Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol. 2013;1:1–12.
Google Scholar
Adibfar A, Amoabediny G, Eslaminejad MB, Mohamadi J, Bagheri F, Doulabi BZ. VEGF delivery by smart polymeric PNIPAM nanoparticles affects both osteogenic and angiogenic capacities of human bone marrow stem cells. Mater Sci Eng C. 2018;93:790–9.
Article
CAS
Google Scholar
Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Olga N, de la Cruz H, Lopez-Gonzalez JS. Contribution of angiogenesis to inflammation and cancer. Front Oncol. 2019. https://doi.org/10.3389/fonc.2019.01399.
Article
PubMed
PubMed Central
Google Scholar
Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Olga N, de la Cruz H, Lopez-Gonzalez JS. Contribution of angiogenesis to inflammation and cancer. Front Oncol. 2019;9:1399–499.
Article
PubMed
PubMed Central
Google Scholar
Aguirre A, González A, Navarro M, Linares ÓC, Estany JAP, López EE. Control of microenvironmental cues with a smart biomaterial composite promotes endothelial progenitor cell angiogenesis. Eur Cell Mater. 2012;24:90–106.
Article
CAS
PubMed
Google Scholar
Ai W, Bae S, Ke Q, Shi Su, Li R, Chen Y, Yoo D, Lee E, Jon S, Kang PM. Bilirubin nanoparticles protect against cardiac ischemia/reperfusion injury in mice. J Am Heart Assoc. 2021;10: e021212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amato R, Catalani E, Dal Monte M, Cammalleri M, Di Renzo I, Perrotta C, Cervia D, Casini G. Autophagy-mediated neuroprotection induced by octreotide in an ex vivo model of early diabetic retinopathy. Pharmacol Res. 2018;128:167–78.
Article
PubMed
Google Scholar
Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Juan Gilberto S, Aguinaldo DB, Weinreb EV, Frias JC, Hyafil F, Mani V. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci. 2007;104:961–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176:1248–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ardeshirylajimi A, Golchin A, Khojasteh A, Bandehpour M. Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. Artificial cells, nanomedicine, and biotechnology. 2018;46:S943–9.
Article
CAS
PubMed
Google Scholar
Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine. 2011;7:580–7.
Article
CAS
PubMed
Google Scholar
Arvizo RR, Saha S, Wang E, Robertson JD, Bhattacharya R, Mukherjee P. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proc Natl Acad Sci U S A. 2013;110:6700–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azuma N. The diagnostic classification of critical limb ischemia. Ann Vasc Dis. 2018;11:449–57.
Article
PubMed
PubMed Central
Google Scholar
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18:1–19.
Article
Google Scholar
Baharara J, Namvar F, Mousavi M, Ramezani T, Mohamad R. Anti-angiogenesis effect of biogenic silver nanoparticles synthesized Using Saliva officinalis on chick chorioalantoic membrane (CAM). Molecules. 2014;19:13498–508.
Article
PubMed
PubMed Central
Google Scholar
Bai Y-Y, Gao X, Wang Y-C, Peng X-G, Chang Di, Zheng S, Li C, Shenghong Ju. Image-guided pro-angiogenic therapy in diabetic stroke mouse models using a multi-modal nanoprobe. Theranostics. 2014;4:787.
Article
PubMed
PubMed Central
Google Scholar
Ballance WC, Qin EC, Chung HJ, Gillette MU, Kong H. Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials. 2019;217: 119292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baluk P, Lee CG, Link H, Ator E, Haskell A, Elias JA, McDonald DM. Regulated angiogenesis and vascular regression in mice overexpressing vascular endothelial growth factor in airways. Am J Pathol. 2004;165:1071–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell. 2011;3:3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao Q, Hu P, Xu Y, Cheng T, Wei C, Pan L, Shi J. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano. 2018;12:6794–805.
Article
CAS
PubMed
Google Scholar
Barralet J, Gbureck U, Habibovic P, Vorndran E, Gerard C, Doillon CJ. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng Part A. 2009;15:1601–9.
Article
CAS
PubMed
Google Scholar
Barreto AD. Intravenous thrombolytics for ischemic stroke. Neurotherapeutics. 2011;8:388–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barui AK, Nethi SK, Patra CR. Investigation of the role of nitric oxide driven angiogenesis by zinc oxide nanoflowers. J Mater Chem B. 2017;5:3391–403.
Article
CAS
PubMed
Google Scholar
Barui AK, Nethi SK, Basuthakur P, Jhelum P, Bollu VS, Reddy BR, Chakravarty S, Patra CR. Therapeutic angiogenesis using zinc oxide nanoflowers for the treatment of hind limb ischemia in a rat model. Biomed Mater. 2021;16: 044103.
Article
CAS
Google Scholar
Barui AK, Nethi SK, Patra CR. Investigation of the role of nitric oxide driven angiogenesis by zinc oxide nanoflowers. Journal of Materials Chemistry B. 2017;5:3391–403.
Article
CAS
PubMed
Google Scholar
Bernardo-Castro S, Albino I, Barrera-Sandoval ÁM, Tomatis F, Sousa JA, Martins E, Simões S, Lino MM, Ferreira L, Sargento-Freitas J. Therapeutic nanoparticles for the different phases of ischemic stroke. Life. 2021;11:482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, Machado C, Santo G, Silva F, Ferreira L. Pathophysiology of blood–brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol. 2020. https://doi.org/10.3389/fneur.2020.594672.
Article
PubMed
PubMed Central
Google Scholar
Bhatt P, Fnu G, Bhatia D, Shahid A, Sutariya V. Nanodelivery of Resveratrol-Loaded PLGA Nanoparticles for Age-Related Macular Degeneration. AAPS PharmSciTech. 2020;21:291.
Article
CAS
PubMed
Google Scholar
Bilthariya U, Jain N, Rajoriya V, Jain AK. Folate-conjugated albumin nanoparticles for rheumatoid arthritis-targeted delivery of etoricoxib. Drug Dev Ind Pharm. 2015;41:95–104.
Article
CAS
PubMed
Google Scholar
Binsalamah ZM, Paul A, Khan AA, Prakash S, Shum-Tim D. Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model. Int J Nanomedicine. 2011;6:2667–78.
CAS
PubMed
PubMed Central
Google Scholar
Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases’. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018. https://doi.org/10.1002/wnan.1473.
Article
PubMed
Google Scholar
Boldbaatar K, Dashnyam K, Knowles JC, Lee HH, Lee JH, Kim HW. Dual-ion delivery for synergistic angiogenesis and bactericidal capacity with silica-based microsphere. Acta Biomater. 2019;83:322–33.
Article
CAS
PubMed
Google Scholar
Bolte C, Ustiyan V, Ren X, Dunn AW, Pradhan A, Wang G, Kolesnichenko OA, Deng Z, Zhang Y, Shi D. Nanoparticle delivery of proangiogenic transcription factors into the neonatal circulation inhibits alveolar simplification caused by hyperoxia. Am J Respir Crit Care Med. 2020;202:100–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonnard T, Gauberti M, Martinez de Lizarrondo S, Campos F, Vivien D. Recent advances in nanomedicine for ischemic and hemorrhagic stroke. Stroke. 2019;50:1318–24.
