray G, Rose RA, Denovan-Wright EM, Chen RP, et al. The impact of ovariectomy on calcium homeostasis and myofilament calcium sensitivity in the aging mouse heart. PLoS ONE. 2013;8: e74719.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ren J, Hintz KK, Roughead ZKF, Duan J, Colligan PB, Ren BH, et al. Impact of estrogen replacement on ventricular myocyte contractile function and protein kinase B/Akt activation. Am J Physiol Heart Circ Physiol. 2003;284:H1800–7.
Article
CAS
PubMed
Google Scholar
Bupha-Intr T, Wattanapermpool J. Regulatory role of ovarian sex hormones in calcium uptake activity of cardiac sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol. 2006;291:H1101–8.
Article
CAS
PubMed
Google Scholar
Turdi S, Huff AF, Pang J, He EY, Chen X, Wang S, et al. 17-β estradiol attenuates ovariectomy-induced changes in cardiomyocyte contractile function via activation of AMP-activated protein kinase. Toxicol Lett. 2015;232:253–62.
Article
CAS
PubMed
Google Scholar
Nicolson TJ, Mellor HR, Roberts RRA. Gender differences in drug toxicity. Trends Pharmacol Sci. 2010;31:108–14.
Article
CAS
PubMed
Google Scholar
Benton RE, Sale M, Flockhart DA, Woosley RL. Greater quinidine-induced QTc interval prolongation in women. Clin Pharmacol Ther. 2000;67:413–8.
Article
CAS
PubMed
Google Scholar
El-Eraky H, Thomas SHL. Effects of sex on the pharmacokinetic and pharmacodynamic properties of quinidine. Br J Clin Pharmacol. 2003;56:198–204.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lehmann MH, Hardy S, Archibald D, Quart B, MacNeil DJ. Sex difference in risk of torsade de pointes with d, l-sotalol. Circulation. 1996;94:2534–41.
Article
Google Scholar
Lehmann MH, Hardy S, Archibald D, MacNeil DJ. JTc prolongation with d, l-sotalol in women versus men. Am J Cardiol. 1999;83:354–9.
Article
CAS
PubMed
Google Scholar
Pokorney SD, Yen DC, Campbell KB, Allen LaPointe NM, Sheng S, Thomas L, et al. Dofetilide dose reductions and discontinuations in women compared with men. Heart Rhythm. 2018;15:478–84.
Article
PubMed
Google Scholar
Rathore SS, Wang Y, Krumholz HM. Sex-based differences in the effect of digoxin for the treatment of heart failure. N Engl J Med. 2002;347:1403–11.
Article
CAS
PubMed
Google Scholar
Gowda RM, Khan IA, Punukollu G, Vasavada BC, Sacchi TJ, Wilbur SL. Female preponderance in ibutilide-induced torsade de pointes. Int J Cardiol. 2004;95:219–22.
Article
PubMed
Google Scholar
Rodriguez I, Kilborn MJ, Liu XK, Pezzullo JC, Woosley RL. Drug-induced QT prolongation in women during the menstrual cycle. J Am Med Assoc. 2001;285:1322–6.
Article
CAS
Google Scholar
Conrath CE, Wilde AAM, Jongbloed RJE, Alders M, Van Langen IM, Peter Van Tintelen J, et al. Gender differences in the long QT syndrome: effects of β-adrenoceptor blockade. Cardiovasc Res. 2002;53:770–6.
Article
CAS
PubMed
Google Scholar
Wilde AAM, Moss AJ, Kaufman ES, Shimizu W, Peterson DR, Benhorin J, et al. Clinical aspects of type 3 long-QT syndrome: an international multicenter study. Circulation. 2016;134:872–82.
Article
PubMed Central
PubMed
Google Scholar
Benito B, Sarkozy A, Mont L, Henkens S, Berruezo A, Tamborero D, et al. Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol. 2008;52:1567–73.
Article
PubMed
Google Scholar
Liu XK, Wang W, Ebert SN, Franz MR, Katchman A, Woosley RL. Female gender is a risk factor for torsades de pointes in an in vitro animal model. J Cardiovasc Pharmacol. 1999;34:287–94.
Article
CAS
PubMed
Google Scholar
Hara M, Danilo P, Rosen MR. Effects of Gonadal Steroids on ventricular repolarization and on the response to E4031. J Pharmacol Exp Ther. 1998;285:1068–72.
CAS
PubMed
Google Scholar
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, et al. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res. 2018;114(14):1828–42. https://doi.org/10.1093/cvr/cvy208.
Article
CAS
PubMed Central
PubMed
Google Scholar
Brandao KO, Tabel VA, Atsma DE, Mummery CL, Davis RP. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. Dis Model Mech. 2017;10(9):1039–59. https://doi.org/10.1242/dmm.030320.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet. 2019;20(7):377–88. https://doi.org/10.1038/s41576-019-0100-z.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ahmed RE, Anzai T, Chanthra N, Uosaki H. a brief review of current maturation methods for human induced pluripotent stem cells-derived cardiomyocytes. Front Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00178.
Article
PubMed Central
PubMed
Google Scholar
Papp R, Bett GCL, Lis A, Rasmusson RL, Baczkó I, Varró A, et al. Genomic upregulation of cardiac Cav1.2α and NCX1 by estrogen in women. Biol Sex Differ. 2017;8:26.
Article
PubMed Central
PubMed
Google Scholar
Huo J, Wei F, Cai C, Lyn-Cook B, Pang L. Sex-related differences in drug-induced QT prolongation and Torsades de Pointes: a new model system with human iPSC-CMs. Toxicol Sci. 2019;167:360–74.
CAS
PubMed
Google Scholar
Zeng H, Wang J, Clouse H, Lagrutta A, Sannajust F. HiPSC-CMs from different sex and ethnic origin donors exhibit qualitatively different responses to several classes of pharmacological challenges. J Pharmacol Toxicol Methods. 2019;99: 106598.
Article
CAS
PubMed
Google Scholar
Salem J-E, Yang T, Moslehi JJ, Waintraub X, Gandjbakhch E, Bachelot A, et al. Androgenic effects on ventricular repolarization. Circulation. 2019;140:1070–80.
Article
CAS
PubMed Central
PubMed
Google Scholar