Article
PubMed
Google Scholar
Briley-Saebo KC, Cho YS, Shaw PX, Ryu SK, Mani V, Dickson S, Izadmehr E, Green S, Fayad ZA, Tsimikas S. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol. 2011;57:337–47.
Article
CAS
PubMed
Google Scholar
Briley-Saebo K, Yeang C, Witztum JL, Tsimikas S. Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: progress and future directions. J Cardiovasc Transl Res. 2014;7:719–36.
Article
PubMed
PubMed Central
Google Scholar
Caizer C, and Mahendra R. 2021. Magnetic nanoparticles in human health and medicine: current medical applications and alternative therapy of cancer. John Wiley & Sons. 2021. https://doi.org/10.1002/9781119754725
Calin M, Stan D, Simion V. Stem cell regenerative potential combined with nanotechnology and tissue engineering for myocardial regeneration. Curr Stem Cell Res Ther. 2013;8:292–303.
Article
CAS
PubMed
Google Scholar
Campbell BCV, Khatri P. Stroke. Lancet. 2020;396:129–42.
Article
PubMed
Google Scholar
Cao Y, Chen A, Seong Soo A, An R-W, Davidson D, Cao Y, Llinás M. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem. 1997;272:22924–8.
Article
CAS
PubMed
Google Scholar
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chachami G, Simos G, Hatziefthimiou A, Bonanou S, Molyvdas P-A, Paraskeva E. Cobalt induces hypoxia-inducible factor-1α expression in airway smooth muscle cells by a reactive oxygen species–and PI3K-dependent mechanism. Am J Respir Cell Mol Biol. 2004;31:544–51.
Article
CAS
PubMed
Google Scholar
Chaudhuri P, Harfouche R, Soni S, Hentschel DM, Sengupta S. Shape effect of carbon nanovectors on angiogenesis. ACS Nano. 2010;4:574–82.
Article
CAS
PubMed
Google Scholar
Chen H-H, Ning-Ya Yu, Cheng Y-H. Shear-thinning hydrogels containing reactive oxygen species-responsive nanoparticles for salvianolic acid B delivery to rescue oxidative damaged HUVECs. Eur Polymer J. 2022;164: 110982.
Article
CAS
Google Scholar
Chen Y, Chen S, Kawazoe N, Chen G. Promoted angiogenesis and osteogenesis by dexamethasone-loaded calcium phosphate nanoparticles/collagen composite scaffolds with microgroove networks. Sci Rep. 2018;8:14143.
Article
PubMed
PubMed Central
Google Scholar
Chu H, Wang Y. Therapeutic angiogenesis: controlled delivery of angiogenic factors. Ther Deliv. 2012;3:693–714.
Article
CAS
PubMed
Google Scholar
Chung E, Ricles LM, Stowers RS, Nam SY, Emelianov SY, Suggs LJ. Multifunctional nanoscale strategies for enhancing and monitoring blood vessel regeneration. Nano Today. 2012;7:514–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costa PM, Cardoso AL, Custódia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release. 2015;207:31–9.
Article
CAS
PubMed
Google Scholar
Craciun I, Astete CE, Boldor D, Jennings MH, Gorman JD, Sabliov CM, Dugas TR. Nanoparticle coatings for controlled release of quercetin from an angioplasty balloon. PLoS ONE. 2022;17: e0268307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crețu B-B, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging constructs: the rise of iron oxide nanoparticles. Molecules (Basel, Switzerland). 2021;26:3437.
Article
Google Scholar
Cuevas P, Carceller F, Ortega S, Zazo M, Nieto I, Giménez-Gallego G. Hypotensive activity of fibroblast growth factor. Science. 1991;254:1208–10.
Article
CAS
PubMed
Google Scholar
d’Angelo I, Garcia-Fuentes M, Parajó Y, Welle A, Vántus T, Horváth A, Bökönyi G, Kéri G, Alonso MJ. Nanoparticles based on PLGA: poloxamer blends for the delivery of proangiogenic growth factors. Mol Pharm. 2010;7:1724–33.
Article
PubMed
Google Scholar
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–46.
Article
CAS
PubMed
Google Scholar
Das S, Singh G, Baker AB. Overcoming disease-induced growth factor resistance in therapeutic angiogenesis using recombinant co-receptors delivered by a liposomal system. Biomaterials. 2014;35:196–205.
Article
CAS
PubMed
Google Scholar
Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TXT, Saraf S, Patra CR, Vlahakis NE, Sayle DC. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials. 2012;33:7746–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng L, Zhang F, Yanlin Wu, Luo J, Mao X, Long L, Gou M, Yang L, Deng DYB. RGD-Modified Nanocarrier-Mediated Targeted Delivery of HIF-1α-AA Plasmid DNA to Cerebrovascular Endothelial Cells for Ischemic Stroke Treatment. ACS Biomater Sci Eng. 2019;5:6254–64.
Article
CAS
PubMed
Google Scholar
Deuse T, Peter C, Fedak PW, Doyle T, Reichenspurner H, Zimmermann WH, Eschenhagen T, Stein W, Wu JC, Robbins RC, Schrepfer S. Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation. 2009;120:S247–54.
Article
CAS
PubMed
Google Scholar
Deveza L, Choi J, Yang F. Therapeutic angiogenesis for treating cardiovascular diseases. Theranostics. 2012;2:801–14.
Article
PubMed
PubMed Central
Google Scholar
Dingsheng L, Zengbing L, Dong H. Favorable effects of progesterone on skin random flap survival in rats. Iran J Basic Med Sci. 2016;19:1166.
PubMed
PubMed Central
Google Scholar
Dong X, Gao J, Su Y, Wang Z. Nanomedicine for Ischemic Stroke. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21207600.
Article
PubMed
PubMed Central
Google Scholar
Donkor ES. Stroke in the 21(st) century: a snapshot of the burden epidemiology, and quality of life. Stroke Res Treat. 2018;2018:3238165–265.
PubMed
PubMed Central
Google Scholar
dos Santos R, Bruna AB, Takahisa K, Jagdish S. Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection, Int J Pharm 2019;566:717-30.
Du W, Zhou L, Zhang Q, Liu X, Wei X, Li Y. Inorganic nanomaterial for biomedical imaging of brain diseases. Molecules. 2021;26:7340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan N, Geng X, Ye L, Zhang A, Feng Z, Guo L, Yongquan Gu. A vascular tissue engineering scaffold with core–shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation. Biomed Mater. 2016;11: 035007.
Article
PubMed
Google Scholar
Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015;18:433–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Endo-Takahashi Y, Negishi Y, Nakamura A, Ukai S, Ooaku K, Oda Y, Sugimoto K, Moriyasu F, Takagi N, Suzuki R, Maruyama K, Aramaki Y. Systemic delivery of miR-126 by miRNA-loaded Bubble liposomes for the treatment of hindlimb ischemia. Sci Rep. 2014;4:3883.
Article
PubMed
PubMed Central
Google Scholar
Esser JS, Rahner S, Deckler M, Bode C, Patterson C, Moser M. Fibroblast growth factor signaling pathway in endothelial cells is activated by BMPER to promote angiogenesis. Arterioscler Thromb Vasc Biol. 2015;35:358–67.
Article
CAS
PubMed
Google Scholar
Feng W, Ye F, Xue W, Zhou Z, James Y, Kang. Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol. 2009;75:174–82.
Article
CAS
PubMed
Google Scholar
Figg WD, Folkman J. Angiogenesis: an integrative approach from science to medicine. Cham: Springer Science & Business Media; 2008.
Book
Google Scholar
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.
Article
CAS
PubMed
Google Scholar
Freedman SB, Isner JM. Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol. 2001;33:379–93.
Article
CAS
PubMed
Google Scholar
Gaharwar AK, Cross LM, Peak CW, Gold K, Carrow JK, Brokesh A, Singh KA. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater. 2019;31: e1900332.
Article
PubMed
PubMed Central
Google Scholar
Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004;164:1935–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghadimi M, Amit S. Magnetic resonance imaging contraindications, StatPearls; 2021. https://pubmed.ncbi.nlm.nih.gov/31869133/.
Giri S, Karakoti A, Graham RP, Maguire JL, Reilly CM, Seal S, Rattan R, Shridhar V. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PLoS ONE. 2013;8:e54578. https://doi.org/10.1371/journal.pone.0054578.
Golchin A, Nourani MR. Effects of bilayer nanofibrillar scaffolds containing epidermal growth factor on full-thickness wound healing. Polym Adv Technol. 2020;31:2443–52.
Article
CAS
Google Scholar
Golchin A, Shams F, Kangari P, Azari A, Hosseinzadeh S. Regenerative medicine: injectable cell-based therapeutics and approved products. Cell Biol Transl Med. 2019;7:75–95.
Google Scholar
Golub JS, Kim YT, Duvall CL, Bellamkonda RV, Gupta D, Lin AS, Weiss D, Robert Taylor W, Guldberg RE. ’Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol. 2010;298:H1959–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golub JS, Kim Y-T, Duvall CL, Bellamkonda RV, Gupta D, Lin AS, Daiana Weiss W, Taylor R, Guldberg RE. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol. 2010;298:H1959–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grodzik M, Sawosz E, Wierzbicki M, Orlowski P, Hotowy A, Niemiec T, Szmidt M, Mitura K, Chwalibog A. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo. Int J Nanomedicine. 2011;6:3041–8.
CAS
PubMed
PubMed Central
Google Scholar
Guarnieri D, Malvindi MA, Belli V, Pompa PP, Netti P. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. J Nanopart Res. 2014;16:2229. https://doi.org/10.1007/s11051-013-2229-6.
Article
CAS
Google Scholar
Guex AG, Hegemann D, Giraud MN, Tevaearai HT, Popa AM, Rossi RM, Fortunato G. Covalent immobilisation of VEGF on plasma-coated electrospun scaffolds for tissue engineering applications. Colloids Surf B Biointerfaces. 2014;123:724–33.
Article
CAS
PubMed
Google Scholar
Gupta MK, Qin RY. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol. 2003;9:1144–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta R, Tongers J, Losordo DW. Human studies of angiogenic gene therapy. Circ Res. 2009;105:724–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guyon J, Chapouly C, Andrique L, Bikfalvi A, Daubon T. The normal and brain tumor vasculature: morphological and functional characteristics and therapeutic targeting. Front Physiol. 2021;12: 622615.
Article
PubMed
PubMed Central
Google Scholar
Harfouche R, Basu S, Soni S, Hentschel DM, Mashelkar RA, Sengupta S. Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis. 2009;12:325–38.
Article
CAS
PubMed
Google Scholar
Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, Negahdari B, Sahebkar A, Masoudifar A, Mirzaei H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018;233:2902–10.
Article
CAS
PubMed
Google Scholar
Hassan A, Elebeedy D, Matar ER, et al. Investigation of Angiogenesis and Wound Healing Potential Mechanisms of Zinc Oxide Nanorods. Front Pharmacol. 2021;12: 661217.
Article
CAS
PubMed
PubMed Central
Google Scholar
He S, Xia T, Wang H, Wei L, Luo X, Li X. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomater. 2012;8:2659–69.
Article
CAS
PubMed
Google Scholar
He Y, Li Z, Chen Z, Yu X, Ji Z, Wang J, Qian Y, Li L. Effects of VEGF-ANG-1-PLA nano-sustained release microspheres on proliferation and differentiation of ADSCs. Cell Biol Int. 2018;42:1060–8.
Article
CAS
PubMed
Google Scholar
Hendrickson MD, Poyton RO. Crosstalk between nitric oxide and hypoxia-inducible factor signaling pathways: an update. Res Rep Biochem. 2015;5:147–61.
Google Scholar
Hodgkinson CP, Gomez JA, Mirotsou M, Dzau VJ. Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Hum Gene Ther. 2010;21:1513–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honnegowda TM, Kumar P, Udupa EGP, Kumar S, Kumar U, Rao P. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast Aesthetic Res. 2015;2:243–9.
Article
Google Scholar
Hoppe A, Jokic B, Janackovic D, Fey T, Greil P, Romeis S, Schmidt J, Peukert W, Lao J, Jallot E. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces. 2014;6:2865–77.
Article
CAS
PubMed
Google Scholar
Carneiro H, Fernanda M, et al. Gold nanoparticles: a critical review of therapeutic applications and toxicological aspects. J Toxicol Environ Health Part B. 2016;19:129–48.
Article
Google Scholar
Horton MA. Molecules in focus The v 3 integrin ‘vitronectin receptor. Int J Biochem Cell Biol. 1997;29:721–5.
Article
CAS
PubMed
Google Scholar
Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Sadatlu MAA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat? Int J Nanomed. 2020;15:9469–96.
Article
CAS
Google Scholar
Hou L, Kim JJ, Joseph Woo Y, Huang NF. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Physiol Heart Circ Physiol. 2016;310:H455–65.
Article
PubMed
Google Scholar
Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone. 2016;91:30–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeda G, Matoba T, Ishikita A, Nagaoka K, Nakano K, Koga JI, Tsutsui H, Egashira K. Nanoparticle-mediated simultaneous targeting of mitochondrial injury and inflammation attenuates myocardial ischemia-reperfusion injury. J Am Heart Assoc. 2021;10: e019521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Im G-B, Jung E, Kim YH, Kim Y-J, Kim S-W, Jeong G-J, Lee T-J, Kim D-I, Kim J, Hyeon T, Taekyung Yu, Bhang SH. Endosome-triggered ion-releasing nanoparticles as therapeutics to enhance the angiogenic efficacy of human mesenchymal stem cells. J Control Release. 2020;324:586–97.
Article
CAS
PubMed
Google Scholar
Im G-B, Lee J, Song J, Taekyung Yu, Bhang SH. Novel angiogenic metal nanoparticles controlling intracellular gene activation in stem cells. Chem Eng J. 2021;419: 129487.
Article
CAS
Google Scholar
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev. 2021;121:1746–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jang E, Albadawi H, Watkins MT, Edelman ER, Baker AB. Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)-induced proliferation, migration, and neovascularization of ischemic muscle. Proc Natl Acad Sci U S A. 2012;109:1679–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jian W-H, Wang H-C, Kuan C-H, Chen M-H, Hsi-Chin Wu, Sun J-S, Wang T-W. Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials. 2018;174:17–30.
Article
CAS
PubMed
Google Scholar
Jiang H, Zhang T, Sun X. Vascular endothelial growth factor gene delivery by magnetic DNA nanospheres ameliorates limb ischemia in rabbits. J Surg Res. 2005;126:48–54.
Article
CAS
PubMed
Google Scholar
Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao Ke, Deng H, He Yi. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;39:1–19.
Article
Google Scholar
Jin L, Zhu Z, Hong L, Qian Z, Wang F, Mao Z. ROS-responsive 18β-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through HMGB1 inhibition and microglia polarization regulation. Bioactive Mater. 2023;19:38–49.
Article
CAS
Google Scholar
Jo DH, Kim JH, Son JG, Song NW, Kim YI, Yu YS, Lee TG, Kim JH. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine. 2014;10:1109–17.
Article
CAS
PubMed
Google Scholar
Jo DH, Kim JH, Yu YS, Lee TG, Kim JH. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine. 2012;8:784–91.
Article
CAS
PubMed
Google Scholar
Jo DH, Kim JH, Son JG, Piao Y, Lee TG, Kim JH. Inhibitory activity of gold and silica nanospheres to vascular endothelial growth factor (VEGF)-mediated angiogenesis is determined by their sizes. Nano Res. 2014;7:844–52.
Article
CAS
Google Scholar
Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care. 2014;3:647–61.
Article
Google Scholar
Jung E, Lee J, Jeong L, Park S, Lee M, Song C, Lee D. Stimulus-activatable echogenic maltodextrin nanoparticles as nanotheranostic agents for peripheral arterial disease. Biomaterials. 2019;192:282–91.
Article
CAS
PubMed
Google Scholar
Kaliva M, Chatzinikolaidou M, Vamvakaki M. 2017. Applications of smart multifunctional tissue engineering scaffolds; 2017.
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang SW, Lim HW, Seo SW, Jeon O, Lee M, Kim BS. Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs. Biomaterials. 2008;29:1109–17.
Article
CAS
PubMed
Google Scholar
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev. 2020;49:5008–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keshaw H, Forbes A, Day RM. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials. 2005;26:4171–9.
Article
CAS
PubMed
Google Scholar
Khor SY, Vu MN, Pilkington EH, Johnston APR, Whittaker MR, Quinn JF, Truong NP, Davis TP. Elucidating the influences of size, surface chemistry, and dynamic flow on cellular association of nanoparticles made by polymerization-induced self-assembly. Small. 2018;14: e1801702.
Article
PubMed
Google Scholar
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR. Biomedical applications of metallic nanoparticles in cancer: current status and future perspectives. Biomed Pharmacother. 2022;150: 112951.
Article
CAS
PubMed
Google Scholar
Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, Jang H, Yang HS, Kim JY, Park HK, Park SP, Park S, Yu T, Yoon BW, Lee SH, Hyeon T. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl. 2012;51:11039–43.
Article
CAS
PubMed
Google Scholar
Kim DH, Seo YK, Thambi T, Moon GJ, Son JP, Li G, Park JH, Lee JH, Kim HH, Lee DS. Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer. Biomaterials. 2015;61:115–25.
Article
CAS
PubMed
Google Scholar
Kim HJ, Lee S-M, Park K-H, Mun CH, Park Y-B, Yoo K-H. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials. 2015;61:95–102.
Article
CAS
PubMed
Google Scholar
Kim J, Cao L, Shvartsman D, Silva EA, Mooney DJ. Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett. 2011;11:694–700.
Article
CAS
PubMed
Google Scholar
Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials. 2011;32:1865–71.
Article
CAS
PubMed
Google Scholar
Kim JY, Ryu JH, Schellingerhout D, Sun IC, Lee SK, Jeon S, Kim J, Kwon IC, Nahrendorf M, Ahn CH, Kim K, Kim DE. Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics. 2015;5:1098–114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J-H, Kim Y-S, Park K, Kang E, Lee S, Nam HY, Kim K, Park JH, Chi DY, Park R-W, Kim I-S, Choi K, Kwon IC. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials. 2008;29:1920–30.
Article
CAS
PubMed
Google Scholar
Kim S-H, Kim J-H, You DG, Saravanakumar G, Yoon HY, Choi KY, Thavasyappan Thambi VG, Deepagan D-G, Park JH. Self-assembled dextran sulphate nanoparticles for targeting rheumatoid arthritis. Chem Commun. 2013;49:10349–51.
Article
CAS
Google Scholar
Ko W-C, Wang S-J, Hsiao C-Y, Hung C-T, Hsu Y-J, Chang D-C, Hung C-F. Pharmacological role of functionalized gold nanoparticles in disease applications. Molecules. 2022;27:1551.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koenig SH, Baglin C, Brown III RD, Fred C. Magnetic field dependence of solvent proton relaxation induced by Gd3+ and Mn2+ complexes. Magn Reson Med. 1984;1:496–501.
Article
CAS
PubMed
Google Scholar
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267–367.
PubMed
PubMed Central
Google Scholar
Kumar A, Sood A, Han SS. Molybdenum disulfide (MoS 2)-based nanostructures for tissue engineering applications: prospects and challenges. J Mater Chem B. 2022;10(15):2761–80.
Article
CAS
PubMed
Google Scholar
Kumar RA, Sivashanmugam A, Deepthi S, Bumgardner JD, Nair SV, Jayakumar R. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis. Carbohyd Polym. 2016;140:144–53.
Article
Google Scholar
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020;21:7609.
Article
CAS
PubMed Central
Google Scholar
Kwon B, Kang C, Kim J, Yoo D, Cho B-R, Kang PM, Lee D. H2O2-responsive antioxidant polymeric nanoparticles as therapeutic agents for peripheral arterial disease. Int J Pharm. 2016;511:1022–32.
Article
CAS
PubMed
Google Scholar
Lal N, Puri K, Rodrigues B. Vascular endothelial growth factor B and its signaling. Front Cardiovasc Med. 2018;5:39.
Article
PubMed
PubMed Central
Google Scholar
Lavery LA, Armstrong DG, Wunderlich RP, Jane Mohler M, Wendel CS, Lipsky BA. Risk factors for foot infections in individuals with diabetes. Diabetes Care. 2006;29:1288–93.
Article
PubMed
Google Scholar
Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, Stiber JA, Lobo AD, Hunsberger S, Guetta E. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation. 1996;94:1074–82.
Article
CAS
PubMed
Google Scholar
Lazarous DF, Unger EF, Epstein SE, Stine A, Arevalo JL, Chew EY, Quyyumi AA. Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J Am Coll Cardiol. 2000;36:1239–44.
Article
CAS
PubMed
Google Scholar
Lee H, Lee M-Y, Bhang SH, Kim B-S, Kim YS, Ji Hyeon Ju, Kim KS, Hahn SK. Hyaluronate–gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano. 2014;8:4790–8.
Article
CAS
PubMed
Google Scholar
Lee J-H, Parthiban P, Jin G-Z, Knowles JC, Kim H-W. Materials roles for promoting angiogenesis in tissue regeneration. Prog Mater Sci. 2021;117: 100732.
Article
CAS
Google Scholar
Lee S-M, Kim HJ, Ha Y-J, Park YN, Lee S-K, Park Y-B, Yoo K-H. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano. 2013;7:50–7.
Article
CAS
PubMed
Google Scholar
Li H, Chang J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater. 2013;9:6981–91.
Article
CAS
PubMed
Google Scholar
Li JJ, Kawazoe N, Chen G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials. 2015;54:226–36.
Article
CAS
PubMed
Google Scholar
Li S-D, Huang L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release. 2010;145:178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Quan YY, Li Y, Lu L, Cui M. Monitoring of tumor vascular normalization: the key points from basic research to clinical application. Cancer Manag Res. 2018;10:4163–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ. 2016;2:153–63.
Article
PubMed
PubMed Central
Google Scholar
Li X-X, Li K-A, Qin J-B, Ye K-C, Yang X-R, Li W-M, Xie Q-S, Jiang M-E, Zhang G-X, Xin-Wu Lu. In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia. Int J Nanomed. 2013;8:1063.
Google Scholar
Lin K, Xia L, Li H, Jiang X, Pan H, Yuanjin Xu, Lu WW, Zhang Z, Chang J. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials. 2013;34:10028–42.
Article
CAS
PubMed
Google Scholar
Lin Y, Liu J, Bai R, Shi J, Zhu X, Liu J, Guo J, Zhang W, Liu H, Liu Z. Mitochondria-inspired nanoparticles with microenvironment-adapting capacities for on-demand drug delivery after ischemic injury. ACS Nano. 2020;14:11846–59.
Article
CAS
PubMed
Google Scholar
Lindquist J, Schramm K. Drug-eluting balloons and drug-eluting stents in the treatment of peripheral vascular disease. Semin Intervent Radiol. 2018;35:443–52.
Article
PubMed
Google Scholar
Lipinski MJ, Frias JC, Amirbekian V, Briley-Saebo KC, Mani V, Samber D, Abbate A, Aguinaldo JG, Massey D, Fuster V, Vetrovec GW. Macrophage-specific lipid-based nanoparticles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC. 2009;2:637–47.
PubMed
Google Scholar
Liu Y, Ma L, Zhou H, Zhu X, Qianqian Yu, Chen Xu, Zhao Y, Liu J. Polypeptide nano-Se targeting inflammation and theranostic rheumatoid arthritis by anti-angiogenic and NO activating AMPKα signaling pathway. J Mater Chem B. 2018;6:3497–514.
Article
CAS
PubMed
Google Scholar
Lopes-Coelho F, Martins F, Pereira SA, Serpa J. Anti-angiogenic therapy: current challenges and future perspectives. Int J Mol Sci. 2021;22:3765.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu R-M, Yu-Chyi Hwang I-J, Liu C-C, Tsai H-Z, Li H-J, Han-Chung Wu. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.
Article
CAS
PubMed
Google Scholar
Lundy DJ, Chen K-H, Toh E-W, Hsieh P-H. Distribution of systemically administered nanoparticles reveals a size-dependent effect immediately following cardiac ischaemia-reperfusion injury. Sci Rep. 2016;6:1–10.
Article
Google Scholar
Luo C, Yang X, Li M, Huang H, Kang Q, Zhang X, Hui H, Zhang X, Cen C, Luo Y, Xie L, Wang C, He T, Jiang D, Li T, An H. A novel strategy for in vivo angiogenesis and osteogenesis: magnetic micro-movement in a bone scaffold. Artif Cells Nanomed Biotechnol. 2018;46:636–45.
Article
CAS
PubMed
Google Scholar
Luo L, Zhang X, Hirano Y, Tyagi P, Barabás P, Uehara H, Miya TR, Singh N, Archer B, Qazi Y, Jackman K, Das SK, Olsen T, Chennamaneni SR, Stagg BC, Ahmed F, Emerson L, Zygmunt K, Whitaker R, Mamalis C, Huang W, Gao G, Srinivas SP, Krizaj D, Baffi J, Ambati J, Kompella UB, Ambati BK. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano. 2013;7:3264–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured biomaterials for bone regeneration. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00922/full.
Article
PubMed
PubMed Central
Google Scholar
Lyu J, Wang L, Bai X, Xingjie Du, Wei J, Wang J, Lin Y, Chen Z, Liu Z, Jianming Wu, Zhong Z. Treatment of rheumatoid arthritis by serum albumin nanoparticles coated with mannose to target neutrophils. ACS Appl Mater Interfaces. 2021;13:266–76.
Article
CAS
PubMed
Google Scholar
MacRitchie N, Grassia G, Noonan J, Garside P, Graham D, Maffia P. Molecular imaging of atherosclerosis: spotlight on Raman spectroscopy and surface-enhanced Raman scattering. Heart. 2018;104:460–7.
Article
CAS
PubMed
Google Scholar
Maggio I, Holkers M, Liu J, Janssen JM, Chen X, Gonçalves MAFV. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep. 2014;4:1–11.
Google Scholar
Mahapatra C, Singh RK, Lee J-H, Jung J, Hyun JK, Kim H-W. Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions. Acta Biomater. 2017;50:142–53.
Article
CAS
PubMed
Google Scholar
Mahdavinia GH, Rostamizadeh S, Amani AM, Sepehrian H. Fast and efficient method for the synthesis of 2-arylbenzimidazoles using MCM-41-SO3H; 2012
Maier JA, Bernardini D, Rayssiguier Y, Mazur A. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro’. Biochim Biophys Acta. 2004;1689:6–12.
Article
CAS
PubMed
Google Scholar
Malik A, Daniel B, Sarosh V, Lovely C. Congestive heart failure. Treasure Island (FL): StatPearls Publishing; 2022. https://pubmed.ncbi.nlm.nih.gov/28613623/.
Mao S, Wang L, Chen P, Lan Y, Guo R, Zhang M. Nanoparticle-mediated delivery of Tanshinone IIA reduces adverse cardiac remodeling following myocardial infarctions in a mice model: role of NF-κB pathway. Artificial cells, nanomedicine, and biotechnology. 2018;46:S707–16.
Article
CAS
PubMed
Google Scholar
Marbán E, Malliaras K. Mixed results for bone marrow–derived cell therapy for ischemic heart disease. J Am Med Assoc. 2012;308:2405–6.
Article
PubMed
Google Scholar
Marew T, Birhanu G. Three dimensional printed nanostructure biomaterials for bone tissue engineering. Regenerative Therapy. 2021;18:102–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5:378–89.
Article
PubMed
PubMed Central
Google Scholar
Miller DC, Thapa A, Haberstroh KM, Webster TJ. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials. 2004;25:53–61.
Article
CAS
PubMed
Google Scholar
Minar E. Critical limb ischaemia. Hamostaseologie. 2009;29:102–9.
CAS
PubMed
Google Scholar
Miura T, Miki T. Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol. 2008;103:501–13.
Article
PubMed
Google Scholar
Moon S-K, Alaverdashvili M, Cross AR, Whishaw IQ. Both compensation and recovery of skilled reaching following small photothrombotic stroke to motor cortex in the rat. Exp Neurol. 2009;218:145–53.
Article
PubMed
Google Scholar
Moos PJ, Honeggar M, Malugin A, Herd H, Thiagarajan G, Ghandehari H. Transcriptional responses of human aortic endothelial cells to nanoconstructs used in biomedical applications. Mol Pharm. 2013;10:3242–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation. 2010;122:1707–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morishita R, Makino H, Aoki M, Hashiya N, Yamasaki K, Azuma J, Taniyama Y, Sawa Y, Kaneda Y, Ogihara T. Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arterioscler Thromb Vasc Biol. 2011;31:713–20.
Article
CAS
PubMed
Google Scholar
Moura CC, Segundo MA, et al. Co-association of methotrexate and SPIONs into anti-CD64 antibody-conjugated PLGA nanoparticles for theranostic application. Int J Nanomed. 2014;9:4911.
Google Scholar
Mousavi M, Hashemi A, Arjmand O, Amani AM, Babapoor A, Fateh MA, Fateh H, Mojoudi F, Esmaeili H, Jahandideh S. Erythrosine adsorption from aqueous solution via decorated graphene oxide with magnetic iron oxide nano particles: kinetic and equilibrium studies. Acta Chim Slov. 2018;65:882–94.
Article
CAS
PubMed
Google Scholar
Moysidou C-M, Barberio C, Owens RM. Advances in engineering human tissue models. Front Bioeng Biotechnol. 2021;8: 620962.
Article
PubMed
PubMed Central
Google Scholar
Nagl L, Horvath L, Pircher A, Wolf D. Tumor endothelial cells (TECs) as potential immune directors of the tumor microenvironment–New findings and future perspectives. Front Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00766.
Article
PubMed
PubMed Central
Google Scholar
Naito H, Iba T, Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol. 2020;32:295–305.
Article
CAS
PubMed
Google Scholar
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun nanofibers for improved angiogenesis: promises for tissue engineering applications. Nanomaterials. 2020. https://doi.org/10.3390/nano10081609.
Article
PubMed
PubMed Central
Google Scholar
Negishi Y, Endo-Takahashi Y, Matsuki Y, Kato Y, Takagi N, Suzuki R, Maruyama K, Aramaki Y. Systemic delivery systems of angiogenic gene by novel bubble liposomes containing cationic lipid and ultrasound exposure. Mol Pharm. 2012;9:1834–40.
Article
CAS
PubMed
Google Scholar
Negishi Y, Matsuo K, Endo-Takahashi Y, Suzuki K, Matsuki Y, Takagi N, Suzuki R, Maruyama K, Aramaki Y. Delivery of an angiogenic gene into ischemic muscle by novel bubble liposomes followed by ultrasound exposure. Pharm Res. 2011;28:712–9.
Article
CAS
PubMed
Google Scholar
Nethi SK, Barui AK, Jhelum P, Basuthakur P, Bollu VS, Reddy BR, Chakravarty S, Patra CR. Europium hydroxide nanorods mitigate hind limb ischemia in wistar rats. Adv Ther. 2021;4:2100016.
Article
CAS
Google Scholar
Nethi SK, Barui AK, Mukherjee S, Patra CR. Engineered nanoparticles for effective redox signaling during angiogenic and antiangiogenic therapy. Antioxid Redox Signal. 2019;30:786–809.
Article
CAS
PubMed
Google Scholar
Niu Y, Wang Z, Shi Y, Dong L, Wang C. Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioact Mater. 2021;6:244–61.
Article
CAS
PubMed
Google Scholar
Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45:S5-67.
Article
PubMed
Google Scholar
O’Rourke DJ, Quinton HB, Piper W, Hernandez F, Morton J, Hettleman B, Hearne M, Nugent W, O’Connor GT, Malenka DJ. Survival in patients with peripheral vascular disease after percutaneous coronary intervention and coronary artery bypass graft surgery. Ann Thorac Surg. 2004;78:466–70.
Article
PubMed
Google Scholar
Odell AF, Mannion AJ. In vitro co-culture of fibroblast and endothelial cells to assess angiogenesis. Methods Mol Biol. 2022;2441:277–86.
Article
PubMed
Google Scholar
Oduk Y, Zhu W, Kannappan R, Zhao M, Borovjagin AV, Oparil S, Zhang J. VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Heart Circ Physiol. 2018;314:H278–84.
Article
PubMed
Google Scholar
Oliveira H, Catros S, Boiziau C, Siadous R, Marti-Munoz J, Bareille R, Rey S, Castano O, Planell J, Amédée J, Engel E. The proangiogenic potential of a novel calcium releasing biomaterial: impact on cell recruitment. Acta Biomater. 2016;29:435–45.
Article
CAS
PubMed
Google Scholar
Ortiz-Casas B, Galdámez-Martínez A, Gutiérrez-Flores J, Ibañez AB, Panda PK, Santana G, Astudillo H, de la Vega M, Suar CG, Rodelo, and Ajeet Kaushik. Bio-Acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Mater Today. 2021;50:533–69.
Article
CAS
Google Scholar
Ouma GO, Zafrir B, Mohler ER 3rd, Flugelman MY. Therapeutic angiogenesis in critical limb ischemia. Angiology. 2013;64:466–80.
Article
PubMed
Google Scholar
Ouriel K. Peripheral arterial disease. Lancet. 2001;358:1257–64.
Article
CAS
PubMed
Google Scholar
Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581–93.
Article
CAS
PubMed
Google Scholar
Pala R, Anju VT, Dyavaiah M, Busi S, Nauli SM. Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. Int J Nanomed. 2020;15:3741–69.
Article
CAS
Google Scholar
Palamoor M, Jablonski MM. Synthesis, characterization and in vitro studies of celecoxib-loaded poly(ortho ester) nanoparticles targeted for intraocular drug delivery. Colloids Surf B Biointerfaces. 2013;112:474–82.
Article
CAS
PubMed
Google Scholar
Pan Y, Ding H, Qin L, Zhao X, Cai J, Du B. Gold nanoparticles induce nanostructural reorganization of VEGFR2 to repress angiogenesis. J Biomed Nanotechnol. 2013;9:1746–56.
Article
CAS
PubMed
Google Scholar
Papanagiotou P, George N. Endovascular thrombectomy in acute ischemic stroke. Circulation. 2018;11:e005362.
PubMed
Google Scholar
Paris JL, María V-R. Nanostructures for imaging, medical diagnostics and therapy. In: Fundamentals of Nanoparticles (Elsevier); 2018. https://doi.org/10.1016/B978-0-323-51255-8.00001-X
Park I-S, Mahapatra C, Park JS, Dashnyam K, Kim J-W, Ahn JC, Chung P-S, Yoon DS, Mandakhbayar N, Singh RK, Lee J-H, Leong KW, Kim H-W. Revascularization and limb salvage following critical limb ischemia by nanoceria-induced Ref-1/APE1-dependent angiogenesis. Biomaterials. 2020;242: 119919.
Article
CAS
PubMed
Google Scholar
Park K, Chen Y, Hu Y, Mayo AS, Kompella UB, Longeras R, Ma JX. Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes. 2009;58:1902–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park MH, kyung Kim A, Manandhar S, Oh SY, Jang GH, Kang L, Lee DW, Lee SH, Lee HE, Huh TL, Suh SH. 2019. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. Elife 2019;8: e46012.
Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME. Vascular endothelial growth factor in eye disease. Prog Retin Eye Res. 2008;27:331–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pereira RD, De Long NE, Wang RC, Yazdi FT, Holloway AC, Raha S. Angiogenesis in the placenta: the role of reactive oxygen species signaling. BioMed Res Int. 2015. https://doi.org/10.1155/2015/814543.
Article
PubMed
PubMed Central
Google Scholar
Perez-Favila A, Martinez-Fierro ML, Rodriguez-Lazalde JG, Cid-Baez MA, Zamudio-Osuna MD, Martinez-Blanco MD, Mollinedo-Montaño FE, Rodriguez-Sanchez IP, Castañeda-Miranda R, Garza-Veloz I. Current therapeutic strategies in diabetic foot ulcers, Medicina 2019;55: 714.
Pivodová V, Franková J, Galandáková A, Ulrichová J. In vitro AuNPs’ cytotoxicity and their effect on wound healing. Nanobiomedicine. 2015;2:7.
Article
PubMed
PubMed Central
Google Scholar
Pollinger K, Hennig R, Ohlmann A, Fuchshofer R, Wenzel R, Breunig M, Tessmar J, Tamm ER, Goepferich A. Ligand-functionalized nanoparticles target endothelial cells in retinal capillaries after systemic application. Proc Natl Acad Sci U S A. 2013;110:6115–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Popescu S, Preda MB, Marinescu CI, Simionescu M, Burlacu A. Dual stem cell therapy improves the myocardial recovery post-infarction through reciprocal modulation of cell functions. Int J Mol Sci. 2021;22:5631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16:159–78.
Article
CAS
PubMed
Google Scholar
Provost C, Soudant M, Legrand L, Ben Hassen W, Xie Y, Soize S, Bourcier R, Benzakoun J, Edjlali M, Boulouis G, Raoult H, Guillemin F, Naggara O, Bracard S, Oppenheim C. Magnetic resonance imaging or computed tomography before treatment in acute ischemic stroke. Stroke. 2019;50:659–64.
Article
PubMed
Google Scholar
Qiu F, Meng T, Chen Q, Zhou K, Shao Y, Matlock G, Ma X, Wu W, Du Y, Wang X, Deng G, Ma JX, Xu Q. Fenofibrate-Loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration. Mol Pharm. 2019;16:1958–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan E, Partap S, Azevedo MM, Jell G, Stevens MM, O’Brien FJ. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials. 2015;52:358–66.
Article
CAS
PubMed
Google Scholar
Amin R, Devang ES, Narayan SP, Abdel-Hafiz M, Mestroni L, Peña B. Nanomaterials for cardiac tissue engineering. Molecules. 2020;25:5189.
Article
CAS
Google Scholar
Reddy K, Khaliq A, Henning RJ. Recent advances in the diagnosis and treatment of acute myocardial infarction. World J Cardiol. 2015;7:243–76.
Article
PubMed
PubMed Central
Google Scholar
Reis JS, Dos AD, Teixeira R, De Vasconcelos A, Quaresma TC, Almeida RG, Arribada JT, Neto FH, Da Silva R, Silva-Cunha A, Moura SALD, Silva GND, Fialho SL, Silva GRD. Sodium butyrate-loaded nanoparticles coated with chitosan for the treatment of neovascularization in age-related macular degeneration: ocular biocompatibility and antiangiogenic activity. Eur J Pharm Biopharm. 2022;179:26–36.
Article
CAS
PubMed
Google Scholar
Rissanen TT, Markkanen JE, Arve K, Rutanen J, Kettunen MI, Vajanto I, Jauhiainen S, Cashion L, Gruchala M, Närvänen O, Taipale P, Kauppinen RA, Rubanyi GM, Ylä-Herttuala S. Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. Faseb j. 2003;17:100–2.
Article
CAS
PubMed
Google Scholar
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99:665–706.
Article
CAS
PubMed
Google Scholar
Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–209.
Article
PubMed
Google Scholar
Roma-Rodrigues C, Heuer-Jungemann A, Fernandes AR, Kanaras AG, Baptista PV. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo. Int J Nanomed. 2016;11:2633–9.
CAS
Google Scholar
Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou N. Silica supported ammonium dihydrogen phosphate (NH4H2PO4/SiO2): A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl-14-H-dibenzo [a, j] xanthenes. Chin Chem Lett. 2009;20:779–83.
Article
CAS
Google Scholar
Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Aqueous NaHSO4 catalyzed regioselective and versatile synthesis of 2-thiazolamines. Monatsh Chem. 2008;139:1241–5.
Article
CAS
Google Scholar
Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM. Solvent-free chemoselective synthesis of some novel substituted 2-arylbenzimidazoles using amino acid-based prolinium nitrate ionic liquid as catalyst. J Heterocycl Chem. 2009;46:74–8.
Article
CAS
Google Scholar
Roupakia E, Markopoulos GS, Kolettas E. IL-12-mediated transcriptional regulation of matrix metalloproteinases. Biosci Rep. 2018. https://doi.org/10.1002/jhet.35.
Article
PubMed
PubMed Central
Google Scholar
Rumney RMH, Lanham SA, Kanczler JM, Kao AP, Thiagarajan L, Dixon JE, Tozzi G, Oreffo ROC. In vivo delivery of VEGF RNA and protein to increase osteogenesis and intraosseous angiogenesis. Sci Rep. 2019;9:1–10.
Article
CAS
Google Scholar
Saeed BA, Lim V, Yusof NA, Khor KZ, Rahman HS, Abdul Samad N. Antiangiogenic properties of nanoparticles: a systematic review. Int J Nanomedicine. 2019;14:5135–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saeed BA, Lim V, Yusof NA, Khor KZ, Rahman HS, Samad NA. Antiangiogenic properties of nanoparticles: a systematic review. Int J Nanomed. 2019;14:5135.
Article
CAS
Google Scholar
Saffari M, Moghimi HR, Dass CR. Barriers to liposomal gene delivery: from application site to the target. IJPR. 2016;15:3.
PubMed
PubMed Central
Google Scholar
Saleh A, Schroeter M, Ringelstein A, Hartung H-P, Siebler M, Mödder U, Jander S. Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke. 2007;38:2733–7.
Article
PubMed
Google Scholar
Samadian H, Khastar H, Ehterami A, Salehi M. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Sci Rep. 2021;11:13877.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saman H, Raza SS, Uddin S, Rasul K. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. Cancers. 2020;12:1172.
Article
CAS
PubMed Central
Google Scholar
Sanada F, Taniyama Y, Azuma J, Yuka Y II, Kanbara M, Iwabayashi HR, Morishita R. Therapeutic angiogenesis by gene therapy for critical limb ischemia: choice of biological agent. Immunol Endocr Metab Agents Med Chem. 2014;14:32–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sargento-Freitas J, Aday S, Nunes C, Cordeiro M, Gouveia A, Silva F, Machado C, Rodrigues B, Santo GC, Ferreira C. Endothelial progenitor cells enhance blood–brain barrier permeability in subacute stroke. Neurology. 2018;90:e127–34.
Article
CAS
PubMed
Google Scholar
Satapathy SR, Nayak A, Siddharth S, Das S, Nayak D, Kundu CN. “Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner”, Nanomedicine: Nanotechnology. Biol Med. 2018;14:883–96.
CAS
Google Scholar
Satchi-Fainaro R, Puder M, Davies JW, Tran HT, Sampson DA, Greene AK, Corfas G, Folkman J. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med. 2004;10:255–61.
Article
CAS
PubMed
Google Scholar
Schumacher M, et al. Peptide-Modified Nano-Bioactive Glass for Targeted Immobilization of Native VEGF. ACS Appl Mater Interfaces. 2022. https://doi.org/10.1021/acsami.1c21378.
Article
PubMed
PubMed Central
Google Scholar
Şen Ö, Emanet M, Ciofani G. Nanotechnology-based strategies to evaluate and counteract cancer metastasis and neoangiogenesis. Adv Healthcare Mater. 2021;10:2002163.
Article
Google Scholar
Seo H-J, Cho Y-E, Kim T, Shin H-I, Kwun I-S. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nurs Res Pract. 2010;4:356–61.
CAS
Google Scholar
Seto S-W, Chang D, Jenkins A, Bensoussan A, Kiat H. Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J Clin Med. 2016;5:56.
Article
PubMed Central
Google Scholar
Shahzadi I, Ali Z, Bukhari S, Narula AS, Mirza B, Mohammadinejad R. Possible applications of salvianolic acid B against different cancers. Explor Target Antitumor Ther. 2020;1:218–38.
Article
PubMed
PubMed Central
Google Scholar
Shahzadi L, Chaudhry AA, Aleem AR, Malik MH, Ijaz K, Akhtar H, Alvi F, Khan AF, Rehman IU, Yar M. Development of K-doped ZnO nanoparticles encapsulated crosslinked chitosan based new membranes to stimulate angiogenesis in tissue engineered skin grafts. Int J Biol Macromol. 2018;120:721–8.
Article
CAS
PubMed
Google Scholar
Shi X, Zhou K, Huang F, Wang C. Interaction of hydroxyapatite nanoparticles with endothelial cells: internalization and inhibition of angiogenesis in vitro through the PI3K/Akt pathway. Int J Nanomedicine. 2017;12:5781–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimamura M, Nakagami H, Taniyama Y, Morishita R. Gene therapy for peripheral arterial disease. Expert Opin Biol Ther. 2014;14:1175–84.
Article
CAS
PubMed
Google Scholar
Shu J, Santulli G. Update on peripheral artery disease: epidemiology and evidence-based facts. Atherosclerosis. 2018;275:379–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sim TM, Dinesh Tarini S, Dheen T, Bay BH, Srinivasan DK. Nanoparticle-Based Technology Approaches to the Management of Neurological Disorders. Int J Mol Sci. 2020;21:6070.
Article
CAS
PubMed Central
Google Scholar
Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KCP. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med. 1998;4:623–6.
Article
CAS
PubMed
Google Scholar
Skóra J, Barć P, Pupka A, Dawiskiba T, Korta K, Albert M, Szyber P. Transplantation of autologous bone marrow mononuclear cells with VEGF gene improves diabetic critical limb ischaemia. Endokrynol Pol. 2013;64:129–38.
PubMed
Google Scholar
Skrajnowska D, Bobrowska-Korczak B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients. 2019. https://doi.org/10.3390/nu11102273.
Article
PubMed
PubMed Central
Google Scholar
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018. https://doi.org/10.3389/fchem.2018.00360.
Article
PubMed
PubMed Central
Google Scholar
Song W, Chiu A, Wang L-H, Schwartz RE, Li B, Bouklas N, Bowers DT, An D, Cheong SH, Flanders JA. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat Commun. 2019;10:1–12.
Article
Google Scholar
Sruthi TV, Edatt L, Raji GR, Kunhiraman H, Shankar SS, Shankar V, Ramachandran V, Poyyakkara A, Kumar SVB. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J Cell Physiol. 2018;233:3498–514.
Article
CAS
PubMed
Google Scholar
Sun N, Ning Bo, Hansson KM, Bruce AC, Seaman SA, Zhang C, Rikard M, DeRosa CA, Fraser CL, Wågberg M. Modified VEGF-A mRNA induces sustained multifaceted microvascular response and accelerates diabetic wound healing. Sci Rep. 2018;8:1–11.
Article
Google Scholar
Sun Z, Huang P, Tong G, Lin J, Jin A, Rong P, Zhu L, Nie L, Niu G, Cao F. VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale. 2013;5:6857–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taheri SL, Rezazadeh M, Hassanzadeh F, Akbari V, Dehghani A, Talebi A, Mostafavi SA. Preparation, physicochemical, and retinal anti-angiogenic evaluation of poloxamer hydrogel containing dexamethasone/avastin-loaded chitosan-N-acetyl-L-cysteine nanoparticles. Int J Biol Macromol. 2022;220:1605–18.
Article
CAS
PubMed
Google Scholar
Takamiya M, Miyamoto Y, Yamashita T, Deguchi K, Ohta Y, Abe K. Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- and tissue plasminogen activator-related brain damages in mice. Neuroscience. 2012;221:47–55.
Article
CAS
PubMed
Google Scholar
Takamiya M, Miyamoto Y, Yamashita T, Deguchi K, Ohta Y, Ikeda Y, Matsuura T, Abe K. Neurological and pathological improvements of cerebral infarction in mice with platinum nanoparticles. J Neurosci Res. 2011;89:1125–33.
Article
CAS
PubMed
Google Scholar
Tang J, Wang J, Yang J, Kong X, Zheng F, Guo L, Zhang L, Huang Y. Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. Eur J Cardiothorac Surg. 2009;36:644–50.
Article
PubMed
Google Scholar
Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J Clin Med. 2019;9:84.
Article
PubMed Central
Google Scholar
Tewabe A, Abate A, Tamrie M, Seyfu A, Siraj EA. Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc. 2021;14:1711.
Article
PubMed
PubMed Central
Google Scholar
Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286:2511–4.
Article
CAS
PubMed
Google Scholar
Tong S, Fine EJ, Lin Y, Cradick TJ, Bao G. Nanomedicine: tiny particles and machines give huge gains. Ann Biomed Eng. 2014;42:243–59.
Article
PubMed
Google Scholar
Topfer LA, Spry C. New technologies for the treatment of peripheral artery disease. CADTH Issues Emerg Health Technol. 2018;172.
Tu C, Das S, Baker AB, Zoldan J, Suggs LJ. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia. ACS Nano. 2015;9:3436–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag. 2018;14:63–74. https://doi.org/10.2147/VHRM.S125065. eCollection 2018.
Article
PubMed
PubMed Central
Google Scholar
ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. 2017. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 2017;12:7291.
Vafa E, Bazargan-Lari R. Bovine serum albumin protected gold nanozymes as a novel anti-cancer nanodrug for acute T-type lymphoblastic leukemia treatment via effect on the expression of anti-apoptotic genes. Appl Biol Chem. 2021;64:86.
Article
CAS
Google Scholar
Vafa E, Bazargan-Lari R, Bahrololoom ME. Electrophoretic deposition of polyvinyl alcohol/natural chitosan/bioactive glass composite coatings on 316L stainless steel for biomedical application. Prog Org Coat. 2021;151: 106059.
Article
CAS
Google Scholar
Vafa E, Bazargan-Lari R, Bahrololoom ME. Synthesis of 45S5 bioactive glass-ceramic using the sol-gel method, catalyzed by low concentration acetic acid extracted from homemade vinegar. J Market Res. 2021;10:1427–36.
CAS